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In a recent paper [8], a procedure was developed extending the first-order CERES method [4] so that it
can handle cut-elimination in a schematic first-order calculus. The goal of this work was to circumvent
the problems reductive cut elimination methods face when the LK calculus is extended by an induction
rule. The schematic calculus can be considered a replacement for certain types of induction. In this
work, we used the schematic CERES method to analyse a proof formalized in a schematic sequent
calculus. The statement being proved is a simple mathematical statement about total functions with a
finite range. The goal of proof analysis using the first-order CERES method [4] has been to produce
an ACNF (Atomic Cut Normal Form) as the final output of cut-elimination. However, due to the
complexity of the schematic method, the value and usefulness of an ACNF quickly vanishes; it is
not easily parsable by humans. The Herbrand sequent corresponding to an ACNF turned out to be a
valuable, compact and informative structure, which may be considered the essence of a cut-free proof
in first-order logic [10]. We provide a method for extracting a schematic Herbrand sequent from the
formalized proof and hint at how ,in future work we can generalize the procedure to handle a class of
proofs by a suitable schematic language and calculus, and not just for a particular instance.

1 Introduction

Cut-elimination was originally introduced by G. Gentzen in [9] as a theoretical tool from which results
like decidability and consistency could be proven. Cut-free proofs are computationally explicit objects
from which interesting information such as Herbrand disjunctions and interpolants can be easily extracted.
When viewing formal proofs as a model for mathematical proofs, cut-elimination corresponds to the
removal of lemmas, which leads to interesting applications (such as one described below).

For such applications to mathematical proofs, the cut-elimination method CERES (cut-elimination by
resolution) was developed [?]. It essentially reduces cut-elimination for a proof π to a theorem proving
problem: the refutation of the characteristic clause set CL(π). Given a resolution refutation γ of CL(π),
an essentially cut-free proof can be constructed by a proof-theoretic transformation.

It is well-known that cut-elimination in standard calculi of arithmetic, containing an induction rule,
is impossible in general [15] (see also [11, 6, 14] for other approaches to inductive reasoning using
induction rules). In fact, if ϕ is a proof of a sequent S : Γ→ ∀x.A(x), where an induction rule occurs
over a cut, the cut cannot be shifted over the induction rule and thus cannot be eliminated. This is not
a feature of a specific cut-elimination method, but ,even in principle, inductive proofs require lemmata
which cannot be eliminated. When we consider, on the other hand, the infinite sequence of proofs ϕn of
Sn : Γ→ A(n), every of these proofs enjoys cut-elimination. This observation motivated the investigation
of a schematic CERES-method in [?], where schematic languages for LK-proofs and resolution refutations
were developed. Related approaches are found in the literature on cyclic proofs [13, 7]. While CERES
turned out to be more adequate for a description of cut-elimination than the traditional Gentzen method,
the definitions of some proof objects like projections and atomic cut normal forms are highly complex and
hard to construct. The mathematical content of a cut-free proof can be conveniently described by so-called
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Herbrand sequents, which correspond to midsequents in the prenex case [9]. Though Herbrand sequents
are usually extracted from proofs after cut-elimination (or, at least, after elimination of all quantified cuts),
the CERES methods makes it is possible to extract them from a resolution refutation of the characteristic
clause set and the quantifier rules of the proof projections. By computing schematic Herbrand sequents in
such a way we avoid the construction and description of complex schematic proof objects. The infinite
sequence of these schematic Herbrand sequents can be considered as the result of cut-elimination on a
class of inductive proofs, which cannot be obtained by Peano arithmetic with an induction rule.

In this paper we investigate a schematic version of the tape proof, representing forms of the infinite
pigeon hole principle. Analogous proofs have been analyzed via functional interpretation with the aim of
extracting programs [12]. The formal analysis of this proof schema by CERES requires means beyond the
formalism developed in [8] (while only one free parameter is used like in [8], several bound parameters
are necessary to formulate the schematic resolution refutations). For this reason we formulate most of the
analysis and the construction of a schematic Herbrand sequent on the mathematical meta-level, but we
indicate which language elements would be required to enable a partial automation of the proof analysis.
The full development of a language extension and its implementation is left to future work. The long range
aim is to develop a system for schematic cut-elimination in mathematical proofs containing induction
rules, which could be used as a proof assistant.

