
Towards A New Type of Prover: On the Benefits
of Discovering Sequences of “Related” Proofs

David M. Cerna

April 10th, 2019

slide 1/29

State of this work

I Disclaimer: This investigation is in a very early stage.
I Essentially, we have just started looking for promising ways to

circumvent a fundamental issue concerning the instance
generalization prover VIPER.
I The instance proofs need to be “related” and/or “uniform”.
I For some proof sequences this comes naturally.
I For most it is anything but natural.

I In this talk we
I Introduce the method,
I Discuss its capabilities, and
I Discuss characterizations of relatedness.

slide 2/29

Induction: The Difficultly of Generalization

I Inductive theorem proving: find a pattern which follows from
the provided axioms and can be used to prove any instance of
the goal statement.

I This patterns is usually referred to as the induction invariant.

I As many here will probably know, invariant discovery is in
general undecidable.

I Their exists weak theories of arithmetic where this problem is
actually decidable, i.e. Pressburger arithmetic and
[Aravantinos et al., 2013].

slide 3/29

Existing Methods

I There are many different approaches to invariant discovery, we
will only name a few:
I Loop-Discovery Provers [Aravantinos et al., 2011]
I Lemma Generation and testing [Claessen et al., 2013]
I Rippling [Bundy et al., 2005]
I Superposition based methods [Cruanes, 2015]
I Cycle discovery [Brotherston, 2012]
I and Instance proof generalization [Pearson, 1995] [Eberhard

and Hetzl, 2015]

I This last approach will be the focus of this talk.

slide 4/29

Background: Gentzen’s Sequent Calculus

I The sequent calculus applies inferences to objects referred to
as sequents ∆ ` Π, where ∆ and Π are multisets of
well-formed formula. Chaining inferences forms proof trees.

I Semantically a sequent means given ∆ we may derive Π.

I Note that, this interpretation implies that ∆ is essentially a
conjunction of formula and Π is a disjunction.

I The sequent calculus Inferences are as follows:

Axiom Inferences

Ax
A ` A

slide 5/29

Gentzen’s Sequent Calculus

Structural Inferences

Γ ` ∆
w:l

D, Γ ` ∆
Γ ` ∆ w:r

Γ ` ∆,D

D,D, Γ ` ∆
c:l

D, Γ ` ∆

Γ ` ∆,D,D
c:r

Γ ` ∆,D

Γ ` ∆,C C , Γ′ ` ∆′
cut

Γ, Γ′ ` ∆,∆′

slide 6/29

Gentzen’s Sequent Calculus

Logical Inferences

Γ ` ∆,D
¬:l¬D, Γ ` ∆

D, Γ ` ∆ ¬:r
Γ ` ∆,¬D

C , Γ ` ∆
∧:l

C ∧ D, Γ ` ∆

D, Γ ` ∆
∧:l

C ∧ D, Γ ` ∆

Γ ` ∆,C ∨:r
Γ ` ∆,C ∨ D

Γ ` ∆,D ∨:r
Γ ` ∆,C ∨ D

Γ ` ∆,C Γ ` ∆,D ∧:r
Γ ` ∆,C ∧ D

C , Γ ` ∆ D, Γ ` ∆
∨:l

C ∨ D, Γ ` ∆

C , Γ ` ∆,D →:r
Γ ` ∆,C → D

Γ ` ∆,C D, Γ ` ∆
→:l

C → D, Γ ` ∆

slide 7/29

Gentzen’s Sequent Calculus

Quantifier Inferences

Γ ` ∆,F (α)
∀:r

Γ ` ∆, ∀xF (x)

F (t), Γ ` ∆
∀:l∀xF (x), Γ ` ∆

Γ ` ∆,F (t)
∃:r

Γ ` ∆, ∃xF (x)

F (α), Γ ` ∆
∃:l∃xF (x), Γ ` ∆

I Note that for ∃ : l and ∀ : r α may not occur in Γ or ∆. These
rules are referred to as Strong quantification, i.e. require an
eigenvariable, the other rules are referred to as Weak.

Equational Axioms

Re` x = x
P=

x1 = y1, · · · , xn = yn,P(x1, · · · , xn) ` P(y1, · · · , yn)

f=
x1 = y1, · · · , xn = yn ` f (x1, · · · , xn) = f (y1, · · · , yn)

slide 8/29

Gentzen’s Sequent Calculus

Quantifier Inferences

Γ ` ∆,F (α)
∀:r

Γ ` ∆, ∀xF (x)

F (t), Γ ` ∆
∀:l∀xF (x), Γ ` ∆

Γ ` ∆,F (t)
∃:r

Γ ` ∆, ∃xF (x)

F (α), Γ ` ∆
∃:l∃xF (x), Γ ` ∆

I Note that for ∃ : l and ∀ : r α may not occur in Γ or ∆. These
rules are referred to as Strong quantification, i.e. require an
eigenvariable, the other rules are referred to as Weak.

