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Proof Schema: a.k.a Yet Another Formalism of Induction

- A schema of proofs was used to analyze Fürstenberg’s proof
of the infinitude of primes [Baaz et al. 2008].

- Proof Schema are a formal description of this representation.

- More precisely, they are recursively defined infinite sequence of
finite proofs indexed by a vector of free numeric parameters,
which when grounded and normalized produce a first-order
proof.

- Links between proofs define the recursive construction.

- Recent work [ Cerna & Lolic , 2018], has shown equivalence
to Peano Arithmetic.
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Proof Schema: by comparison

- Unlike formal systems using so called ω-rules, primitive
recursive construction is an explicit part of the object
language.

- In contrast to cyclic proof formalisms, proofs are not by
infinite descent, i.e. they do not unroll into regular infinite
proof trees.

- Essentially proof schemata fall in between these two well
known formalisms.

- The formalism allows easy tracking of formula occurrences.

- The ability to track formula occurrences provides interesting
properties concerning cut-elimination.

slide 3/25



Global versus Local cut-elimination

Local cut-elimination reduces a cut formula’s complexity or its
distance from the leaves.

- Introduced by Gentzen as a method of proving consistency, the
concept has been expanded well beyond the intended scope.

Global cut-elimination produces an intermediate representation
of a formal proofs cut-structure.

- From this intermediate representation a new proof with a
trivial cut-structure is produced.
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CERES: The Characteristic Clause Set representation

cut 

∆`Π

LK-Proof with cuts

cut 

Paths to cut ancestors

CL(A`A)≡{`A}
CL(A`A)≡{A`}
CL(A`A)≡{A`A}

CL

(
∆ ` Π ρ

∆′ ` Π′

)
≡ CL(∆ ` Π)

CL

(
∆ ` Π ∆′ ` Π′

ρ
∆′′ ` Π′′

)
≡

 CL(∆ ` Π) ∪ CL(∆′ ` Π′)

CL(∆ ` Π)× CL(∆′ ` Π′)

- Construct a clause set from the cut ancestors relation.

- Such a clause set is always unsatisfiable.
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Local Cut-elimination and Recursion

- Essentially cut reduction fails once it reaches a link (recursive
call).

(ϕl , t, x̄)

C ,∆ ` Γ

(ϕj , t
′, x̄)

∆′ ` Γ′,C
cut

∆,∆′ ` Γ, Γ′

- For related formalisms cuts are eliminated from an infinite
proof tree.

- One can define a relation between proof schema extending
local cut-elimination and providing a sort of “cut-elimination”
through clausal subsumption [Cerna & Lettmann 2017].
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Clausal analysis: Reductive C.E. and Global Cut Structure

- Baaz and Leitsch, 2006 show how locally reducing cuts
impacts the global cut structure.

- Every proof can be transformed into a proof with a
minimally complex cut structure.

- The extracted clause set, is subsumed by the clause sets of
the more complex cut structure.

cut 

∆`Π

Reduction can result in

cutcut

p

the following proof.

• Local elimination

can result in a multi-

plication of the cuts

• Essentially, the

cut-structure gets

more redundant.

• Redundancy ≡
structural simplic-

ity.
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Clausal Analysis of Proof Schema

Φ Φa ΨΦ′

Φa ↓α Φ′ ↓β
ΘΨ AΨ

ψ Θ(Ψ ↓β) ΘΨ ↓β

ψtop Θ(ψtop) CLt(AΨ) `
(xii)

(ix)

(xi)

(x)

(ix)

(ii)

(iii) (iii)

(iv)

(v)
(v)

(v)

(vi)

(v)

(vi)

(iii)

(vii)

(i)

(viii)

(iii)

(vi)

(ix)

slide 8/25



Global Cut-elimination and Proof Schema

- Recursive clausal analysis provides some insight into the
structure of proof schema.

- Though it is too close for comfort to the infinite constructions
of other formalisms

- Also, a recursive description of formula occurrences is loss.

- In [ Leitsch et al., 2017] a solution is provided which preserves
the occurrence tracking properties.
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A Normal Form

φα
Γ ` ∆,Fα

φ2

Γ ` ∆,F2

φ1

Γ ` ∆,F1

Φ
F1, . . . ,Fα ` (w : l)

F1, . . . ,Fα, Γ ` ∆
(cut + c∗)

Γ,F2, . . . ,Fα ` ∆
(cut + c∗)

Γ,F3, . . . ,Fα ` ∆
...

(cut + c∗)
Γ ` ∆

- The cut structure is turned into a recursively defined formula
based on subformula occurance (BLUE).

