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Outline

» Herbrand's theorem describes the relationship between
First-Order Logic (FOL) and Propositional Logic (PL).

» While quantifiers may range over infinite domains, Herbrand's
theorem shows that the validity of FOL statements is
dependent on a finite set of substitutions.

» If one instead considers arithmetic theories which include
induction this elegant relationship is lost.

» However, under certain conditions the infinite set of
substitutions may be described finitistically, thus generalizing
Herbrand's theorem, and once again bridging the finite and
infinite.
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Background: Gentzen's Sequent Calculus

» The sequent calculus applies inferences to objects referred to
as sequents A F 1, where A and [1 are multisets of
well-formed formula. Chaining inferences forms proof trees.

> Semantically a sequent means given A we may derive I1.

» Note that, this interpretation implies that A is essentially a
conjunction of formula and I is a disjunction.

» The sequent calculus Inferences are as follows:

Axiom Inferences

AF A X
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Gentzen's Sequent Calculus

Structural Inferences

rea [EA
DTra ™ Fr-AD
D,D,TFA ) r-aD0D
DTFA © r-AD

A C  CIFA
L EA A

cut
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Gentzen's Sequent Calculus

Logical Inferences

r-a,0 DIEA  CThA
Drra " r-a,-D ' Ccabrra M
DT+ A M-A,C [-A,D
Al Vir Vir
CADTFA A CvVD FFA CVD
rea,C r-aD  CIEA _ DIEA
[FA,CAD ! CVD,TFA Ve
C.TFA,D -A,C D, TFA

rFacoD CSDTFA
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Gentzen's Sequent Calculus

Quantifier Inferences

rFAF@) Fo.rea
[FAVXF(x) VxF(x),TFA "
TEAF@) Fla)Tra
FEAIxF(x) IF(),TEA

» Note that for 3:/and V: r & may not occur in I or A. These
rules are referred to as strong quantification, i.e. require an
eigenvariable, the other rules are referred to as weak.
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Gentzen's Sequent Calculus

Quantifier Inferences

rFAF@) Fo.rea
[FAVXF(x) VxF(x),TFA "
TEAF@) Fla)Tra
FEAIxF(x) IF(),TEA

» Note that for 3:/and V: r & may not occur in I or A. These
rules are referred to as strong quantification, i.e. require an
eigenvariable, the other rules are referred to as weak.

Equational Axioms

Re P_
Fx=x X1 =Y1, " ,Xn:ynvp(xl7"' ,Xn)l_P(_)/l,"' 7yn)

-
X1 =VY1,"""yXn = Yn l_ f(Xla"' aXn) = f(}/h 7)/n)
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Example Sequent Proof with Cut

> Green sequents represent cuts.
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Example Sequent Proof without Cut

» Cannot eliminate atomic equational cuts.
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Example Sequent Proof with Cut Sun Burst
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Example Sequent Proof without Cut Sun Burst
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Induction and the LK-calculus

» The theory of Peano arithmetic may by formalized as a theory
extension of the LK-calculus with equality.

» Other than the axioms for successor, addition, and
multiplication, one needs to add the following inference:
NEA@0) M)A ¢(s(e))
ME A, ¢(B)
P Alternatively one could consider adding the w-rule which
requires a proof of each instance of the main formula:
ME A, p(n) VneN

M A, e(B)

> Without restrictions, the w-rule is seemingly useless for
practical cases.

IND
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Finitely describable sequences

» Fortunately, the primitive recursive w-rule [J. Shoenfield 1959]
is expressive enough to prove totality of all functions provably
total in Peano arithmetic.

» Great a useful w-rule, but how does one develop a finite
description of a proof sequence?

> Maybe a little more specific, what can we do with
©(0),- -+, ¢(n) for n < c0?

» This is the topic of “Inductive theorem proving based on tree
grammars” by S. Eberhard and S. Hetzl (2015).
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Cut-freeness and the Herbrand Instances

» Not just any ¢(0),--- , ¢(n) will do, we need the proofs to
have particular properties.

slide 13/20



Cut-freeness and the Herbrand Instances

» Not just any ¢(0),--- , ¢(n) will do, we need the proofs to
have particular properties.

» They should be proofs of the same statement.

slide 13/20



Cut-freeness and the Herbrand Instances
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» They should be proofs of the same statement.
» They should also be cut-free.

» Cut-free proofs, other than being massive and being produced
by theorem provers have particular properties.
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Cut-freeness and the Herbrand Instances

» Not just any ¢(0),--- , ¢(n) will do, we need the proofs to
have particular properties.

» They should be proofs of the same statement.

» They should also be cut-free.

» Cut-free proofs, other than being massive and being produced
by theorem provers have particular properties.

Theorem (Mid-Sequent Theorem)

Let S be a sequent of prenex formulas then there exists a cut-free
proof m of S s.t. m contains a sequent S’ s.t.

» S’ is quantifier free.

» Every inference above S’ is structural or propositional.