Equational Axioms

Re` x = x
P=

x1 = y1, · · · , xn = yn,P(x1, · · · , xn) ` P(y1, · · · , yn)

f=
x1 = y1, · · · , xn = yn ` f (x1, · · · , xn) = f (y1, · · · , yn)

slide 8/29

Example Sequent Proof with Cut

I Green sequents represent cuts.

slide 9/29

Example Sequent Proof without Cut

I Cannot eliminate atomic equational cuts.

slide 10/29

Example Sequent Proof with Cut Sun Burst

slide 11/29

Example Sequent Proof without Cut Sun Burst

slide 12/29

Induction and the LK-calculus

I The theory of Peano arithmetic may by formalized as a theory
extension of the LK-calculus with equality.

I Other than the axioms for successor, addition, and
multiplication, one needs to add the following inference:

Π ` ∆, ϕ(0) Π, ϕ(α) ` ∆, ϕ(s(α))
IND

Π ` ∆, ϕ(β)

I Alternatively one could consider adding the ω-rule which
requires a proof of each instance of the main formula:

Π ` ∆, ϕ(n) ∀n ∈ N
ω

Π ` ∆, ϕ(β)

I Without restrictions, the ω-rule is seemingly useless for
practical cases.

slide 13/29

Finitely describable sequences

I Fortunately, the primitive recursive ω-rule [J. Shoenfield 1959]
is expressive enough to prove totality of all functions provably
total in Peano arithmetic.

I Great a useful ω-rule, but how does one develop a finite
description of a proof sequence?

I Maybe a little more specific, what can we do with
ϕ(0), · · · , ϕ(n) for n <∞?

I This is the topic of “Inductive theorem proving based on tree
grammars” by S. Eberhard and S. Hetzl (2015).

slide 14/29

Cut-freeness and the Herbrand Instances

I Not just any ϕ(0), · · · , ϕ(n) will do, we need the proofs to
have particular properties.

I They should be proofs of the same statement.

I They should also be cut-free.

I Cut-free proofs, other than being Massive and being produced
by theorem provers have particular properties.

Theorem (Mid-Sequent Theorem)
Let S be a sequent of prenex formulas then there exists a cut-free
proof π of S s.t. π contains a sequent S ′ s.t.
I S ′ is quantifier free.
I Every inference above S ′ is structural or propositional.
I Every inference below S ′ is structural or a quantifier inference.

I What if we limit S to a sequent only containing weak
quantification.

slide 15/29

Cut-freeness and the Herbrand Instances

I Not just any ϕ(0), · · · , ϕ(n) will do, we need the proofs to
have particular properties.

I They should be proofs of the same statement.

I They should also be cut-free.

I Cut-free proofs, other than being Massive and being produced
by theorem provers have particular properties.

Theorem (Mid-Sequent Theorem)
Let S be a sequent of prenex formulas then there exists a cut-free
proof π of S s.t. π contains a sequent S ′ s.t.
I S ′ is quantifier free.
I Every inference above S ′ is structural or propositional.
I Every inference below S ′ is structural or a quantifier inference.

I What if we limit S to a sequent only containing weak
quantification.

slide 15/29

Cut-freeness and the Herbrand Instances

I Not just any ϕ(0), · · · , ϕ(n) will do, we need the proofs to
have particular properties.

I They should be proofs of the same statement.

I They should also be cut-free.

I Cut-free proofs, other than being Massive and being produced
by theorem provers have particular properties.

Theorem (Mid-Sequent Theorem)
Let S be a sequent of prenex formulas then there exists a cut-free
proof π of S s.t. π contains a sequent S ′ s.t.
I S ′ is quantifier free.
I Every inference above S ′ is structural or propositional.
I Every inference below S ′ is structural or a quantifier inference.

I What if we limit S to a sequent only containing weak
quantification.

slide 15/29

Cut-freeness and the Herbrand Instances

I Not just any ϕ(0), · · · , ϕ(n) will do, we need the proofs to
have particular properties.

I They should be proofs of the same statement.

I They should also be cut-free.

I Cut-free proofs, other than being Massive and being produced
by theorem provers have particular properties.

Theorem (Mid-Sequent Theorem)
Let S be a sequent of prenex formulas then there exists a cut-free
proof π of S s.t. π contains a sequent S ′ s.t.
I S ′ is quantifier free.
I Every inference above S ′ is structural or propositional.
I Every inference below S ′ is structural or a quantifier inference.

I What if we limit S to a sequent only containing weak
quantification.

slide 15/29

Cut-freeness and the Herbrand Instances

I Not just any ϕ(0), · · · , ϕ(n) will do, we need the proofs to
have particular properties.

