Towards A New Type of Prover: On the Benefits
of Discovering Sequences of “Related” Proofs

David M. Cerna

April 10", 2019

J z U L) []
JOHANNES KEPLER
UNIVERSITY LINZ

slide 1/29

State of this work

» Disclaimer: This investigation is in a very early stage.

» Essentially, we have just started looking for promising ways to
circumvent a fundamental issue concerning the instance
generalization prover VIPER.

» The instance proofs need to be "related” and/or “uniform”.
» For some proof sequences this comes naturally.
» For most it is anything but natural.

» In this talk we

» Introduce the method,
» Discuss its capabilities, and
» Discuss characterizations of relatedness.

slide 2/29

Induction: The Difficultly of Generalization

» Inductive theorem proving: find a pattern which follows from
the provided axioms and can be used to prove any instance of
the goal statement.

» This patterns is usually referred to as the induction invariant.

» As many here will probably know, invariant discovery is in
general undecidable.

» Their exists weak theories of arithmetic where this problem is
actually decidable, i.e. Pressburger arithmetic and
[Aravantinos et al., 2013].

slide 3/29

Existing Methods

» There are many different approaches to invariant discovery, we
will only name a few:

Loop-Discovery Provers [Aravantinos et al., 2011 |

Lemma Generation and testing [Claessen et al., 2013]

Rippling [Bundy et al., 2005]

Superposition based methods [Cruanes, 2015]

Cycle discovery [Brotherston, 2012]

and Instance proof generalization [Pearson, 1995] [Eberhard

and Hetzl, 2015]

» This last approach will be the focus of this talk.

VVVyVYYVYY

slide 4/29

Background: Gentzen's Sequent Calculus

» The sequent calculus applies inferences to objects referred to
as sequents A F 1, where A and [1 are multisets of
well-formed formula. Chaining inferences forms proof trees.

> Semantically a sequent means given A we may derive I1.

» Note that, this interpretation implies that A is essentially a
conjunction of formula and I is a disjunction.

» The sequent calculus Inferences are as follows:

Axiom Inferences

AF A X

slide 5/29

Gentzen's Sequent Calculus

Structural Inferences

rea [EA
DTra ™ Fr-AD
D,D,TFA) r-aD0D
DTFA © r-AD

A C CIFA
L EA A

cut

slide 6/29

Gentzen's Sequent Calculus

Logical Inferences

r-a,0 DIEA CThA
Drra " r-a,-D ' Ccabrra M
DT+ A M-A,C [-A,D
Al Vir Vir
CADTFA A CvVD FFA CVD
rea,C r-aD CIEA _ DIEA
[FA,CAD ! CVD,TFA Ve
C.TFA,D -A,C D, TFA

rFacoD CSDTFA

slide 7/29

Gentzen's Sequent Calculus

Quantifier Inferences

rFAF@) Fo.rea
[FAVXF(x) VxF(x),TFA "
TEAF@) Fla)Tra
FEAIxF(x) IF(),TEA

» Note that for 3:/and V: r & may not occur in I or A. These
rules are referred to as Strong quantification, i.e. require an
eigenvariable, the other rules are referred to as Weak.

slide 8/29

Gentzen's Sequent Calculus

Quantifier Inferences

rFAF@) Fo.rea
[FAVXF(x) VxF(x),TFA "
TEAF@) Fla)Tra
FEAIxF(x) IF(),TEA

» Note that for 3:/and V: r & may not occur in I or A. These
rules are referred to as Strong quantification, i.e. require an
eigenvariable, the other rules are referred to as Weak.

Equational Axioms

Re P_
Fx=x X1 =Y1, " ,Xn:ynvp(xl7"' ,Xn)l_P(_)/l,"' 7yn)

-
X1 =VY1,"""yXn = Yn l_ f(Xla"' aXn) = f(}/h 7)/n)
slide 8/29

Example Sequent Proof with Cut

> Green sequents represent cuts.

slide 9/29

Example Sequent Proof without Cut

» Cannot eliminate atomic equational cuts.

slide 10/29

Example Sequent Proof with Cut Sun Burst

slide 11/29

Example Sequent Proof without Cut Sun Burst

slide 12/29

Induction and the LK-calculus

» The theory of Peano arithmetic may by formalized as a theory
extension of the LK-calculus with equality.