» Every inference below S’ is structural or a quantifier inference.
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Cut-freeness and the Herbrand Instances

» Not just any ¢(0),--- , ¢(n) will do, we need the proofs to
have particular properties.

» They should be proofs of the same statement.

» They should also be cut-free.

» Cut-free proofs, other than being massive and being produced
by theorem provers have particular properties.

Theorem (Mid-Sequent Theorem)

Let S be a sequent of prenex formulas then there exists a cut-free
proof m of S s.t. m contains a sequent S’ s.t.

» S’ is quantifier free.
» Every inference above S’ is structural or propositional.
» Every inference below S’ is structural or a quantifier inference.

» What if we limit S to a sequent only containing weak
quantification.
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Cut-freeness and the Herbrand Instances

» No strong quantification means no eigenvariables and thus all
terms are existential witnesses.

» Collecting those witnesses gives us Herbrand's Theorem
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Cut-freeness and the Herbrand Instances

» No strong quantification means no eigenvariables and thus all
terms are existential witnesses.

» Collecting those witnesses gives us Herbrand's Theorem
Theorem (Herbrand's Theorem)
Let S be a sequent of the form Vxp(x) - 3xy(x). S is valid if and

only if there exists a sequence of term vectors t1,--- , t, S.t.
k k
N e(@) =\ w()
i=0 i=0
is valid.
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Cut-freeness and the Herbrand Instances

» No strong quantification means no eigenvariables and thus all
terms are existential witnesses.

» Collecting those witnesses gives us Herbrand's Theorem
Theorem (Herbrand's Theorem)
Let S be a sequent of the form Vxp(x) - 3xy(x). S is valid if and

only if there exists a sequence of term vectors t1,--- , t, S.t.
k k
N e(@) =\ w()
i=0 i=0
is valid.

» Cut-free (weakly quantified end sequent) = weak
mid-sequent = Herbrand instances.
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Using First-Order Instance Proofs

> Let p(3) be quantifier-free, A only contains weakly quantified
formula, and A F ¢(3) the main sequent of a sound
application of the w-rule.

» Furthermore, each of the instance proofs ¢(n) for n € N is
provable without induction.

» We can ask a first-order theorem prover for a proof m, of ©(n).

» Each 7, is cut-free (atomic cuts don't count) and thus the
Herbrand instances H, may be extracted.
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Non-Injectivity Assertion

» The formula F(n) is defined as follows:

Vx (\/ f(x) = i)/\(/\‘v’XVy—' (s(x) Sy AF(x)=iNnf(y)= i))
i=0 i
AYXVyVz (max(x,y) <z — (x <zAy <z))AVx(x < x)

» Note that - Vn—F(n) is provable in arithmetic.
» but there are many ways to prove F(«) - for « € N
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SPASS Herbrand Instances F(2)

» These Herbrand instances where found using SPASS.

» Below are the Herbrand instances found by cut-elimination for
F(1).
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Cut-elimination Herbrand Instances F(1)

( max(z,z) | max(g(max(z,
( max(z, g(max(g(max(z.z)),z))) , max(g(max(z,

(maX( 2)))). g(max(z,2)))
& ):

{'max(z,z) , max(z, (max(z z

Ip 3q ('max(z,z) | max(g(max(z,z)),z

( max(z, g(max(z,2))) , max(g(max(z, g(max(z,z

( max(g(max(z,z)).z) , max(z, g(max(g(max(z z)).2))) )

( max(g(max(z,z)).z) , max(g(max(z, g(max(g(max(z,z)),z)))), g(max(g(max(z, z)). z))) )

» If you look closely (and know the problem) you will see that it
is just counting natural numbers.
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SPASS Herbrand Instances F(1)

(€(1), (), max(g”(U).g(V) )
1: VAQVBYC ( g(U) , g2(U) , max(g(U),g%(U)) ) ( ~ LEQ(max(Aq,B), C) V LEQ(B,C) )
(&(V), g(V), max(g(V).&(V)) )
(€(U), (V) , max(g”(V).g(V) )
2 VAVBYC (g(U), g2(U) , max(g(U),g*(V)) ) ( ~ LEQ(max(Aq,B),C) V LEQ(Ao,C) )
(&(V), (), max(g(V),&(V)) )
(&L))
{ max(g(V),e(V)) )
3 YA (u) ( E(f(A),s(0)) V E(f(A),0) )
((max(g*(U), (V) )
(max(g(u),€*(V)) )
(e(V))
p | m(EV)EL)) LEQ(A.A)

)
(max(g(U),g’(V)) )
( max(g*(V), (V) )
(U, max(g¥(U),g(V)) )
(u,eV)
(U, maxa().a(uy ) (7 LEQEEAD Y~ BB, 5(0)) V ~ E(f(A),s(0)))
(&(U) , max(g(U), (V) )

5: VB1 VA2

(u,eV)

{ s
e vBovay Ly O (- Leata(eo, ) v EC0.0)) v - ERA.0))

(U, max(e(),g’(V) )

» This is F(1) found by SPASS.
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Thank you for your time (if it exists).
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