- The schema itself is transformed into a schema with the cut
structure as a formula in the consequent (RED).

- The formula is Σ1 and unsatisfiable. The sequence F1, . . . ,Fα
contain the term tuples of a Schematic Herbrand Sequent.
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Cyclic Proofs?

- F is an inductive definition of an unsatisfiable Σ1 formula.

- Current tools we us to find proofs of ∀x̄F (n1, · · · , nm, x) ` are
not sufficient for our more complex examples.

- Currently investigating how cyclic proving methods can help.

- For example Realizability in Cyclic Proofs [R. Rowe and J
Brotherston, 2017]
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Example definition: IPPω

R(s(n)) =⇒ ∀x( x ≤ x ) ∧ T (s(n)) ∧ ∀x( Q(s(n), x) )

R(0) =⇒
∀x , y(¬(s(y) ≤ x ∧ f (y) = 0 ∧
f (x) = 0)) ∧ ∀x( x ≤ x )∧
∀x(f (x) = 0)

T (s(n)) =⇒ ∀x , y , z( m(x , y) ≤ z =⇒ x ≤ z ) ∧
∀x , y , z( m(x , y) ≤ z =⇒ y ≤ z ) ∧
∀x , y(¬(s(y) ≤ x ∧ f (y) = s(n) ∧ f (x) = s(n))) ∧
T (n)

T (0) =⇒ ∀x , y(¬(s(y) ≤ x ∧ f (y) = 0 ∧ f (x) = 0))

Q(s(n), a) =⇒ f (a) = s(n) ∨ Q(n, a)

Q(0, a) =⇒ f (a) = 0
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Refuting the IPPω Definition

- Constructing a formal proof of ∀xR(n, x) ` is quite difficult.

- Formalizing proofs and producing the term tuples of a
schematic Herbrand sequent of the cut structure definitions
are two areas of current investigation.

- In recent work [ D. M. Cerna, 2018], currently in review, a
formal system, which seems to be complete (still an open
question), was introduced which can formalize ∀xR(n, x) `.

- The following diagram represents the linking dependencies of
the formal proof.
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Refutation Link Dependences

C1start

C2

C4

C3

p2

p4, p6

p5

p7, p9

p6
p8

p9, p10
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Constructing Schematic Proofs

- We have mentioned proof schema but have not really
mentioned their construction:

⇒

⇓

⇓ α−2 times

− The proof is indexed by α.

− Instantiating α results in an LK-proof .

− Formally a proof pair 〈ϕ(0), ϕ(n + 1)〉.
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S iLK-Calculus: Objects

I Sequents: Π ` Σ or S

I Component pairs: ( > : S ) or ( S′ : [ S ] )
Closed component pairs contain the end-sequents of a proof
schema component

I Component groups: multisets of component pairs Γ

I Component collections: sets of component groups Π̇
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S iLK-Calculus: Linking Rules

Table: The linking rules of the S iLK-calculus. For the other rules of the
S iLK-Calculus see the Tableaux paper [Cerna & Lettmann 2017]

( > : [ (Π ` ∆) [n \ 0] ] ) , Γ|Π̇
�(

(Π `(n+1) ∆) [x̄ \ t̄] : [ (Π ` ∆) [n \ 0] ]
)
, Γ|Π̇

( > : [ S ] ) , Γ|∆̇| ( [ (Λ ` Γ) [n \ h(n)] ] : [ R ] ) |Π̇ y(
(Λ `f (n) Γ) [n \ g(n)] [ȳ \ t̄] : [ S ]

)
, Γ|Π̇′
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S iLK-Proof

Equational theory:

E ≡ {f̂ 0(x) = x ; f̂ s(n)(x) = f f̂ n(x)}

Abbreviations:

∆ ≡ P(0),∀x .P(x)→ P(f (x)) and S ≡ ∆ ` P(f̂ 0(0))
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S iLK-Proof

Ax1 : r
( > : P(0) ` P(0) ) |

Ebc1(
> : P(0) ` P(f̂ 0(0))

)
|

(w : l)bc1(
> : P(0), ∀x.P(x)→ P(f (x)) ` P(f̂ 0(0))

)
|

clbc(
> : [∆ ` P(f̂ 0(0)) ]

)
|

Ax : l(
P(f f̂ n(0)) `s(n) P(f f̂ n(0)) : [ S ]

)
|

br
( > : [ S ] ) ,

(
P(f f̂ n(0)) `s(n) P(f f̂ n(0)) : [ S ]

)
|

�(
∆ `s(n) P(f̂ n(0)) : [ S ]

)
,
(

P(f f̂ n(0)) `s(n) P(f f̂ n(0)) : [ S ]
)
|

(→: l)sc2(
∆, P(f̂ n(0))→ P(f f̂ n(0)) `s(n) P(f f̂ n(0)) : [ S ]

)
|

(∀ : l)sc1(
∆, ∀x.P(x)→ P(f (x)) `s(n) P(f̂ s(n)(0)) : [ S ]

)
|

(c : l)sc1(
∆ `s(n) P(f̂ s(n)(0)) : [ S ]

)
|

clsc(
[ ∆ ` P(f̂ s(n)(0)) ] : [ S ]

)
|
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Evaluation Function of a Closed Component Collection

I Let I be the customary evaluation function of sequents.