I They should be proofs of the same statement.

I They should also be cut-free.

I Cut-free proofs, other than being Massive and being produced
by theorem provers have particular properties.

Theorem (Mid-Sequent Theorem)
Let S be a sequent of prenex formulas then there exists a cut-free
proof π of S s.t. π contains a sequent S ′ s.t.
I S ′ is quantifier free.
I Every inference above S ′ is structural or propositional.
I Every inference below S ′ is structural or a quantifier inference.

I What if we limit S to a sequent only containing weak
quantification.

slide 15/29

Cut-freeness and the Herbrand Instances

I No strong quantification means no eigenvariables and thus all
terms are existential witnesses.

I Collecting those witnesses gives us Herbrand’s Theorem

Theorem (Herbrand’s Theorem)

Let S be a sequent of the form ∀x̄ϕ(x̄) ` ∃x̄ψ(x̄). S is valid if and
only if there exists a sequence of term vectors t̄1, · · · , t̄n s.t.

k∧
i=0

ϕ(t̄i) `
k∨

i=0

ψ(t̄i)

is valid.

I Cut-free (weakly quantified end sequent) =⇒ weak
mid-sequent =⇒ Herbrand instances.

slide 16/29

Cut-freeness and the Herbrand Instances

I No strong quantification means no eigenvariables and thus all
terms are existential witnesses.

I Collecting those witnesses gives us Herbrand’s Theorem

Theorem (Herbrand’s Theorem)

Let S be a sequent of the form ∀x̄ϕ(x̄) ` ∃x̄ψ(x̄). S is valid if and
only if there exists a sequence of term vectors t̄1, · · · , t̄n s.t.

k∧
i=0

ϕ(t̄i) `
k∨

i=0

ψ(t̄i)

is valid.

I Cut-free (weakly quantified end sequent) =⇒ weak
mid-sequent =⇒ Herbrand instances.

slide 16/29

Cut-freeness and the Herbrand Instances

I No strong quantification means no eigenvariables and thus all
terms are existential witnesses.

I Collecting those witnesses gives us Herbrand’s Theorem

Theorem (Herbrand’s Theorem)

Let S be a sequent of the form ∀x̄ϕ(x̄) ` ∃x̄ψ(x̄). S is valid if and
only if there exists a sequence of term vectors t̄1, · · · , t̄n s.t.

k∧
i=0

ϕ(t̄i) `
k∨

i=0

ψ(t̄i)

is valid.

I Cut-free (weakly quantified end sequent) =⇒ weak
mid-sequent =⇒ Herbrand instances.

slide 16/29

Using First-Order Instance Proofs

I Let ϕ(β) be quantifier-free, ∆ only contains weakly quantified
formula, and ∆ ` ϕ(β) the main sequent of a sound
application of the ω-rule.

I Furthermore, each of the instance proofs ϕ(n) for n ∈ N is
provable without induction.

I We can ask a first-order theorem prover for a proof πn of ϕ(n).

I Each πn is cut-free (atomic cuts don’t count) and thus the
Herbrand instances Hn may be extracted.

I At this point we can build a tree grammar Gn whose language
is precisely Hn.

I Notice that Gn is specific to a particular πn.

slide 17/29

Building induction proofs from a sequence of Grammars

I This goes beyond the scope of this talk.

I For details please see ”Inductive theorem proving based on
tree grammars”

I Essentially, a schematic tree grammar for a particular type of
induction proof may be built from the instances...

The right
instances.

I Now comes the issues with the method.

slide 18/29

Building induction proofs from a sequence of Grammars

I This goes beyond the scope of this talk.

I For details please see ”Inductive theorem proving based on
tree grammars”

I Essentially, a schematic tree grammar for a particular type of
induction proof may be built from the instances... The right
instances.

I Now comes the issues with the method.

slide 18/29

When Any Proof is Not Enough

I Consider the problem

ADD,∀x(x + 0 = 0 + x) ` ∀x(x + (x + x) = (x + x) + x)

I While simple Heuristics are enough to prove this statement,
algorithmic ATP approaches tend to have a very difficult time
with this simple problem, i.e [Aravantinos et al., 2013].

I The tree grammar method discussed above manages to find
the invariant

y + (x + x) = (x + x) + y

Congrats!
“Tree grammars for induction on inductive data types modulo
equational theories” by G. Ebner and S. Hetzl

I Now, let us try

failure, why?

ADD,MUL,∀x(x ∗ 0 = 0 ∗ x) ` ∀x(x ∗ (x ∗ x) = (x ∗ x) ∗ x)

slide 19/29

When Any Proof is Not Enough

I Consider the problem

ADD,∀x(x + 0 = 0 + x) ` ∀x(x + (x + x) = (x + x) + x)

I While simple Heuristics are enough to prove this statement,
algorithmic ATP approaches tend to have a very difficult time
with this simple problem, i.e [Aravantinos et al., 2013].