The present work was also motivated by an application of CERES to (a formalization of) a mathemati-
cal proof: Fürstenberg’s proof of the infinity of primes [1, 3]. The proof was formalized as a sequence of
proofs ϕn showing that the assumption that there exist exactly n primes is contradictory. The application
was performed in a semi-automated way: the characteristic clause sets CL(ϕn) were computed for some
small values of n and from this, a general schema CL(ϕn) was constructed and subsequently analyzed
by hand. The analysis finally showed that from Fürstenberg’s proof, which makes use of topological
concepts, Euclid’s elementary proof could be obtained by cut-elimination.

2 The Method CERES

The purpose of this section is to quickly recapitulate fundamental aspects of the CERES method for
first-order logic. Since the aim of this work is to generalize this method to the setting of first-order
schemata, we will refer to this material later on, to emphasize the connection between the ,,usual” and the
,,schematic” CERES method. Note that the CERES method is quite different to the usual Gentzen-style
way of reductive cut-elimination (for a comparison in the setting of first-order logic see [5]);

In [?, 5] the method CERES was defined which takes into account the global structure of a proof ϕ

with cut; this global structure is represented as an open quantifier-free formula, the characteristic formula
Θ(ϕ). It can be shown that Θ(ϕ) is always unsatisfiable. A resolution refutation ρ of its clause form (the
characteristic clause set) then defines a skeleton of an ACNF1 of the proof ϕ . The final step consists
in inserting so-called proof projections into ρ to obtain an ACNF of ϕ . The steps of the method are
illustrated by an example below; for the formal definitions we refer to [?, 5].

To simplify the understanding of the method all the premises (the auxiliary formulas of the inferences)
are put in bold face, the conclusions are underlined and the ancestors of cut-formulas are marked with an
asterisk in the following input proof.

1The abbreviation stands for Atomic Cut Normal Form. A proof formalized in the LK calculus in ACNF only has non-
quantified atomic cuts. please refer to [?, 5] for more detail.
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Now, let ϕ be the proof

ϕl ϕr

(∀x)(∀y)(P(x,y)⊃ Q(x,y)) ` (∃x)(∃y)(¬Q(x,y)⊃ ¬P(x,y))
cut

where ϕl is

P(z,a)∗ ` P(z,a)
` ¬P(z,a)∗,P(z,a)

¬ : r

` ¬P(z,a)∨Q(z,a)∗,P(z,a)
∨ : r1

Q(z,a) ` Q(z,a)∗

Q(z,a) ` ¬P(z,a)∨Q(z,a)∗
∨ : r2

P(z,a)⊃ Q(z,a) ` ¬P(z,a)∨Q(z,a)∗
⊃ : l

(∀y)(P(z,y)⊃ Q(z,y)) ` ¬P(z,a)∨Q(z,a)∗ ∀ : l

(∀x)(∀y)(P(x,y)⊃ Q(x,y)) ` ¬P(z,a)∨Q(z,a)∗
∀ : l

(∀x)(∀y)(P(x,y)⊃ Q(x,y)) ` (∃y)(¬P(z,y)∨Q(z,y))∗
∃ : r

(∀x)(∀y)(P(x,y)⊃ Q(x,y)) ` (∀x)(∃y)(¬P(x,y)∨Q(x,y))∗
∀ : r

and ϕr is
P(b,v) ` P(b,v)∗

¬P(b,v)∗,P(b,v) ` ¬ : l

¬P(b,v)∗ ` ¬P(b,v)
¬ : r

Q(b,v)∗ ` Q(b,v)
¬Q(b,v),Q(b,v)∗ ` ¬ : l

¬Q(b,v),¬P(b,v)∨Q(b,v)∗ ` ¬P(b,v)
∨ : l′

¬P(b,v)∨Q(b,v)∗ ` ¬Q(b,v)⊃ ¬P(b,v)
⊃ : r

¬P(b,v)∨Q(b,v)∗ ` (∃y)(¬Q(b,y)⊃ ¬P(b,y)) ∃ : r

¬P(b,v)∨Q(b,v)∗ ` (∃x)(∃y)(¬Q(x,y)⊃ ¬P(x,y))
∃ : r

(∃y)(¬P(b,y)∨Q(b,y))∗ ` (∃x)(∃y)(¬Q(x,y)⊃ ¬P(x,y))
∃ : l

(∀x)(∃y)(¬P(x,y)∨Q(x,y))∗ ` (∃x)(∃y)(¬Q(x,y)⊃ ¬P(x,y))
∀ : l

The extraction of the characteristic clause term happens top down starting with those parts of the
initial sequents that are marked as ancestors of cut formulas which are now interpreted as sets. At every
occurrence of a binary rule the two clause terms resulting from the premises are connected by a binary
operator. Depending whether the auxiliary formulas of the inference were ancestors of cut formulas or not
the operator will either be ⊕ or ⊗. All unary inference rules have no influence on the clause term and
hence it remains unchanged.

