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Outline

I Herbrand’s theorem describes the relationship between
First-Order Logic (FOL) and Propositional Logic (PL).

I While quantifiers may range over infinite domains, Herbrand’s
theorem shows that the validity of FOL statements is
dependent on a finite set of substitutions.

I If one instead considers arithmetic theories which include
induction this elegant relationship is lost.

I However, under certain conditions the infinite set of
substitutions may be described finitistically, thus generalizing
Herbrand’s theorem, and once again bridging the finite and
infinite.
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Background: Gentzen’s Sequent Calculus

I The sequent calculus applies inferences to objects referred to
as sequents ∆ ` Π, where ∆ and Π are multisets of
well-formed formula. Chaining inferences forms proof trees.

I Semantically a sequent means given ∆ we may derive Π.

I Note that, this interpretation implies that ∆ is essentially a
conjunction of formula and Π is a disjunction.

I The sequent calculus Inferences are as follows:

Axiom Inferences

Ax
A ` A
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Gentzen’s Sequent Calculus

Structural Inferences

Γ ` ∆
w:l

D, Γ ` ∆
Γ ` ∆ w:r

Γ ` ∆,D

D,D, Γ ` ∆
c:l

D, Γ ` ∆

Γ ` ∆,D,D
c:r

Γ ` ∆,D

Γ ` ∆,C C , Γ′ ` ∆′
cut

Γ, Γ′ ` ∆,∆′
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Gentzen’s Sequent Calculus

Logical Inferences

Γ ` ∆,D
¬:l¬D, Γ ` ∆

D, Γ ` ∆ ¬:r
Γ ` ∆,¬D

C , Γ ` ∆
∧:l

C ∧ D, Γ ` ∆

D, Γ ` ∆
∧:l

C ∧ D, Γ ` ∆

Γ ` ∆,C ∨:r
Γ ` ∆,C ∨ D

Γ ` ∆,D ∨:r
Γ ` ∆,C ∨ D

Γ ` ∆,C Γ ` ∆,D ∧:r
Γ ` ∆,C ∧ D

C , Γ ` ∆ D, Γ ` ∆
∨:l

C ∨ D, Γ ` ∆

C , Γ ` ∆,D →:r
Γ ` ∆,C → D

Γ ` ∆,C D, Γ ` ∆
→:l

C → D, Γ ` ∆
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Gentzen’s Sequent Calculus

Quantifier Inferences

Γ ` ∆,F (α)
∀:r

Γ ` ∆, ∀xF (x)

F (t), Γ ` ∆
∀:l∀xF (x), Γ ` ∆

Γ ` ∆,F (t)
∃:r

Γ ` ∆, ∃xF (x)

F (α), Γ ` ∆
∃:l∃xF (x), Γ ` ∆

I Note that for ∃ : l and ∀ : r α may not occur in Γ or ∆. These
rules are referred to as strong quantification, i.e. require an
eigenvariable, the other rules are referred to as weak.

Equational Axioms

Re` x = x
P=

x1 = y1, · · · , xn = yn,P(x1, · · · , xn) ` P(y1, · · · , yn)

f=
x1 = y1, · · · , xn = yn ` f (x1, · · · , xn) = f (y1, · · · , yn)
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Example Sequent Proof with Cut

I Green sequents represent cuts.
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Example Sequent Proof without Cut

I Cannot eliminate atomic equational cuts.
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Example Sequent Proof with Cut Sun Burst
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Example Sequent Proof without Cut Sun Burst
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Induction and the LK-calculus

I The theory of Peano arithmetic may by formalized as a theory
extension of the LK-calculus with equality.

I Other than the axioms for successor, addition, and
multiplication, one needs to add the following inference:

Π ` ∆, ϕ(0) Π, ϕ(α) ` ∆, ϕ(s(α))
IND

Π ` ∆, ϕ(β)

I Alternatively one could consider adding the ω-rule which
requires a proof of each instance of the main formula:

Π ` ∆, ϕ(n) ∀n ∈ N
ω

Π ` ∆, ϕ(β)

I Without restrictions, the ω-rule is seemingly useless for
practical cases.
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Finitely describable sequences

I Fortunately, the primitive recursive ω-rule [J. Shoenfield 1959]
is expressive enough to prove totality of all functions provably
total in Peano arithmetic.

I Great a useful ω-rule, but how does one develop a finite
description of a proof sequence?

I Maybe a little more specific, what can we do with
ϕ(0), · · · , ϕ(n) for n <∞?

I This is the topic of “Inductive theorem proving based on tree
grammars” by S. Eberhard and S. Hetzl (2015).
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Cut-freeness and the Herbrand Instances

I Not just any ϕ(0), · · · , ϕ(n) will do, we need the proofs to
have particular properties.

I They should be proofs of the same statement.

I They should also be cut-free.

I Cut-free proofs, other than being massive and being produced
by theorem provers have particular properties.

Theorem (Mid-Sequent Theorem)
Let S be a sequent of prenex formulas then there exists a cut-free
proof π of S s.t. π contains a sequent S ′ s.t.
I S ′ is quantifier free.
I Every inference above S ′ is structural or propositional.
I Every inference below S ′ is structural or a quantifier inference.

I What if we limit S to a sequent only containing weak
quantification.
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Cut-freeness and the Herbrand Instances

I No strong quantification means no eigenvariables and thus all
terms are existential witnesses.

I Collecting those witnesses gives us Herbrand’s Theorem

Theorem (Herbrand’s Theorem)

Let S be a sequent of the form ∀x̄ϕ(x̄) ` ∃x̄ψ(x̄). S is valid if and
only if there exists a sequence of term vectors t̄1, · · · , t̄n s.t.

k∧
i=0

ϕ(t̄i ) `
k∨

i=0

ψ(t̄i )

is valid.

I Cut-free (weakly quantified end sequent) =⇒ weak
mid-sequent =⇒ Herbrand instances.
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Using First-Order Instance Proofs

I Let ϕ(β) be quantifier-free, ∆ only contains weakly quantified
formula, and ∆ ` ϕ(β) the main sequent of a sound
application of the ω-rule.

I Furthermore, each of the instance proofs ϕ(n) for n ∈ N is
provable without induction.

I We can ask a first-order theorem prover for a proof πn of ϕ(n).

I Each πn is cut-free (atomic cuts don’t count) and thus the
Herbrand instances Hn may be extracted.
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Non-Injectivity Assertion

I The formula F(n) is defined as follows:

∀x

(
n∨

i=0

f (x) = i

)
∧

(
n∧
i

∀x∀y¬ (s(x) ≤ y ∧ f (x) = i ∧ f (y) = i)

)

∧∀x∀y∀z (max(x , y) ≤ z → (x ≤ z ∧ y ≤ z)) ∧ ∀x(x ≤ x)

I Note that ` ∀n¬F (n) is provable in arithmetic.

I but there are many ways to prove F (α) ` for α ∈ N
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SPASS Herbrand Instances F (2)

I These Herbrand instances where found using SPASS.

I Below are the Herbrand instances found by cut-elimination for
F (1).
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Cut-elimination Herbrand Instances F (1)

I If you look closely (and know the problem) you will see that it
is just counting natural numbers.
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SPASS Herbrand Instances F (1)

I This is F (1) found by SPASS.
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Thank you for your time (if it exists).
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