» Other than the axioms for successor, addition, and
multiplication, one needs to add the following inference:
NEA@0) M)A ¢(s(e))
ME A, ¢(B)
P Alternatively one could consider adding the w-rule which
requires a proof of each instance of the main formula:
ME A, p(n) VneN

M A, e(B)

> Without restrictions, the w-rule is seemingly useless for
practical cases.

IND

slide 13/29

Finitely describable sequences

» Fortunately, the primitive recursive w-rule [J. Shoenfield 1959]
is expressive enough to prove totality of all functions provably
total in Peano arithmetic.

» Great a useful w-rule, but how does one develop a finite
description of a proof sequence?

> Maybe a little more specific, what can we do with
©(0),- -+, ¢(n) for n < c0?

» This is the topic of “Inductive theorem proving based on tree
grammars” by S. Eberhard and S. Hetzl (2015).

slide 14/29

Cut-freeness and the Herbrand Instances

» Not just any ¢(0),--- , ¢(n) will do, we need the proofs to
have particular properties.

slide 15/29

Cut-freeness and the Herbrand Instances

» Not just any ¢(0),--- , ¢(n) will do, we need the proofs to
have particular properties.

» They should be proofs of the same statement.

slide 15/29

Cut-freeness and the Herbrand Instances

» Not just any ¢(0),--- , ¢(n) will do, we need the proofs to
have particular properties.

» They should be proofs of the same statement.
» They should also be cut-free.

» Cut-free proofs, other than being Massive and being produced
by theorem provers have particular properties.

slide 15/29

Cut-freeness and the Herbrand Instances

» Not just any ¢(0),--- , ¢(n) will do, we need the proofs to
have particular properties.

» They should be proofs of the same statement.

» They should also be cut-free.

» Cut-free proofs, other than being Massive and being produced
by theorem provers have particular properties.

Theorem (Mid-Sequent Theorem)

Let S be a sequent of prenex formulas then there exists a cut-free
proof m of S s.t. m contains a sequent S’ s.t.

» S’ is quantifier free.

» Every inference above S’ is structural or propositional.

» Every inference below S’ is structural or a quantifier inference.

slide 15/29

Cut-freeness and the Herbrand Instances

» Not just any ¢(0),--- , ¢(n) will do, we need the proofs to
have particular properties.

» They should be proofs of the same statement.

» They should also be cut-free.

» Cut-free proofs, other than being Massive and being produced
by theorem provers have particular properties.

Theorem (Mid-Sequent Theorem)

Let S be a sequent of prenex formulas then there exists a cut-free
proof m of S s.t. m contains a sequent S’ s.t.

» S’ is quantifier free.
» Every inference above S’ is structural or propositional.
» Every inference below S’ is structural or a quantifier inference.

» What if we limit S to a sequent only containing weak
quantification.

slide 15/29

Cut-freeness and the Herbrand Instances

» No strong quantification means no eigenvariables and thus all
terms are existential witnesses.

» Collecting those witnesses gives us Herbrand's Theorem

slide 16/29

Cut-freeness and the Herbrand Instances

» No strong quantification means no eigenvariables and thus all
terms are existential witnesses.

» Collecting those witnesses gives us Herbrand's Theorem
Theorem (Herbrand's Theorem)
Let S be a sequent of the form Vxp(x) - 3xy(x). S is valid if and

only if there exists a sequence of term vectors t1,--- , t, S.t.
k k
N e(@) =\ w()
i=0 i=0
is valid.

slide 16/29

Cut-freeness and the Herbrand Instances

» No strong quantification means no eigenvariables and thus all
terms are existential witnesses.

» Collecting those witnesses gives us Herbrand's Theorem
Theorem (Herbrand's Theorem)
Let S be a sequent of the form Vxp(x) - 3xy(x). S is valid if and

only if there exists a sequence of term vectors t1,--- , t, S.t.
k k
N e(@) =\ w()
i=0 i=0
is valid.

» Cut-free (weakly quantified end sequent) = weak
mid-sequent = Herbrand instances.

slide 16/29

Using First-Order Instance Proofs

» Let () be quantifier-free, A only contains weakly quantified
formula, and A F ¢(8) the main sequent of a sound
application of the w-rule.

