
32nd International Workshop on Unification (UNIF 2018), Informal Proceedings
Oxford, 7th July, 2018

Towards Generalization Methods for Purely Idempotent
Equational Theories ∗

David M. Cerna and Temur Kutsia

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz

{David.Cerna , Temur.Kutsia}@risc.jku.at

Abstract

In Generalisation de termes en theorie equationnelle. Cas associatif-commutatif, a pair of terms
was presented over the language { f (,),g(,),a,b}, where f and g are interpreted over an idempotent
equational theory, i.e. g(x,x) = x and f (x,x) = x, resulting in an infinite set of generalizations. While
this result provides an answer to the complexity of the idempotent generalization problem for arbitrarily
idempotent equational theories (theories with two or more idempotent functions) the complexity of
generalization for equational theories with a single idempotent function symbols was left unsolved.
We show that the two idempotent function symbols example can be encoded using a single idempotent
function and two uninterpreted constants thus proving that idempotent generalization, even with a
single idempotent function symbol, can result in an infinite set of generalizations. Based on this result
we discuss approaches to handling generalization within idempotent equational theories.

1 Introduction
Anti-unification or term generalization algorithms aim at computing generalizations for given terms. A
generalization of t and s is a term r such that t and s are substitution instances of r, i.e. there exists σ

and µ such that rσ = t and rµ = s. Interesting generalizations are those that are least general (lggs).
However, it is not always possible to have a unique lgg. In these cases the task is either to compute a
minimal complete set of generalizations, or to impose restrictions so that uniqueness is guaranteed.

In particular, we consider anti-unification problems which allow equational interpretations of the func-
tion symbols and constants present in the term signature. This is known as equational anti-unification or
E-generalization. When the equational theory does not interpret any of the function symbols or constants
in the term signature the resulting generalizations are referred to as syntactic. For most of the commonly
considered equational theories the minimal complete set of generalizations is finite, for example, theories
including commutativity and associative function symbols discussed in [1]. However, as pointed out
in [8], this need not be the case. A pair of terms constructed from the signature { f (·, ·),g(·, ·),a,b} where
f and g are interpreted as idempotent functions resulted in an infinite set of generalizations, though it
was not shown to be the minimal complete set. While the case of two idempotent function symbols
was addressed in [8], the case of generalization for terms constructed from a signature with a single

∗This research is supported by the FWF project P28789-N32.

Idempotent Generalization D.M. Cenra, T. Kutsia

idempotent function symbol, i.e. { f (·, ·),a,b} was not discussed. This gap implies an interesting question
concerning modular generalization algorithms like the ones discussed in [1].

The result reported in this paper has been motivated by its influence on developing a combination
method for signature-disjoint generalization theories. Namely, as shown by Pottier in [8], anti-unification
problems with two idempotent function symbols may have infinitely many incomparable generalizations.
If anti-unification problems with one idempotent symbol had only finitely many incomparable solutions, it
would be a serious problem for the prospect of developing a combination method: finitary generalization
algorithms would have been impossible to combine. However, our result shows that it is not the case.

Combination methods for unification algorithms, constraint solvers, and decision procedures have
been studied in detail [2, 3, 5, 4, 6, 9, 10]. Though surprisingly, it has been shown that term generalization
when the signature contains a function which is associative, commutative and idempotent is finitary.
This follows from Theorem 2 of [7]. Such varying results provide motivations for investigating term
generalization as discussed in this paper and removes an obstacle to study such methods for generalization
algorithms as well.

2 Preliminaries
We now outline the basic concepts needed to understand term generalizations and the results outlined in
later sections. Our term language L is built from a finite signature of function and constant symbols
Σ and a countable set variable symbols V . Function symbols have a fixed arity, i.e. the number of
arguments, and constant symbols are essentially function symbols with arity zero. If necessary, we denote
the set of variables of a term t by Vars(t).

Each symbol f ∈ Σ in the signature has an associated equational theory Ax(f). When Ax(f) is empty
the function or constant symbol is left uninterpreted. We will only consider in this work function symbols
f interpreted as idempotent, Ax(f) = {I} , that is binary functions such that f (x,x) = x.

