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The focus of our work is lemma elimination in recursively defined first-order
logic proofs by resolution. By lemma, we mean an argument used to prove a
theorem, of which is not needed to state the theorem. When we state that the
proofs are recursively defined we mean that the proofs have a primitive recursive
structure, i.e.

P (n + 1)⇒ Q [P (n)] (1a)

P (0)⇒ D (1b)

where D is a first-order logic proof, Q [·] is a first order logic proof containing at
least one instance of the proof in the brackets, and n is a natural number. The
idea behind this work is to take a recursively defined first-order logic proof with
lemmata (arguments not needed to state the theorem) and transform the proof
into a proof without any lemmata (every argument in the proof is essential to
the statement of the final theorem). The method of transforming proofs that we
use is called the CERES method [1, 3, 8] which collects the arguments used to
prove the lemmata in the form of a first-order clause set (recursively defined of
course) and using the resolution method [9], we build a backbone for the proof
without lemmata. One can think of the lemma-free proof as a proof without
the use of other mathematical theories, i.e. a proof about prime numbers which
does not use topology [2]. We will refer to recursively defined clause sets as
schematic clause sets. Also, a clause can be thought of as a set of first-order
formulae with a specific form.

Though, this area seems far removed from enumerative combinatorics and
integer sequences, it happens to be the case that the clause sets, being recur-
sive in nature, end up with useful and interesting combinatoric structure. The
combinatoric structure arises from the way resolution constructs the backbone
of the proof without lemmata. others have taken note of this necessary struc-
ture within resolution proofs [4, 5], however, a system which heavily relies on
this structure and contains a language which can partially describe it has not
been investigated prior to our work. Also, the combinatorial structure, in our
case, is derived from the mathematical arguments used, rather than analysing
a specific problem like the pigeon-hole principle. Essentially, if one changes the
lemmata used to prove the theorem, the output of the CERES method after
clausal analysis will differ. Though, in our work to date, the underlying math-
ematical argument was indeed the pigeon-hole principle, there is no reason for
this to be the case in general.
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Using resolution and a schematic clause set S, we can derive a new schematic
clause set S′ which is an extension of S by deriving new clauses derived from
the old ones. The construction of the backbone of the lemma-free proof is not
a completely automated process and requires analysis of the clauses derivable
from the clause set (the process is automated in the non-recursive case). We
have found that analysing the combinatorial structure of the derivable clauses
helps with the process of constructing the backbone, it also provides us with
information regarding the complexity of the output proof. In [7], we where able
to find a few patterns in the derivable clauses allowing us to construct the back-
bone of every instance of the recursive proof (i.e. instantiation of the variable
n in Eq. 1a). Namely, the patterns which were found were A000142, A007318,
and A093964. We also discovered a previously unknown recurrence enumerat-
ing A093964. Currently we are applying the same method to a generalization of
[7], which we call the two parameter Non-injectivity Assertion [6]. For certain
instances we have found that certain derived clauses have patterns consistent
with the central binomial coefficient A000984 and a quite newly constructed
combinatorial set and integer sequence, that of the atomic permutations with 3
runs of equal length n A241193.

It can easily be the case (we expect it to happen with our current analysis),
that a new integer sequence pertaining to a new combinatoric structure can
emerge, however, this has not been the case as of this date. Thus not only is
it possible to apply (as we have done) current integer sequences to schematic
clause set analysis, we can possibly use the schematic clause set analysis to find
new integer sequences through the analysis of the combinatorial structure of
the derived clauses. As of this date, the method of extracting combinatorial
structure from the clause set is still in its infancy, though we provide an outline
how the above work was carried out with the hopes of constructing a more
general method in future work.
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