» Furthermore, each of the instance proofs ¢(n) for n € N is
provable without induction.

» We can ask a first-order theorem prover for a proof 7, of ©(n).

» Each 7, is cut-free (atomic cuts don’t count) and thus the
Herbrand instances H, may be extracted.

P At this point we can build a tree grammar G, whose language
is precisely H,.

» Notice that G, is specific to a particular 7,.

slide 17/29

Building induction proofs from a sequence of Grammars

» This goes beyond the scope of this talk.

» For details please see "Inductive theorem proving based on
tree grammars”

» Essentially, a schematic tree grammar for a particular type of
induction proof may be built from the instances...

slide 18/29

Building induction proofs from a sequence of Grammars

» This goes beyond the scope of this talk.

» For details please see "Inductive theorem proving based on
tree grammars”

» Essentially, a schematic tree grammar for a particular type of
induction proof may be built from the instances... The right
instances.

» Now comes the issues with the method.

slide 18/29

When Any Proof is Not Enough

» Consider the problem
ADD,Vx(x +0 =0+ x) F Vx(x + (x + x) = (x + x) + x)

» While simple Heuristics are enough to prove this statement,
algorithmic ATP approaches tend to have a very difficult time
with this simple problem, i.e [Aravantinos et al., 2013].

» The tree grammar method discussed above manages to find
the invariant

y+x+x)=x+x)+y
Congrats!

“Tree grammars for induction on inductive data types modulo
equational theories” by G. Ebner and S. Hetzl

> Now, let us try
ADD, MUL,Vx(x % 0 = 0% x) F Vx(x * (x * x) = (x * x) % x)

slide 19/29

When Any Proof is Not Enough

» Consider the problem
ADD,Vx(x +0 =0+ x) F Vx(x + (x + x) = (x + x) + x)

» While simple Heuristics are enough to prove this statement,
algorithmic ATP approaches tend to have a very difficult time
with this simple problem, i.e [Aravantinos et al., 2013].

» The tree grammar method discussed above manages to find
the invariant

y+x+x)=x+x)+y
Congrats!

“Tree grammars for induction on inductive data types modulo
equational theories” by G. Ebner and S. Hetzl

> Now, let us try failure, why?
ADD, MUL,Vx(x % 0 = 0% x) F Vx(x * (x * x) = (x * x) % x)

slide 19/29

Example two: The 1-Strict Monotone Assertion (1-SMA)

P A total monotonically decreasing (increasing) function f : N — B,
B C Q, is said to be be k-strict monotone decreasing (increasing) if
there exists at least k values in As.t. f(a) =f(a+1) for a e A.

Assertion (1-SMA)

Every total monotonically decreasing function f : N — N is at least

1-strict monotone decreasing.
f(X)

» Combinatorially this
statement encodes:
Number of objects in all
ascending runs in the
identity permutation of n
ordered objects.

n N+l X

slide 20/29

1-SMA Formalized and Solved

» We formalize 1-SMA as an unsat inductive definition F:
Vn(Vx(f(g(x)) = nVf(x) < n AVx(f(x) = nVf(x) < n) /\@(n))
where Q is defined as follows:

Q0) = —f(a) <0 A Vx(=f(x) =0V ~f(g(x)) =0)
Q(s(n)) = Vx(=f(x) = s(n) v ~f(g(x)) = s(n)) A
Vx(—=f(x) <s(n)V f(x)=nVIf(x)<n) A
Vx(—f(g(x)) <s(n)V f(g(x))=nVf(x)<n)
A Q(n))

» Viper, an implementation of the tree grammar prover, took

(~ 5 hours), but manage to find the following invariant.

(F{n <+ x} — (f(g(a)) =0V f(a) = 0V Q(0)))A
=(Q(s(x)) A Q(x) A F{n + s(x)})

slide 21/29

When There is More Than One Way to Prove 7,

» For each successful example there are only a few ways to
construct m,.

» In truth there is only one proof modulo structural changes.
» This is not the case for the multiplication case.

» Two Instance proofs 7, and 7,11 may use the ADD theory
and MUL theory in different ways.

