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Proof Schema: a.k.a Yet Another Formalism of Induction

A schema of proofs was used to analyze Fiirstenberg's proof
of the infinitude of primes [Baaz et al. 2008].

- Proof Schema are a formal description of this representation.

- More precisely, they are recursively defined infinite sequence of
finite proofs indexed by a vector of free numeric parameters,
which when grounded and normalized produce a first-order
proof.

- Links between proofs define the recursive construction.

- Recent work [ Cerna & Lolic , 2018], has shown equivalence
to Peano Arithmetic.
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Proof Schema: by comparison

- Unlike formal systems using so called w-rules, primitive
recursive construction is an explicit part of the object
language.

- In contrast to cyclic proof formalisms, proofs are not by
infinite descent, i.e. they do not unroll into regular infinite
proof trees.

- Essentially proof schemata fall in between these two well
known formalisms.

- The formalism allows easy tracking of formula occurrences.

- The ability to track formula occurrences provides interesting
properties concerning cut-elimination.
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Global versus Local cut-elimination

Local cut-elimination reduces a cut formula’'s complexity or its
distance from the leaves.

- Introduced by Gentzen as a method of proving consistency, the
concept has been expanded well beyond the intended scope.

slide 4/25



Global versus Local cut-elimination

Local cut-elimination reduces a cut formula’'s complexity or its
distance from the leaves.

- Introduced by Gentzen as a method of proving consistency, the
concept has been expanded well beyond the intended scope.

Global cut-elimination produces an intermediate representation
of a formal proofs cut-structure.

- From this intermediate representation a new proof with a
trivial cut-structure is produced.

slide 4/25



CERES: The Characteristic Clause Set representation

LK-Proof with cuts



CERES: The Characteristic Clause Set representation

LK-Proof with cuts Paths to cut ancestors



CERES: The Characteristic Clause Set representation

CL(AFA)={-A}
CL(AFA)={AF}
CL(A-A)={AFA}

LK-Proof with cuts Paths to cut ancestors

- Construct a clause set from the cut ancestors relation.

- Such a clause set is always unsatisfiable.




CERES: The Characteristic Clause Set representation

CL(AFA)={-A}
CL(AFA)={AF}
CL(A-A)={AFA}

CL< Arn p)ECL(AFﬂ)

ATV

LK-Proof with cuts Paths to cut ancestors

- Construct a clause set from the cut ancestors relation.

- Such a clause set is always unsatisfiable.




CERES: The Characteristic Clause Set representation

CL(AFA)={-A}
CL(AFA)={AF}
CL(A-A)={AFA}
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- Construct a clause set from the cut ancestors relation.

- Such a clause set is always unsatisfiable.
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Local Cut-elimination and Recursion

- Essentially cut reduction fails once it reaches a link (recursive

call).
Jent®) o (e thX)
C,AFT AR, C
AN, cut

- For related formalisms cuts are eliminated from an infinite
proof tree.

- One can define a relation between proof schema extending
local cut-elimination and providing a sort of “cut-elimination’
through clausal subsumption [Cerna & Lettmann 2017].
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Clausal analysis: Reductive C.E. and Global Cut Structure

- Baaz and Leitsch, 2006 show how locally reducing cuts
impacts the global cut structure.

- Every proof can be transformed into a proof with a
minimally complex cut structure.

- The extracted clause set, is subsumed by the clause sets of
the more complex cut structure.

Reduction can result in
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- Baaz and Leitsch, 2006 show how locally reducing cuts
impacts the global cut structure.

- Every proof can be transformed into a proof with a
minimally complex cut structure.

- The extracted clause set, is subsumed by the clause sets of
the more complex cut structure.

e Local elimination

can result in a multi-
plication of the cuts

e  Essentially, the
cut-structure gets
more redundant.

Reduction can result in the following proof.
slide 7/25




Clausal analysis: Reductive C.E. and Global Cut Structure

- Baaz and Leitsch, 2006 show how locally reducing cuts
impacts the global cut structure.