For the example above we obtain the following characteristic clause term

Θ(ϕ) = (({P(z,a) `}⊗{` Q(z,a)})⊕ ({` P(b,v)}⊕{Q(b,v) `}))

which characterizes those parts of the axiom sequents which have been used to derive the cut formula (on
both sides).

The operator ⊕ of the clause term is interpreted as union and the operator ⊗ as merge, i.e. the
antecedent and consequent parts of different sequents are exchanged such that only one part is exchanged
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at once.

Hence by evaluation of Θ(ϕ) for the characteristic clause set |Θ(ϕ)| of ϕ we obtain

|Θ(ϕ)|= {P(z,a) ` Q(z,a), (C2)

` P(b,v), (C1)

Q(b,v) `}. (C3)

The characteristic clause set of an LK derivation is always unsatisfiable. Therefore one can always
find a resolution refutation of the characteristic clause set.

In particular, we define a resolution refutation δ of |Θ(ϕ)|:

Q(b,v) `
` P(b,v) P(z,a) ` Q(z,a)

` Q(b,a)
`

and a corresponding ground refutation γ of δ , i. e. γ = δσ :

Q(b,a) `
` P(b,a) P(b,a) ` Q(b,a)

` Q(b,a)
`

with the ground substitution σ = {v 7→ a,z 7→ b}.

Now we have to reduce ϕ to projections of the clauses used as initial clauses in the resolution refutation
of |Θ(ϕ)|. This projections may be understood as projection schemes of the clauses in question modulo a
corresponding ground substitution.

Again, we start at the initial sequents (without those parts marked as ancestors of cut formulas and
not necessary for the creation of the clause in question) and apply all inference rules not operating on
ancestors of cut formulas until all such binary rules have been applied and at least one formula also
occurring in the end sequent has been composed.

The projection of ϕ to the clause C1 is:

ϕ(C1) =
P(b,v) ` P(b,v)
` P(b,v),¬P(b,v)

¬ : r

¬Q(b,v) ` P(b,v),¬P(b,v) w : l

` ¬Q(b,v)⊃ ¬P(b,v),P(b,v)
⊃: r

` (∃y)(¬Q(b,y)⊃ ¬P(b,y)),P(b,v) ∃ : r

` (∃x)(∃y)(¬Q(x,y)⊃ ¬P(x,y)),P(b,v) ∃ : r

and the corresponding ground projection χ1 = ϕ(C1)σ .

The projection of ϕ to the clause C2 is:
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ϕ(C2) =
P(z,a) ` P(z,a) Q(z,a) ` Q(z,a)
P(z,a)⊃ Q(z,a),P(z,a) ` Q(z,a)

⊃: l

(∀y)(P(z,y)⊃ Q(z,y)),P(z,a) ` Q(z,a) ∀ : l

(∀x)(∀y)(P(x,y)⊃ Q(x,y)),P(z,a) ` Q(z,a) ∀ : l

with ground projection χ2 = ϕ(C2)σ .

And finally the projection of ϕ to the clause C3:

ϕ(C3) =
Q(b,v) ` Q(b,v)
¬Q(b,v)Q(b,v) ` ¬ : l

¬Q(b,v)Q(b,v) ` ¬P(b,v)
w : r

Q(b,v) ` ¬Q(b,v)⊃ ¬P(b,v)
⊃: r

Q(b,v) ` (∃y)(¬Q(b,y)⊃ ¬P(b,y)) ∃ : r

Q(b,v) ` (∃x)(∃y)(¬Q(x,y)⊃ ¬P(x,y)) ∃ : r

with ground projection χ3 = ϕ(C3)σ .

Finally the ground projections can be composed to a cut-free proof of ϕ , i.e. a proof of ϕ containing
only atomic cuts, using its resolution refutation as a skeleton.