» An even more important example as well as more problematic
is the Non-Injectivity Assertion:

slide 22/29

Non-Injectivity Assertion

» The formula F(n) is defined as follows:

Vx (\/ f(x) = i)/\(/\‘v’XVy—' (s(x) Sy AF(x)=iNnf(y)= i))
i=0 i
AYXVyVz (max(x,y) <z — (x <zAy <z))AVx(x < x)

» Note that - Vn—F(n) is provable in arithmetic.
» but there are many ways to prove F(«) - for « € N

slide 23/29

SPASS Herbrand Instances F(2)

» These Herbrand instances where found using SPASS.

» If we compare this to the Herbrand instances found by
cut-elimination for F(1) an issue arises.

slide 24/29

Cut-elimination Herbrand Instances F(1)

(max(z,2z) , max(g(max(z, g(max(z.2)))), g(max(z,2))))
(max(z, g(max(g(max(z,z)),z))) , max(g(max(z, g(max(g(max(z,z)),z)))), g(max(g(max(z,z)),z))))
{ max(z,z) | max(z,g(max(z,2))))
Ip 3q {max(z,z) , max(g(max(z,z)),z)) (LE(p,
(max(z, g(max(z,z))) , max(g(max(z, g(max(z,z)))),

(max(g(max(z,z)).z) , max(z, g(max(g(max(z, z)). 2))))
(max(g(max(z,2)),2) , max(g(max(z, g(max(g(max(z,2)),2)))), g(max(g(max(z,2)),2))))

» If you look closely (and know the problem) you will see that it
is just counting natural numbers.

P It is not clear how counting natural number results in the
instances for F(2).

slide 25/29

SPASS Herbrand Instances F(1)

(€(U), £(V) , max(g*(U).g(V))

1: YAGYBYC (g(U) , g(U) , max(g(U).g*(U))) (~ LEQ(max(Ao,B),C) V LEQ(B.C))
(e(V), (V) , max(g(V),e(V)))
(€'(U), (V) , max(g"(U).g(V))

2 YAoYBYC (g(U) , g(U) , max(g(U),g*(U))) (~ LEQ(max(Aq,B),C) V LEQ(As,C))
(&(V), g(V), max(g(V).&(V)))

(e(v))
(max(g(V), (V))
3 YA (u) (E(f(A).5(0)) v E(f(A),0))

(max(g%(), (V))
(max(g(V),€*(V)))

(&(u))
(max(g(V),&(V)))
(max(g(u),€*(u)))
(max(g*(V), (V))

4 YA LEQ(A,A)

= VBIVAL ,\wx(g(u) ((~ LEQ(e(B1),A2) v —~ E(f(B1),5(0))) V ~ E(f(A2),5(0)))
(u

(e(V), max(e(V), £(U))
(u,eW))

(U, max(e(U).e(u) }

o YBOYAL (U, max(&(U), &(U)

(U, max(e(U),€5V)))

) ((~ LEQ(g(Ba), A1) v E(f(B0), 0)) V = E(f(A1),0))

» Even simpler...

slide 26/29

The relationship between 7, and 7,1

» Our example instance sets for F(1) and F(2) illustrate that
the various proofs are not related.

» Thus, if we give the proofs to Viper the chance it will find an
invariant is around O.

» Can we develop a prover which generates sequences of proofs
which are “Uniform”.

» What do we mean by “uniform” anyway, What is
“relatedness”.

» Mathematically, are we trying to find proofs which use a
particular trick and/or method.

slide 27/29

Proposal: Can Modern Machine Learning Help?

P This is not a question about theorem proving, rather it is a
“mathematical understanding”?

» Can we get the Theorem prover to understand what it ought
to look for while constructing w41 using the proofs produced
for m, and below?

» We know the prover can prove m,41, but can it prove it in the
right way!

> As mentioned earlier, this work is in its infancy.

A) | believe modern machine learning method may help solve the
“uniformity” problem.

B) 1 don't know how they might help, maybe you do?

C) If interested and think you might have an idea, | would love to

discuss it.
D) Currently looking for collaboration for a proposal | am

developing.

slide 28/29

Thank you for your time.

slide 29/29