When two terms s and t are equivalent over an equational theory E we write s =E t. In this work we
will only consider the equational theory IF where F is a set of function symbols interpreted as idempotent.

A Substitution is a finite set of pairs {X1 7→ t1, . . . ,Xn 7→ tn} where Xi is a variable, ti is a term, and
the X’s are pairwise distinct variables. The notions of substitution domain and range are also standard
and are denoted, respectively, by Dom and Ran.

We use postfix notation for substitution applications, writing tσ instead of σ(t). As usual, the
application tσ affects only the occurrences of variables from Dom(σ) in t. The composition of σ and ϑ

is written as juxtaposition σϑ and is defined as x(σϑ) = (xσ)ϑ for all x.
A substitution σ1 is more general than σ2, written σ1 � σ2, if there exists ϑ such that Xσ1ϑ = Xσ2

for all X ∈ Dom(σ1)∪Dom(σ2). The strict part of this relation is denoted by ≺. The relation � is a
partial order and generates the equivalence relation which we denote by '. We overload � by defining
s � t if there exists a substitution σ such that sσ = t. The focus of this work is generalization in the
presence of equational axioms thus we need a more general concept of ordering of substitutions/terms by
their generality. We say for two terms s, t are s =E t if they are equivalent modulo E . Under this notion
of equality we can say that a substitution σ1 is more general modulo an equational theory E than σ2
written σ1 �E σ2 if there exists ϑ such that Xσ1ϑ =E Xσ2 for all X ∈ Dom(σ1)∪Dom(σ2) Note that
≺ and ' and the term extension are generalized accordingly. From this point on we will use the ordering
relation modulo an equational theory when discussing generalization.

A term t is called a generalization or an anti-instance modulo an equational theory E of two terms
t1 and t2 if t �E t1 and t �E t2. It is the least general generalization (lgg in short), aka a most specific
anti-instance, of t1 and t2, if there is no generalization s of t1 and t2 which satisfies t ≺E s.

An anti-unification problem (Briefly AUP) is a triple X : t , s where t and s are terms constructed
from the signature Σ, and X does not occur in t and s. The variable X is called a generalization variable.

2

Idempotent Generalization D.M. Cenra, T. Kutsia

Generalization variables are written with capital letters X ,Y,Z, Note that generalization variables are
not used explicitly in this work but they sere syntactic purpose in most algorithms defined in literature,
thus we keep them to conform with common syntactic expressions. The size of a set of AUPs is defined
as |{X1 : t1 , s1, . . . ,Xn : tn , sn}|= ∑

n
i=1 |ti|+ |si|. A generalization of an AUP X : t , s is a term r such

that there exists substitutions σ1 and σ2 such that Dom(σ1) = Dom(σ2) = V (r) and rσ1 = t and rσ2 = s
A generalization r of X : t , s is least general (or most specific) modulo an equational theory E if

there is no generalization r′ of X : t , s such that r ≺E r′.

3 Idempotent Generalization with two symbols
We will now consider an alphabet Σ = { f (·, ·),g(·, ·),a,b}. Both f and g are idempotent function
symbols (our equational theory is E = I f ,g), that is f (x,x) =I f ,g x and g(x,x) =I f ,g x. Now we consider
the following generalization problem:

X : f (a,b), g(a,b) (1)

The seemingly simple generalization problem of Equation 1 results in an infinite set of least general gen-
eralizations. This follows from the production of the first two least general generalizers g(f (a,x), f (y,b))
and f (g(a,x),g(y,b)) which we refer to as G1 and G2, respectively. It is quite simple to check that these
two terms are indeed generalizers and are least general. In [8], an infinite set of generalizations was
produced by the following recursive construction:

S0 =G1 Sn+1 = f (G1,g(Sn,G2)) (2)

Notice that the generalizer produced at each step is least general and is not comparable with the
generalizers produced at the previous step and thus, the construction produces an infinite sequence of
incomparable least general generalizers. However this is not the minimal complete set being that the
construction is limited to repeated use of {G1,G2}. Any previously constructed generalizer can be used.
Essentially, let h ∈ { f ,g} and S the set of least general generalizations of Equation 1, then h(S1,S2) is a
least general generalizations of Equation 1 when S1 is distinct from S2. We elucidate this construction
further after presenting our solution to the generalization problem for one idempotent function symbol.