I Assume an S iLK-proof ending in the component collection

C ≡ ( [ Q0 ] : [ S0 ] ) | · · · | ( [ Qm ] : [ Sm ] )

such that ( [ Q0 ] : [ S0] ) is the last component pair closed
in the proof of C (leading component).

ISiLK(C) ≡ I(S0),

if Q0 ≡ [ ] and ISiLK(C) ≡
m∧
i=0

I(Si ) ∧ ∀.x
( m∧

i=0

(
I(Qi [n \ x ])→ I(Qi [n \ (x + 1)])

))
→ ∀x .(I(Q0 [n \ x ]),
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A Better S iLK-Calculus

I S iLK-Calculus was not developed for the formalism presented
in [ Cerna & Lolic , 2018] (PA Schema).

I However, there is a no reason it cannot be extended to so
called P-schema (PA Schema).

I This can be done by introducing Super sequents or sequents
of sequents.

I The super antecedent represents the assumed theory and the
super consequent represents the statements implied by the
antecedent. An empty antecedent means it is a definitional
statement Classical logic plus our equational theory.

I The rules of the S iLK-Calculus can be generalized and
simplified in this setting.

slide 21/25



The Super Sequent Calculus

AxV Γ,A ` A,∆
AxV Γ ` >,∆

F V G
∣∣∣∣∣∣∣∣ S(0)

�
S(x)

∣∣∣∣∣∣∣∣ F V G
∣∣∣∣∣∣∣∣ S(m) ◦ T ∗

S(x)
∣∣∣∣∣∣∣∣ F V G

∣∣∣∣∣∣∣∣ S(s(m))
⇓

F V G
∣∣∣∣∣∣∣∣ S (αααα) ◦ T

- There is a concept of active parameters of which only one can
occur in a super sequent at a time.

- The number of passive parameters (eigenvariables of the
indexing sort) is unrestricted.

- This allows the formalization of P-schema (PA Schema). Note
that no inferences can be applied to the super antecedent.
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A Super Sequent Proof

Ax
V ` >

E
V ` Q (0)

�
` Q(x)V ` Q (n)

Ax
V ` >

E
V ` P (0)

�
` P (x) V ` Q(n), P(n)

Ax
V ` >

E
V ` Q (0)

�
` Q(x)V ` Q(n),Q(n)

∧ : r
` P (x) ;` Q(x)V ` Q(n), P(n) ∧ Q(n)

E
` P (x) ;` Q(x)V ` Q(n),Q(s (n))

∨ : r
` P (x) ;` Q(x)V ` Q(n) ∨ Q(s (n))

E
` P (x) ;` Q(x)V ` P(s (n))

⇓
` Q(x)V ` P(αααα)

Th
` Q(x)V ` P(αααα)

∣∣∣∣∣∣∣∣ ` P (n)
∧ : r

` Q(x)V ` P(αααα)
∣∣∣∣∣∣∣∣ ` P (n) ∧ Q (n)

E
` Q(x)V ` P(αααα)

∣∣∣∣∣∣∣∣ ` Q (s(n))
⇓

V ` P (αααα)
∣∣∣∣∣∣∣∣ ` Q (ββββ )

Gen
V ` P (γγγγ ) ∨ Q (γγγγ )

Th
V ` P (δ) ∨ Q (δ)

∣∣∣∣∣∣∣∣ ` P (γγγγ ) ∨ Q (γγγγ )
∀ : r

V ` ∀x.P (x) ∨ Q (x)
∣∣∣∣∣∣∣∣ ` P (γγγγ ) ∨ Q (γγγγ )

E = {P (s(n)) = Q (n)∨Q (s(n)) ,P (0) = >,Q (s(n)) = P (n)∧Q (n) ,Q (0) = >}
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Conclusion & Open problems

I Using super sequents for automated deduction.

I Further investigation of the properties of the calculus.

I Further investigation into the relationship between proof
Schema and cyclic proofs.
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Thank you for your time.
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