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Rather than providing a formal definition of proof schemata [3] which are sets of LK-derivations linked
together by matching end sequents of one proof to non-tautological leaves of another, we instead proceed by
example and rely on an intuitive understanding of the concept. In particular, let us consider the following
schematic sequent1 where

∨
and

∧
denote iterated disjunction and conjunction respectively and n is a numeric

parameter defining the recursion, that is replacing n by a numeral and normalizing results in an LK-proof.

Γ,¬f(a) < 0,
∧n+1

i=0 ∀x (i = f(x) ∧ i = f(s(x)))→ f(x) = f(s(x)) , ∀x
∨n+1

i=0 i = f(x) ` ∃x(f(x) = f(s(x)))

Γ =

{
∀x
((∨n

i=0 i = f(x)
)
→ f(x) < (n+ 1)

)
,

∧n
i=0 ∀x (f(s(x)) < (i+ 1)→ (i = f(s(x)) ∨ f(x) < i))

∀x
((∨n

i=0 i = f(s(x))
)
→ f(x) < (n+ 1)

) ∧n
i=0 ∀x (f(x) < (i+ 1)→ (i = f(x) ∨ f(x) < i))

}
A proof schema of this statement can be constructed using the sequence of cuts ∃x(0 = f(x) ∧ 0 = f(s(x))) ∨
∀x(f(x) < 0), · · · ,∃x(n + 1 = f(x) ∧ n + 1 = f(s(x))) ∨ ∀x(f(x) < n + 1). We refer to this proof schema as
the Very Weak Pigeonhole Principle (VWPHP)[2] and using previously developed methods for cut structure
extraction a recursive NNF2 representing the cut structure is constructible3:

ϕ(0) = Next(0) ∧ (0 = f(a) ∨ 0 = f(s(a)))

χ(0) = (¬f(a) < 0) ∧ ∀x((¬0 = f(x)) ∨ (¬0 = f(s(x))))

ϕ(n+ 1) = ∀x((n+ 1) = f(s(x)) ∨ f(x) < (n+ 1)) ∧ ∀x((n+ 1) = f(x) ∨ f(x) < (n+ 1)) ∧ χ(n+ 1)

χ(n+ 1) = ∀x((¬(n+ 1) = f(x)) ∨ (¬(n+ 1) = f(s(x)))) ∧ ∀x((¬f(x) < (n+ 1)) ∨ n = f(x) ∨ f(x) < n)

∧∀x((¬f(s(x)) < (n+ 1)) ∨ n = f(s(x)) ∨ f(x) < n) ∧ χ(n)

Unlike previously studied examples of the same arithmetic complexity it is refutationally more difficult even
though its refutations grow quadratically in terms of the numeric parameter n. A related proof schema referred to
as the Eventually Constant Schema (ECS)[1] has a cut structure whose NNF representation grows exponentially
in terms of the numeric parameter n.

ψ(0) = π(0) ∧ ∀x (f(x) < 0 ∨ 0 = f(x))

π(0) = ∀x(¬f(x) < 0) ∧ ∀x(x ≤ x) ∧ ∀x(x ≤ g(x)) ∧ ∀x(¬0 = f(x) ∨ ¬0 = f(g(x)))

ψ(n+ 1) = π(n+ 1) ∧ ∀x (f(x) < n+ 1 ∨ n+ 1 = f(x))

π(n+ 1) = π(n) ∧ ∀x (¬n+ 1 = f(x) ∨ ¬n+ 1 = f(g(x))) ∧
∀x∀y (¬f(x) < n+ 1 ∨ ¬x ≤ y ∨ n = f(y) ∨ f(y) < n)

Yet construction of a recursively defined refutation is more complex for VWPHP. If we consider variations of a
clause with respect to a particular numeral one will notice that the refutation of the VWPHP NNF requires
O(n) instantiations of the clause ∀x((n + 1) = f(x) ∨ f(x) < (n + 1)) while the eventually constant schema
requires O(1) instances of the clause ∀x (f(x) < n + 1 ∨ n + 1 = f(x)). This key difference seems to have more
of an influence on recursive refutational complexity than refutation size. We can devise the following complexity
classes which we refer to as Constunsat, k-Constunsat, and Non-Constunsat which separate these two problems
by the number of instantiations of clausal variants. The class Constunsat differs k-Constunsat in that only a
particular subset of the clauses need to have a constant number of instantiations. Our open questions concerning
these refutational complexity classes concern further development of these ideas and whether it is possible to
define the class of cut structures which result in recursive NNF formula of each complexity class.
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1A sequent which may contain recursively defined predicates and or function symbols.
2Negation Normal Form
3The construction is referred to as the characteristic formula schema
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