4 Idempotent Generalization with a single function symbol
We will now consider an alphabet Σ = {h(·, ·),a,b} where h is an idempotent function symbol (our
equational theory is E = Ih). Our goal is to show that a term signature with a single binary function
symbol interpreted as idempotent also allows the construction of AUPs with infinitely many lggs. We
solve this problem by encoding the two symbol case into the one symbol case. Essentially we write f (·, ·)
as h(a,h(·, ·)) and g(·, ·) as h(b,h(·, ·)). Thus, the generalization problem from the previous section is
now:

h(a,h(a,b)), h(b,h(a,b)) (3)

The reader might notice right away that this has a solution h(x,h(a,b)), however, this solution isn’t
of much interest to us because we cannot produce an infinite construction using it alone, but it can be
considered as one of the least generalizers within the construction. Also, it happens to be the case that
there are two additional least general generalizers which are incomparable to it. These generalizers,
which are incomparable to h(x,h(a,b)), are as follows:

G′1 =h(h(x,h(x,b)),h(a,h(x,b))) G′2 = h(f (x,h(a,x)),h(h(x,b),h(a,b)))

3

Idempotent Generalization D.M. Cenra, T. Kutsia

|S(n−1)| |S(n)|− |S(n−1)|

|S
(n
−

1)
|2
−
|S

(n
−

1)
| |S(n)|

Figure 1: Geometric proof of Theorem 1 for |A|= 3.

Notice that these generalizers are even simpler than those produced in the previous example given that
the domain of the substitutions contain a single variable x. Furthermore, this variable is substituted by
one of the two constants. Using the recursive construction outlined in Equation 2, replacing G1 and G2
by G′1 and G′2 we produce a similar infinite set as in the Pottier example.

Concerning the construction of all least general generalizations constructable from the set
{h(x,h(a,b)),G′1,G′2} consider the following theorem.

Theorem 1. Let A be a finite set, P(S,S′) = {(a,b)|a ∈ S , b ∈ S′ , a 6= b}, and Sn the following
recursive set construction:S0 = { /0}, S1 = A, and S(n+1) = Sn ∪P(Sn,Sn). Then for n ≥ 1, |S(n+1)| =
|Sn|2−|S(n−1)|2 + |S(n−1)|.

Proof. Let us consider the case of S2 = S1 ∪P(S1,S1) we know that |S1| = |A| and that |P(S1,S1)| =
|A|2−|A| because (a,a) 6∈ P(S1,S1) for a ∈ A. Thus, |S2|= |A|2 which is precisely given by the formula
in the theorem |S2| = |S1|2− |S0|2 + |S0| = |A|2− 1+ 1 = |A|2. For the induction hypothesis, let us
assume the theorem holds for Sn and show that it holds for S(n+1). We know that Sn contains S(n−1) by
definition and thus we can consider the subsets of Sn, S(n−1) and Sn \S(n−1), Note that the elements of
P(S(n−1),S(n−1)) are already members of Sn\S(n−1) and thus do not need to be considered. But we do need
to consider the following cases P(S(n−1),Sn \ S(n−1)), P(Sn \ S(n−1),S(n−1)), P(Sn \ S(n−1),Sn \ S(n−1))

which have size |S(n−1)|(|Sn| − |S(n−1)|, |S(n−1)|(|Sn| − |S(n−1)|), (|Sn| − |S(n−1)|)2 − (|Sn| − |S(n−1)|),
respectively. Thus, we get that the size |S(n+1)| is the following:

2 · |S(n−1)|(|Sn|− |S(n−1)|+(|Sn|− |S(n−1)|)2− (|Sn|− |S(n−1)|)+ |Sn|=

2|S(n−1)||Sn|−2|S(n−1)|2 +(|Sn|2−2|Sn||S(n−1)|+ |S(n−1)|2 + |S(n−1)|= |Sn|2−|S(n−1)|2 + |S(n−1)|

Proving the induction step. See Figure 1 for a geometric proof of the theorem.