(χ1)
` Y,P(b,a)

(χ2)
P(b,a),X ` Q(b,a)

X ` Y,Q(b,a)
cut (χ3)

Q(b,a) ` Y
X ` Y cut

where X = (∀x)(∀y)(P(x,y)⊃ Q(x,y)) and Y = (∃x)(∃y)(¬Q(x,y)⊃ ¬P(x,y)).
The schematic CERES-method generalizes the approach described above to infinite sequences of

proofs defined in form of recursion (see [8]). A recursive definition of the sequence of characteristic
clause sets can be algorithmically extracted; the same holds for the sequences of projections. The most
difficult part is the specification of an infinite sequence of resolution refutations and the corresponding
unifiers; a language for schematic resolution refutation was defined in [8], but it is not known if every
schematic clause set derived from a proof in the LKSε calculus has a refutation which is expressible
by this language. Even more so, if there exists a refutation of a schematic clause set expressible by the
language of [8], finding that refutation in particular is an undecidable problem.

3 Analysis of the Schematic Tape Proof

3.1 Formalization of the Tape proof

In this section we will formalize a proof of the following statement:

Statement 1 (Tape Statement (introduced in [2] )). Given a total function f : N→Nn, where n ∈N, there
exists i, j ∈ N such that i < j and f (i) = f ( j).

In particular we will use the following schema of lemmata to prove the tape statement:
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Lemma 1 (Infinity Lemma). Given a total function f : N→ Nn+1 then either for all x ∈ N there exist a
y ∈ N such that x≤ y and f (y) = i where i ∈ Nn, or for all x ∈ N there exist a y ∈ N such that x≤ y and
f (y) = n+1.

Essentially, the proof of the tape statement is proved by induction on the free variable n in the infinity
lemma. We formalize this proof in the LKSε calculus [8]. The only rewrite rules, i.e. the set of rules ε ,
needed for the defined predicate symbols will be those for iterated conjunction and iterated disjunction:(

n∧
i=0

ϕ [i\ x]

)
∧ϕ [(n+1)\ x]⇒

n+1∧
i=0

ϕ [i\ x]

(
n∨

i=0

ϕ [i\ x]

)
∨ϕ [(n+1)\ x]⇒

n+1∨
i=0

ϕ [i\ x]

When the upper bound of the interval is less than 0 the iterated conjunction is equivalent to > and the
iterated disjunction is equivalent to ⊥.

The only other addition to the standard LK calculus [15] is the addition of proof links at the leaves of
the proofs, but before introducing proof links we provide a few additional constructions necessary for
formalization of schematic proofs. A schematic proof written in the LKSε calculus is written as a proof
schema, a sequence of pairs of proofs. The first proof in the set is the root of the schema. We will refer
to these pairs as proof schema pairs. Each proof schema pair has a proof symbol representing it, and a
base-case and step-case end sequent indexed by a term in the numeric sort. In our case the proof schema
is 〈(ω(0),ω(n+1)),(ϕ(0),ϕ(n+1))〉. The left to right ordering of the pairs in our proof schema implies
that the proof schema pair for ω can contain a call to the pair for ϕ or a call to itself, and the pair for ϕ

can only call itself. Proofs in a proof schema pair cannot make calls to proofs further to the left than they
are located. The end sequents is as follows (es(·) means the end sequent of given proof symbol):

es(ω(0)) = ∀x f (x)∼ 0 ` ∃p∃q(p < q∧ f (p)∼ f (q))
es(ω(n+1)) = ∀x

∨n+1
i=0 f (x)∼ i ` ∃p∃q(p < q∧ f (p)∼ f (q))

es(ϕ(0)) = ∀x∃y(x≤ y∧ f (y)∼ 0) ` ∃p∃q(p < q∧ f (p)∼ f (q))
es(ϕ(n+1)) = ∀x∃y(x≤ y∧

∨n+1
i=0 f (y)∼ i) ` ∃p∃q(p < q∧ f (p)∼ f (q)).

We use the symbol ∼ to represent equality over the numeric sort. In the case of proof ϕ(n+1) one of the
leaves has a call to the case of ϕ(n). Proof links are used to represent this call to a previous proof and are
written as follows:

ϕ(n). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∀x∃y(x≤ y∧

∨n
i=0 f (y)∼ i) ` ∃p∃q(p < q∧ f (p)∼ f (q))

In general, proof links can also take arguments from the individual sort, but this is not needed in our
case. When we instantiate a proof schema for a given value of the free parameter, we replace the proof
links with instances of the proof indicated by the proof symbol in the proof link and the numeric term.

