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What is Term Generalization?

I Let us consider a signature of function and constant symbols
Σ = {f1, · · · fn, a1, · · · , am} where each fi has a positive arity.
Together with a countably infinite set of variables V we can
consider the language L constructible from Σ ∪ V.

I Now consider two arbitrary terms t, s ∈ L. we can ask the
following:

I can we instantiate the variables of t and s using a substitution
σ such that tσ = sσ where = is defined as syntactic equality?
This is Unification.

I can we find a term r ∈ L and substitutions σ1 and σ2 such
that rσ1 = t and rσ2 = s? This is Anti-Unification or Term
Generalization, the problem we will focus on in this talk.

I Term generalization problems will be written t , s.
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Generalization over an Equational Theory

I This is not a new problem, it was first introduced in G.
Plotkin in 1970 and has been widely developed since then.

I Of most interest to the work discussed in this talk is the
equational generalization problem.

I Rather than comparing terms over syntactic equality, one can
check terms over particular equational theories.

I For example associativity, commutativity, unity, and, most
importantly for us, idempotency.
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Good Solutions?

I One might be asking themselves, at the moment, isn’t it
trivial to find such an r?

I Well...yes.

I Let r = x where x is a variable, and let σ1 = {x 7→ t} and
σ2 = {x 7→ s}.

I If t = f (t ′) and s = f (s ′) then there is obviously a less
general solution that is r = f (x) where x is a variable, and let
σ1 = {x 7→ t ′} and σ2 = {x 7→ s ′}

I How do we formulate this rigorously to get a good definition
of the least general solution? Does it exists uniquely?
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LGGs: The Cream of the Crop

I Anyone who knows unification is probably familiar with the
concept of an MGU or most general unifier. An LGG is a dual
concept for term generalization.

I Defining this concept requires an ordering on generalizers.
Consider the problem s , t and r a solution.

I Let r ′ be a another solution. We say r ′ is less general than r if
there exists a substitution σ such that r ′ = rσ. We ignore
variable renamings.

I Of course the least general generalizer is a generalizer r ′′ such
that no such substitution exists.

I Is it unique? Can there be multiple incomparable LGGs?
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The Many Choices of Equational Reasoning

I In most cases LGGs are unique for syntactic equality. Adding
an equational theory changes this and the result is many, not
necessarily finite, incomparable LGGs.

I let us consider the term signature {f (·, ·), a, b, c , d} where f is
interpreted as commutative over our equational theory Cf ,
that is f (x , y) =Cf

f (y , x). Now consider the anti-unification
problem

f (f (a, b), f (b, c)) , f (f (b, d), f (a, c))

I what are it’s LGGs?
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The Many Choices of Equational Reasoning

I We claim that

f (f (a, x), f (b, y)) f (f (b, x), f (c, y))

are both LGGs.

I Notice that we cannot transform one into the other by a
substitution.

I The next question is whether we found all of the incomparable
LGGs, that is the minimal complete set of LGGs.

I There are 4 other reasonable generalizations one can derive:

f (f (a, x), f (z , y)) f (f (z , x), f (b, y))

f (f (b, x), f (z , y)) f (f (z , x), f (c , y))

But they are not LGGs and are instances of the above two.
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An Infinite Set of LGGs

I It turns out that the minimal complete set of LGGs for
commutativity will always be finite.

I What does it take to get an infinite minimal complete set of
LGGs?

I This is not easy to answer, but we will consider a theory
which has this property, Idempotency.

f (x , x) = x

I The key being that not only can we go from f (x , x)→ x , we
can also go from x → f (x , x).
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Two Idempotent Function Symbols

I In “Generalisation de termes en theorie equationnelle. Cas
associatif-commutatif” by L. Pottier, an example was given of
a pair of terms constructed using two idempotent function
symbols whose set of generalizations contains an infinite
number of incomparable generalizations.

I Specifically, the terms are constructed using the signature
{f (·, ·), g(·, ·), a, b} where f and g are idempotent. We refer
to the equational theory as I{f ,g}.

f (a, b) , g(a, b)
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A Infinite Sequence of Generalizations

I The following terms generalize the anti-unification problem:

g(f (a, x), f (y , b)) f (g(a, x), g(y , b))

g(f (a, x), f (y , b)) {x 7→ a , y 7→ b} =I{f ,g} g(a, b)

g(f (a, x), f (y , b)) {x 7→ b , y 7→ a} =I{f ,g} f (a, b)

I This is not a complete set, but enough for constructing an
infinite incomparable sequence.

S0 = g(f (a, x), f (y , b))

Sn+1 = f (g(f (a, x), f (y , b)), g(Sn, f (g(a, x), g(y , b))))

f (g(f (a, x), f (y , b)), g(Sn, f (g(a, x), g(y , b)))) 6=I{f ,g}

f (g(f (a, x), f (y , b)), g(Sn+1, f (g(a, x), g(y , b))))
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Do we Really Need Two Function Symbols?

I If one idempotent function symbol turns out to be finitary,
then the above result would imply that joining two finitary
theories can result in an infinitary theory. Unstable behavior!

I But does the above example really need both f and g?

I Considering f and g to be functions it is easy to imagine an h
such that h(a, a, b) = f (a, b) and h(b, a, b) = g(a, b).

I What if we apply this reasoning to our problem and look at
the anti-unification problem:

h(a, h(a, b)) , h(b, h(a, b))
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One Function, Infinite Solutions

I The following terms generalize the anti-unification problem:

h(h(x , h(x , b)), h(a, h(x , b))) h(f (x , h(a, x)), h(h(x , b), h(a, b)))

h(h(x , h(x , b)), h(a, h(x , b))) {x 7→ a} =I{h} h(a, h(a, b))

h(h(x , h(x , b)), h(a, h(x , b))) {x 7→ b} =I{h} h(b, h(a, b))

I Notice that the solutions are in some sense simpler and thus
more fundamental. Less variables.