Concerning the O(22n
) growth rate in terms of the initial set size |S1| , consider the ratio between

the smaller square’s area |S(n−1)| and the larger square’s (|S(n−1)|2−|S(n−1)|)2 which is precisely
1 : O(|Sn−1|2). Iterating this provides O(22n

) growth rate.

4

Idempotent Generalization D.M. Cenra, T. Kutsia

5 Conclusion
We have shown that even a simple term signature with a single binary function interpreted as idempotent
results in an infinite set of generalizations. Theorem 1 provides information concerning the growth of the
set of least general generalizations in terms of the number of nestings of idempotent function symbols.
Further analysis provides a growth rate of O(22n

) in terms of the number of nested function symbols.
This implies that the minimal complete set of generalizations is at least as large as this construction
and thus infinite. However, we have not provided a precise construction of the minimal complete set
of generalizations, only a lower bound. In future work we plan to investigate the construction of the
minimal complete set of generalizations and hopefully find a precise expression of its construction as
well as an understanding of modular algorithms for idempotent generalization.

6 References

References
[1] M. Alpuente, S. Escobar, J. Espert, and J. Meseguer. A modular order-sorted equational generaliza-

tion algorithm. Inf. Comput., 235:98–136, 2014.

[2] F. Baader and K. U. Schulz. Combination techniques and decision problems for disunification.
Theor. Comput. Sci., 142(2):229–255, 1995.

[3] F. Baader and K. U. Schulz. Unification in the union of disjoint equational theories:combining
decision procedures. J. Symb. Comput., 21(2):211–243, 1996.

[4] F. Baader and K. U. Schulz. Combining constraint solving. In H. Comon, C. Marché, and R. Treinen,
editors, Constraints in Computational Logics: Theory and Applications, International Summer
School, CCL’99 Gif-sur-Yvette, France, September 5-8, 1999, Revised Lectures, volume 2002 of
Lecture Notes in Computer Science, pages 104–158. Springer, 1999.

[5] P. Chocron, P. Fontaine, and C. Ringeissen. A gentle non-disjoint combination of satisfiability
procedures. In IJCAR 2014, pages 122–136, 2014.

[6] S. Erbatur, D. Kapur, A. M. Marshall, P. Narendran, and C. Ringeissen. Unification and matching
in hierarchical combinations of syntactic theories. In C. Lutz and S. Ranise, editors, Frontiers of
Combining Systems - 10th International Symposium, FroCoS 2015, Wroclaw, Poland, September
21-24, 2015. Proceedings, volume 9322 of Lecture Notes in Computer Science, pages 291–306.
Springer, 2015.

[7] B. Konev and T. Kutsia. Anti-unification of concepts in description logic EL. In C. Baral,
J. P. Delgrande, and F. Wolter, editors, Principles of Knowledge Representation and Reasoning:
Proceedings of the Fifteenth International Conference, KR 2016, Cape Town, South Africa, April
25-29, 2016., pages 227–236. AAAI Press, 2016.

[8] L. Pottier. Generalisation de termes en theorie equationnelle. cas associatif-commutatif. Research
Report 1056, INRIA, 1989.

[9] M. Schmidt-Schauß. Unification in a combination of arbitrary disjoint equational theories. J. Symb.
Comput., 8(1/2):51–99, 1989.

[10] C. Tinelli and C. Ringeissen. Unions of non-disjoint theories and combinations of satisfiability
procedures. Theor. Comput. Sci., 290(1):291–353, 2003.

5

	Introduction
	Preliminaries
	Idempotent Generalization with two symbols
	Idempotent Generalization with a single function symbol
	Conclusion
	References