We will now outline the proof, skipping many of the trivial sequent rules, and demarcating the cut
ancestors with *. Also, instead of using = to represent equality in the formal proof we will use ∼ being
that all equality is occurring over the numeric sort. f should be understood as a function mapping the
members of the individual sort to the numeric sort. By s(·) we mean successor function over the individual
sort.
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3.1.1 Proof Symbol ω Base-case

` α ≤ α∗
f (α)∼ 0 `
f (α)∼ 0∗

∧ : r...
∀x f (x)∼ 0 `

∀x∃y(x≤ y∧ f (y)∼ 0)∗

s(β )≤ α∗ `
β < α

f (β )∼ 0∗, f (α)∼ 0∗ `
f (β )∼ f (α)

∧ : r...
∀x∃y(x≤ y∧ f (y)∼ 0)∗ `
∃p∃q(p < q∧ f (p)∼ f (q))

cut
∀x f (x)∼ 0 `

∃p∃q(p < q∧ f (p)∼ f (q))

3.1.2 Proof Symbol ω Step-case

ϕ(n+1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∀x∃y(x≤ y∧

∨n+1
i=0 f (y)∼ i)∗ `

∃p∃q(p < q∧ f (p)∼ f (q))

` α ≤ α∗
∨n+1

i=0 f (α)∼ i `∨n+1
i=0 f (α)∼ i∗

∧ : r...
∀x
∨n+1

i=0 f (x)∼ i `
∀x∃y(x≤ y∧

∨n+1
i=0 f (y)∼ i)∗

cut
∀x
∨n+1

i=0 f (x)∼ i `
∃p∃q(p < q∧ f (p)∼ f (q))

3.1.3 Proof Symbol ϕ base-case

s(β )≤ α∗ `
β < α

f (β )∼ 0∗, f (α)∼ 0∗ `
f (β )∼ f (α)

∧ : r...
∀x∃y(x≤ y∧ f (y)∼ 0)∗ `
∃p∃q(p < q∧ f (p)∼ f (q))

3.1.4 Proof Symbol ϕ step-case

In this proof we will mark cut-configuration ancestors2 with ∗∗. These are cut-ancestors that passed
through proof links.

2The point of the configurations is to track the cut-status of formulae that pass through proof links (whether the formulae are
ancestors of cuts or not). A configuration is a set of formula occurrences from the end-sequent of a given proof[8].
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max(α,β )≤ γ∗∗ `
α ≤ γ∗

∨n+1
i=0 f (γ)∼ i∗∗,
` f (γ)∼ n+1∗∨n

i=0 f (γ)∼ i∗
∧ : r

max(α,β )≤ γ∗∗,
∨n+1

i=0 f (γ)∼ i∗∗,
` f (γ)∼ n+1∗

α ≤ γ ∧
∨n

i=0 f (γ)∼ i∗
max(α,β )≤ γ∗∗ `

β ≤ γ∗

∧ : r
...

∀x∃y(x≤ y∧
∨n+1

i=0 f (y)∼ i)∗∗ `
∀x∃y(x≤ y∧

∨n
i=0 f (y)∼ i)∗,

∀x∃y(x≤ y∧ f (y) = n+1)∗
...

...
∀x∃y(x≤ y∧

∨n+1
i=0 f (y)∼ i)∗∗ `

∀x∃y(x≤ y∧
∨n

i=0 f (y)∼ i)∗,
∀x∃y(x≤ y∧ f (y) = n+1)∗

ϕ(n). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∀x∃y(x≤ y∧

∨n
i=0 f (y)∼ i)∗ `

∃p∃q(p < q∧ f (p)∼ f (q))

cut
∀x∃y(x≤ y∧

∨n+1
i=0 f (y)∼ i)∗∗ `

∃p∃q(p < q∧ f (p)∼ f (q)),
∀x∃y(x≤ y∧ f (y)∼ n+1)∗

...