I Using the Pottier construction we can produce the an infinite
set of incomparable LGGs.
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Infinite but Neither Minimal nor Complete

I Ok, we know that one idempotent function symbol is enough
for infinitely many solutions, What is the simplest example
resulting in infinitely many solutions?

I It turns out that
f (a, b) , f (b, a)

is enough

f (f (x1, a), f (b, x2)) f (f (x1, b), f (a, x2))

I This observation has lead to a generalization of the previous
construction.
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A minimal complete set

S0 = {f (f (x1, a), f (b, x2)), f (f (x1, b), f (a, x2))}.
Sk = {f (s1, s2) | s1, s2 ∈ Sk−1, s1 6= s2} ∪ Sk−1, k > 0.

I The limit S∞ can be proven minimal complete for the above
problem and bounds on the growth can be computed.
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Proof: Growth of Sn is O
(
22n)

|S(n−1)| |Sn| − |S(n−1)|

|S
(n
−
1
)|2
−
|S

(n
−
1
)| |Sn|

|S(n+1)| = |Sn|2 − |S(n−1)|2 + |S(n−1)| |S1| = m |S0| = 1
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Is the S-hierarchy Enough?

I while the S-hierarchy works for f (a, b) , f (b, a) it fails for
slightly more complex problems, i.e.

f (a, f (a, b)) , f (a, f (b, a))

It captures an infinite number of incomparable generalizations,
it also misses an infinite number because f (a, b) , f (b, a) is
embedded within this problem:

f (a, f (f (x , a), f (b, y))) ∈ S∞ f (a, f (f (x , b), f (a, y))) ∈ S∞

f (f (a, f (f (x , a), f (b, y))), f (a, f (f (x , b), f (a, y)))) ∈ S∞

f (a, f (f (f (x , a), f (b, y)), f (f (x , b), f (a, y)))) 6∈ S∞
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Capturing Minimal Completeness

I To construct a minimal complete set of LGGs we need to go
beyond nesting generalizers. We are currently investigating
approaches to this problem. For example, instead of
computing generalizers:

f (a, f (f (x , a), f (b, y))) f (a, f (f (x , a), f (b, y)))

we construct a binding list

[x 7→ f (a, x2)] [x2 7→ f (f (z1, a), f (b, x4))]

[x 7→ f (a, x2)] [x2 7→ f (f (z2, b), f (a, x5))]

I using these binding list we can construct a binding tree:

[x 7→ f (a, x2)] [x2 7→ f (f (z2, b), f (a, x5))] [x2 7→ f (f (z1, a), f (b, x4))]

this tree can be extended by the node

[x2 7→ f (f (f (z1, a), f (b, x4)), f (f (z2, b), f (a, x5)))]

algorithmically.
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Unfortunately, the Full Binding Tree is...

[z 7→ y ]

[y 7→ x ]

[x 7→ f (f (a, f (a, x1)), x2)]

[x2 7→ f (f (y1, f (y1, b)), f (a, f (a, y2)))]

[x2 7→ f (y3, f (a, y4))]

[x2 7→ f (f (y5, a), y6)]

[y6 7→ f (f (z1, a), f (b, z2))]

[y6 7→ f (f (z3, b), f (a, z4))]

[y6 7→ f (z5, z6)]

[x 7→ f (f (a, f (x4, a)), x5)]

[x5 7→ f (f (a, f (y11, a)), f (y12, f (b, y13)))]

[x5 7→ f (a, f (b, y14))]

[x5 7→ f (f (a, y15), y16)]

[y16 7→ f (f (z7, a), f (b, z8))]

[y16 7→ f (f (z9, b), f (a, z10))]

[y16 7→ f (z11, z12)]

[y 7→ f (a, x3)]

[x3 7→ f (f (y7, a), f (b, y8))]

[x3 7→ f (f (y9, b), f (a, y10))]

This is the resulting
binding tree when all
binding list are com-
puted and joined.

Notice that it is
much more than the
simple binding tree
we discussed on the
previous slide.

The complexity of
these trees grows
fast.
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Expanding a Binding Tree

[x 7→ f (f (a, f (a, x1)), x2)]

[x2 7→ f (f (y1, f (y1, b)), f (a, f (a, y2)))]

[x2 7→ f (y3, f (a, y4))]

[x2 7→ f (f (y5, a), y6)]

[y6 7→ f (f (z1, a), f (b, z2))]

[y6 7→ f (f (z3, b), f (a, z4))]

[y6 7→ f (z5, z6)]

[x 7→ f (f (a, f (a, x1)), x2)]

[x2 7→ f (f (y1, f (y1, b)), f (a, f (a, y2)))]

[x2 7→ f (y3, f (a, y4))]

[x2 7→ f (f (y5, a), y6)]

[y6 7→ f (f (z1, a), f (b, z2))]

[y6 7→ f (f (z3, b), f (a, z4))]

[y6 7→ f (z5, z6)]

[x2 7→ f (f (w1, f (a,w2)), f (f (w3, a),w4))]

[w4 7→ f (f (r1, a), f (b, r2))]

[w4 7→ f (f (r3, b), f (a, r4))]

[w4 7→ f (z5, z6)]

I We conjecture that given the binding tree constructible from
the term structure (without additional function symbols) then
a minimal complete set of LGGs can be constructed by
expansion.

I Proof: a work in progress
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The End

Thank you for your time!
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