I The tree grammar method discussed above manages to find
the invariant

y + (x + x) = (x + x) + y

Congrats!
“Tree grammars for induction on inductive data types modulo
equational theories” by G. Ebner and S. Hetzl

I Now, let us try failure, why?

ADD,MUL,∀x(x ∗ 0 = 0 ∗ x) ` ∀x(x ∗ (x ∗ x) = (x ∗ x) ∗ x)

slide 19/29

Example two: The 1-Strict Monotone Assertion (1-SMA)

I A total monotonically decreasing (increasing) function f : N→ B,

B ⊆ Q, is said to be be k-strict monotone decreasing (increasing) if

there exists at least k values in A s.t. f (a) = f (a + 1) for a ∈ A.

Assertion (1-SMA)

Every total monotonically decreasing function f : N→ N is at least
1-strict monotone decreasing.

I Combinatorially this
statement encodes:

Number of objects in all

ascending runs in the

identity permutation of n

ordered objects.

slide 20/29

1-SMA Formalized and Solved

I We formalize 1-SMA as an unsat inductive definition F:

∀n(∀x(f (g(x)) = n∨f (x) < n ∧∀x(f (x) = n∨f (x) < n) ∧Q̂(n))

where Q̂ is defined as follows:

Q̂(0) ⇒ ¬f (a) < 0 ∧ ∀x(¬f (x) = 0 ∨ ¬f (g(x)) = 0)

Q̂(s(n)) ⇒ ∀x(¬f (x) = s(n) ∨ ¬f (g(x)) = s(n)) ∧
∀x(¬f (x) < s(n) ∨ f (x) = n ∨ f (x) < n) ∧
∀x(¬f (g(x)) < s(n) ∨ f (g(x)) = n ∨ f (x) < n)

∧ Q̂(n))

I Viper, an implementation of the tree grammar prover, took
(∼ 5 hours), but manage to find the following invariant.

(F{n← x} → (f (g(a)) = 0 ∨ f (a) = 0 ∨ Q̂(0)))∧

¬(Q̂(s(x)) ∧ Q̂(x) ∧ F{n← s(x)})
slide 21/29

When There is More Than One Way to Prove πn

I For each successful example there are only a few ways to
construct πn.

I In truth there is only one proof modulo structural changes.

I This is not the case for the multiplication case.

I Two Instance proofs πn and πn+1 may use the ADD theory
and MUL theory in different ways.

I An even more important example as well as more problematic
is the Non-Injectivity Assertion:

slide 22/29

Non-Injectivity Assertion

I The formula F(n) is defined as follows:

∀x

(
n∨

i=0

f (x) = i

)
∧

(
n∧
i

∀x∀y¬ (s(x) ≤ y ∧ f (x) = i ∧ f (y) = i)

)

∧∀x∀y∀z (max(x , y) ≤ z → (x ≤ z ∧ y ≤ z)) ∧ ∀x(x ≤ x)

I Note that ` ∀n¬F (n) is provable in arithmetic.

I but there are many ways to prove F (α) ` for α ∈ N

slide 23/29

SPASS Herbrand Instances F (2)

I These Herbrand instances where found using SPASS.

I If we compare this to the Herbrand instances found by
cut-elimination for F (1) an issue arises.

slide 24/29

Cut-elimination Herbrand Instances F (1)

I If you look closely (and know the problem) you will see that it
is just counting natural numbers.

I It is not clear how counting natural number results in the
instances for F (2).

slide 25/29

SPASS Herbrand Instances F (1)

I Even simpler...

slide 26/29

The relationship between πn and πn+1

I Our example instance sets for F (1) and F (2) illustrate that
the various proofs are not related.

I Thus, if we give the proofs to Viper the chance it will find an
invariant is around 0.

I Can we develop a prover which generates sequences of proofs
which are “Uniform”.

I What do we mean by “uniform” anyway, What is
“relatedness”.

I Mathematically, are we trying to find proofs which use a
particular trick and/or method.

slide 27/29

Proposal: Can Modern Machine Learning Help?

I This is not a question about theorem proving, rather it is a
“mathematical understanding”?

I Can we get the Theorem prover to understand what it ought
to look for while constructing πn+1 using the proofs produced
for πn and below?

I We know the prover can prove πn+1, but can it prove it in the
right way!

I As mentioned earlier, this work is in its infancy.

A) I believe modern machine learning method may help solve the
“uniformity” problem.

B) I don’t know how they might help, maybe you do?
C) If interested and think you might have an idea, I would love to

discuss it.
D) Currently looking for collaboration for a proposal I am

developing.

slide 28/29

Thank you for your time.

slide 29/29