...
∀x∃y(x≤ y∧

∨n+1
i=0 f (y)∼ i)∗∗ `

∃p∃q(p < q∧ f (p)∼ f (q)),
∀x∃y(x≤ y∧ f (y)∼ n+1)∗

s(β )≤ α∗ `
β < α

f (β )∼ (n+1)∗, f (α)∼ (n+1)∗ `
f (β )∼ f (α)

∧ : r...
∀x∃y(x≤ y∧ f (y)∼ n+1)∗ `
∃p∃q(p < q∧ f (p)∼ f (q))

cut
∀x∃y(x≤ y∧

∨n+1
i=0 f (y)∼ i)∗∗ `

∃p∃q(p < q∧ f (p)∼ f (q)),
∃p∃q(p < q∧ f (p)∼ f (q))

c : r
∀x∃y(x≤ y∧

∨n+1
i=0 f (y)∼ i)∗∗ `

∃p∃q(p < q∧ f (p)∼ f (q))

Extracting the clause sets from the base cases of ω(0) and ϕ(0), the following two sets result:

CS(ω,0, /0)≡ ((((s(β )≤ α `)⊗ ( f (α)∼ 0, f (β )∼ 0 `))⊕ ` α ≤ α)⊕ ` f (α)∼ 0)

CS(ϕ,0, /0)≡ (s(β )≤ α `)⊗ ( f (α)∼ 0, f (β )∼ 0 `)

By CS(ω,0, /0) we are referring to the clause set for proof ω given the value 0 from the numeric
set and configuration /0. Extracting the clause set from the step-case of ϕ will require us to use a
single configuration, namely, Ωn+1 =

{
∀x∃y(x≤ y∧

∨n+1
i=0 f (y)∼ i)∗∗ `

}
. This is the cut formula passed

through the proof links.

CS(ω,n+1, /0)≡ (((` α ≤ α)⊕ (`
n+1∨
i=0

f (α)∼ i))⊕CS(ϕ,n+1,Ωn+1))
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CS(ϕ,n+1,Ωn+1)≡ (((((s(β )≤ α `)⊗( f (α)∼ n+1, f (β )∼ n+1 `))⊕(max(α,β )≤ γ ` α ≤ γ))⊕

(max(α,β )≤ γ ` β ≤ γ))⊕CS(ϕ,n,Ωn))

When we simplify this representation and remove redundancy, we get the following clause set C(n):

(C1) ` α ≤ α

(C2) max(α,β )≤ γ ` α ≤ γ

(C3) max(α,β )≤ γ ` β ≤ γ

(C40) f (β )∼ 0, f (α)∼ 0,s(β )≤ α `
...

...
(C4n) f (β )∼ n, f (α)∼ n,s(β )≤ α `
(C5) ` f (α)∼ 0, · · · , f (α)∼ n

The clause set C(n) is the set which we will prove unsatisfiable for all instantiations of the free parameter n.
Being that the language for resolution refutations presented in the original paper on schematic CERES [8]
does not have enough expressive power, we will present the refutation using a mathematical meta-language.

3.2 Schematic Resolution Refutation of C(n)

Definition 1. Let the variable symbol set V denote a countably infinite set of variable symbols. An
indexed variable xi is a first-order variable with x ∈ V and i ∈ N.

Definition 2. The primitive recursively defined term mn(k,x0, · · · ,xn) with arity n+1 for k,n ∈ N, x ∈ V
is defined as follows:

When n < k+1, mn(k+1,x0, · · · ,xn)⇒ mn(k,x0, · · · ,xn) (2a)

When k+1≤ n, mn(k+1,x0, · · · ,xn)⇒
max(mn(k,x0, · · · ,xn),s(xk+1))

(2b)

mn(0,x0, · · · ,xn)⇒ max(s(x0),s(x0)) (2c)

We will use the abbreviation x̄n for the list of parameters x0, · · · ,xn. Also, for simplicity we will always
write the term mn(k,x0, · · · ,xn) as mn(k, x̄n) where k ≤ n, being that the function skips evaluation for
values higher than n.

Example 1. The term m2(2,x0,x1,x2) when unrolled will be the following:

max(max(max(s(x0),s(x0)),s(x1),s(x2))

This definition of a nested max term will be integral to the refutation of the clause set and results in
the following lemma about clauses derivable from C(n).

Lemma 2. Given 0≤ k ≤ n, the clause ` mn(k, x̄n)≤ mn(n, x̄n) is derivable from (C1),(C2),and (C3).
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Proof. We prove this lemma by induction on the difference between n and k. When n = k, the only
possibility is ` mn(n, x̄n) ≤ mn(n, x̄n), an instance of (C1). Assuming for all differences u′ ≤ u the
lemma holds, we now show for u+ 1. This leaves two possibilities of which we will prove one and
leave the other to the reader, namely, u+ 1 = n− (k− 1) for k > 1. This implies deriving the clause
` mn(k−1, x̄n)≤ mn(n, x̄n).