- Every proof can be transformed into a proof with a
minimally complex cut structure.

- The extracted clause set, is subsumed by the clause sets of
the more complex cut structure.

e Local elimination

can result in a multi-
plication of the cuts

e  Essentially, the
cut-structure gets
more redundant.

e Redundancy =

structural  simplic-

Reduction can result in the following proof. ity.
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Clausal Analysis of Proof Schema
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Global Cut-elimination and Proof Schema

- Recursive clausal analysis provides some insight into the
structure of proof schema.

- Though it is too close for comfort to the infinite constructions
of other formalisms

- Also, a recursive description of formula occurrences is loss.

- In [ Leitsch et al., 2017] a solution is provided which preserves
the occurrence tracking properties.
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A Normal Form

[0)
®1 Fi,...,Fo (W/)
o (AR A FalFA ")
AR FFh. .  F.FA c
; M.  F. A (cut +c7)
FEAF,

A — (cut + c*)
- The cut structure is turned into a recursively defined formula

based on subformula occurance (BLUE).

- The schema itself is transformed into a schema with the cut
structure as a formula in the consequent (RED).

- The formula is ¥; and unsatisfiable. The sequence Fq,..., F,
contain the term tuples of a Schematic Herbrand Sequent.
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Proofs?

F is an inductive definition of an unsatisfiable ¥; formula.

Current tools we us to find proofs of VXF(ny,-- -, nm, x) I are
not sufficient for our more complex examples.

Currently investigating how cyclic proving methods can help.

For example Realizability in Cyclic Proofs [R. Rowe and J
Brotherston, 2017]
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Example definition: IPP,,

RD = (xS ) 1 T) 1 ¥ QG(00)
Vx,y(=(s(y) <x A f(y)=0A
R(0) = f(x)=0)) A VX( x < x)A
Vx(f(x) =0)

)<z = x<z)A
)<z = y<z)A
X

A Fy) = s(n) A F(x) = s(n))) A

Vx,y,z( m(x
T(s(n»:»\,x,;z( mix
y)

vx, y(=(s(
T(n)

T(0) = Vx,y(—(s(y) <x A f(y)=0 A f(x)=0))
Q(s(n),a) = f(a) =s(n) v Q(n, a)
Q(0,a) = f(a)=0
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Refuting the IPP,, Definition

- Constructing a formal proof of VxR(n, x) I is quite difficult.

- Formalizing proofs and producing the term tuples of a
schematic Herbrand sequent of the cut structure definitions
are two areas of current investigation.

- In recent work [ D. M. Cerna, 2018], currently in review, a
formal system, which seems to be complete (still an open
question), was introduced which can formalize VxR(n, x) .

- The following diagram represents the linking dependencies of
the formal proof.
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Refutation Link Dependences

P4, Pe

P5
P2

start — Ps

b7, P9

P9, P10
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Constructing Schematic Proofs

- We have mentioned proof schema but have not really
mentioned their construction:

»(0)

v
-1 S FP(0),A

»(1)

v
mrr 07X FP1), AT
¥+ P(0),A 11, P(o) F P(s()), T = : :
I,y - };\@Q.A,r ", F P(2),A,T"”
P(s(a)) ~U, a—2 times
— The proof is indexed by a. v ’g(u) ..............

T 0O SE Pa), AT+

— Instantiating « results in an LK-proof . : :
ILYF Pla+1),A,T
Formally a proof pair (¢(0), ¢(n + 1)).
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SiLK-Calculus: Objects

>

Sequents: MM X or S

» Component pairs: (T : S)or (S : [S])

Closed component pairs contain the end-sequents of a proof
schema component

» Component groups: multisets of component pairs I

» Component collections: sets of component groups n
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SiLK-Calculus: Linking Rules

Table: The linking rules of the SiLK-calculus. For the other rules of the
SiLK-Calculus see the Tableaux paper [Cerna & Lettmann 2017]