1. ` max(α,β )≤ γ → α ≤ γ (C2)
2. mn(k, x̄n)≤ mn(n, x̄n) ` mn(k−1, x̄n)≤ mn(n, x̄n) By definition of mn and substitution into 1.
3. ` mn(k, x̄n)≤ mn(n, x̄n) Induction hypothesis
4.` mn(k−1, x̄n)≤ mn(n, x̄n) resolve 2 and 3.

Lemma 3. Given 0≤ k ≤ n, the clause ` s(xk)≤ mn(n, x̄n) is derivable from (C1),(C2),and (C3).

Proof. We know that for every n and k, `mn(k, x̄n)≤mn(n, x̄n) is derivable by Lem. 2. Thus the following
derivations show that ` s(xk)≤ mn(n, x̄n) is derivable:

1. ` max(α,β )≤ γ → β ≤ γ (C3)
2. mn(k, x̄n)≤ mn(n, x̄n) ` s(xk)≤ mn(n, x̄n) By definition of mn and substitution into 1.
3. ` mn(k, x̄n)≤ mn(n, x̄n) Lem. 2
4.` s(xk)≤ mn(n, x̄n) Resolve 2 and 3.

Lemma 4. Given 0≤ i≤ n, the clause f (mn(n, x̄n))∼ i, f (xi)∼ i ` is derivable from (C1),(C2),(C3),and
(C4i).

Proof. By Lem. 3 ` s(xi)≤ mn(n, x̄n) is derivable, thus the following holds:
1. ` s(xi)≤ mn(n, x̄n) Lem. 3
2. f (x)∼ i, f (y)∼ i,s(x)≤ y ` (C4i).
3. f (xi)∼ i, f (mn(n, x̄n))∼ i,s(xi)≤ mn(n, x̄n) ` Substitution into 2.
4. f (mn(n, x̄n))∼ i, f (xi)∼ i ` Resolve 1 and 3.

�

So far the steps taken in the refutation of the clause set C(n) have been straightforward and have not
required much additional machinery to derive. However, in the next lemma we need to add bijective
functions to the numeric sort to show the derivability of certain clauses. The problem we need to get
around is that every permutation of the numbers from 0 to n will be needed to refute the clause set. Thus,
we cannot directly prove the properties of the refutation using a simple linear induction. We replace the
numbers in the numeric sort with the bijective function in order to simplify the problem enough to prove
the derivability of some clauses without using a complex ordering. However, even this simplification was
not enough for all the clauses needed in the refutation and to derive ` we still need to construct a special
ordering.

Definition 3. Given 0≤ n, −1≤ k ≤ j ≤ n, and a bijective function o : Nn→ Nn we define the following
formulae:

co(k, j,n) =
k∧

i=0

f (xo(i))∼ o(i) `
j∨

i=k+1

f (mn(n, x̄n))∼ o(i).

The formulae co(−1,−1,n)≡ ` for all values of n.
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Lemma 5. Given 0≤ n, −1≤ k≤ n and for all bijective functions o : Nn→Nn, the formula co(k,n,n) is
derivable from C(n).

Proof. We prove this lemma using an induction on k and a case distinction on n. When n = 0 there are
two possible values for k, k = 0 or k =−1. When k =−1 the clause is an instance of (C5). When k = 0
we have the following derivation (remember that the bijective function must be o(0) = 0):

1. f (mn(n, x̄n))∼ 0, f (x0)∼ 0 ` Lemma 4
2. ` f (x)∼ 0 (C5).
3. ` f (mn(n, x̄n))∼ 0 Substitution into 2.
4. f (x0)∼ 0 ` Resolution 1 and 3.

When n > 0 and k = −1 we again trivially have (C5). Now we assume that for all w ≤ k for n > 0
the theorem holds, we then proceed to prove the theorem holds for k+1. We assume that k < n. The
following derivation will suffice:

1.
∧k

i=0 f (xo(i))∼ o(i) `
∨n

i=k+1 f (mn(n, x̄n))∼ o(i) Induction hypothesis
2. ( f (mn(n, x̄n))∼ o(k+1)∧ f (xo(k+1))∼ o(k+1)) ` Lem. 4
3.
∧k+1

i=0 f (xo(i))∼ o(i) `
∨n

i=k+2 f (mn(n, x̄n))∼ o(i) Resolve 1 and 2.