(T : [(MEA)[\OI]), T _
((MEDA) RN - [(MEA)[n\0]]), T

(T [S1).MAIC[(AET)[n\ h(n)]] : [R_])H;I ~
((AE D) [n\gn)]y\T = [S]).TIV
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SiLK-Proof

Equational theory:

—

€ = {fO(x) = x; F((x) = FF(x)}

Abbreviations:

—

A = P(0),Vx.P(x) — P(f(x)) and S = A+ P(f°(0))
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SiLK-Proof

Axy i r

(T POFPO)T

(T: %PFO(O)))|

— (w: /)bc
(T : ), ¥x.P() = P(F) F P(R(0) ) | '
= clbe
(T: PO
Ax 1|

(P(fﬁ(o)) F( p(FfR(0)) : [S] ) \
br

(T 181), ( PEEF©) HO P(F(0) : [S])]
(ar™ p(n) : [81), (PE©) ) P(F() : [S])

— — — (—=: )5
(B, P(ER() — P(FF(0)) F P(F7(0)) = [S]) ]
— (v 0¥
(A,VX.P(X) — P(f(x)) F5 p(£s(n)(0)) © [S] ) |
(c:Nff

(arso p@T0) : [s1)]

clsc

(1arP@E@O)1: [51)]
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Evaluation Function of a Closed Component Collection

> Let 7 be the customary evaluation function of sequents.

» Assume an SiLK-proof ending in the component collection

C=([Qo] - [Sol)[---[([Qm] : [ Sm])

such that ([ Qo] : [ So] ) is the last component pair closed
in the proof of C (leading component).

Zsik(C) = Z(So),

if Qo = [ ] and ISiLK(C) =

AZS) Ax( N (Z(Qi[n\ ) = Z(@Qi [0\ (x + 1)) ) = ¥x.(Z(Qo [n\ ),

i=0 i=0
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A Better S/iLK-Calculus

SiLK-Calculus was not developed for the formalism presented
in [ Cerna & Lolic , 2018] (PA Schema).

However, there is a no reason it cannot be extended to so
called P-schema (PA Schema).

This can be done by introducing Super sequents or sequents
of sequents.

The super antecedent represents the assumed theory and the
super consequent represents the statements implied by the
antecedent. An empty antecedent means it is a definitional
statement Classical logic plus our equational theory.

The rules of the SiLK-Calculus can be generalized and
simplified in this setting.
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The Super Sequent Calculus

=T.ArAD X =TrT.a0 ™
F = 9| 5(0) S(x) | F = ¢ | S(s(m))
SX) | F= 9| S(m)oT F=>G|S(@)oT

- There is a concept of active parameters of which only one can
occur in a super sequent at a time.

- The number of passive parameters (eigenvariables of the
indexing sort) is unrestricted.

- This allows the formalization of P-schema (PA Schema). Note
that no inferences can be applied to the super antecedent.
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A Super Sequent Proof

——— Ax ——— Ax
_=2rT . _=2"T
= FP(0) = +Q(0)
FP(x) = FQn),P(n) F Q) = F Q(n), Qn)

FP()iE Q) = + Q(n) ()AQ(n)
HJ(X) F Q(x) 2 + Q(n), Qs (n))

A FP(x) 9 FQ(n) v Q(S("))

= - T . l—P(x QI—P n))
= +Q(0) . §>H>(a -
FQX)= FQ(n) I—Q(x%)—P )| FP(n) o

FQX)S = P(a) | FP(n)AQ(n)
x) = F P(a) | F Q(s(n)
E)'-P(a ) | F Q)

S P VQM
= PG \/Q(S)|FP )V Q(v)
S FY%PHVRE | FPMAVQM)

E={P(s(n) = Q(nVvQ(s(n)),P(0)=T,Q(s(n) =P(mMAQ(n),Q(0) =T}
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Conclusion & Open problems

» Using super sequents for automated deduction.
» Further investigation of the properties of the calculus.

> Further investigation into the relationship between proof
Schema and cyclic proofs.
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Thank you for your time.
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