Definition 4. Given 0≤ n we define the ordering relation ln over An = {(i, j)|i≤ j∧0≤ i, j ≤ n∧ i, j ∈ N}
s.t. for (i, j),(l,k)∈ An, (i, j)ln (l,k) iff i,k, l ≤ n, j < n, l ≤ i, k≤ j, and i = l↔ j 6= k and j = k↔ i 6= l.

The ordering defined above is essentially the resolution refutation. It is a complex and strange ordering,
however, it allows for a simple and straight forward schematically definable refutation.

Lemma 6. The ordering ln over An for 0≤ n is a complete well ordering.

Proof. Every chain has a greatest lower bound, namely, one of the members of An, (i,n) where 0≤ i≤ n,
and it is transitive, anti-reflexive, and anti-symmetric.

The clauses proved derivable by Lem. 5 can be paired with members of An as follows, co(k,n,n)
is paired with (k,n). Thus, each co(k,n,n) is essentially the greatest lower bound of some chain in the
ordering ln over An.

Lemma 7. Given 0≤ k ≤ j ≤ n, for all bijective functions o : Nn→ Nn the clause co(k, j,n) is derivable
from C(n).

Proof. We will prove this lemma by induction over An. The base cases are the clauses co(k,n,n) from
Lem. 5. Now let us assume that the lemma holds for all clauses co(k, i,n) pairs such that, 0≤ k≤ j < i≤ n
and for all clauses co(w, j,n) such that 0≤ k < w≤ j ≤ n, then we want to show that the lemma holds for
the clause co(k, j,n). The following derivation provides proof:

1.
∧k

i=0 f (xo(i))∼ o(i) `
∨ j+1

i=k+1 f (mn(n, x̄n))∼ o(i) Induction hypothesis co(k, j+1,n)
2.
∧k+1

i=0 f (xo′(i))∼ o′(i) ` Induction hypothesis co′(k+1,k+1,n)
3.
∧k

i=0 f (xo(i))∼ o(i) `
∨ j

i=k+1 f (mn(n, x̄n))∼ o(i) Resolve 1,2 {xo′(k+1)← mn(n, x̄n)}
Also, o′(e) = o(e) for 0≤ e≤ k, o′(k+1) = o( j+1) and o(k+1) = o′(e) for k+1 < e≤ n.

Theorem 1. Given n≥ 0, C(n) derives `.
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Proof. By Lem. 7, The clauses f (x) ∼ 0 ` , · · · , f (x) ∼ n ` are derivable. Thus, we can prove the
statement by induction on the instantiation of the clause set. When n = 0, the clause (C5) is ` f (x)∼ 0
which resolves with f (x)∼ 0 ` to derive `. Assuming that for all n′ ≤ n the theorem holds we now show
that it holds for n+1. The clause (C5) from the clause set C(n+1) is the clause (C5) from the clause set
C(n) with the addition of a positive instance of ` f (α)∼ (n+1). Thus, by the induction hypothesis we
can derive the clause ` f (α)∼ (n+1). By Lem. 7 we can derive f (x)∼ (n+1) `, and thus, resolving
the two derived clauses results in `.

It is still an open problem as to whether this is the minimal schematic refutation of this clause set;
however, evidence points towards this being the case. One way to measure the complexity of the refutation
is to count how many times schematic length clauses are used. In this clause set we only have one
schematic length clause (a clause whose size is dependent on the free parameter), namely, (C5). By Thm.
1 we see that the last step requires one instance of (C5) plus n+1 times the number of instances needed
to derive f (x) ∼ o(i) `. This pattern occurs throughout the proof of Lem. 7. Thus, we can consider
the recurrence f (n+1) = 1+(n+1) · f (n). This recurrence is roughly equivalent to the function e ·n!
implying that the number of schematic clauses needed for this refutation is enormous and the refutation
is very redundant. This also provides evidence as to the difficulty of developing a new language for the
resolution refutation calculus.

As mentioned, the schematic ACNF (see [8]) for this proof uses many instances of the schematic
length clause, is complex, and most likely obfuscates the information we would like to extract during
proof analysis, the weak quantifier instantiations. Part of the problem with the resolution refutation, at
least in its current form, is that a global unifier for the schematic proof is very hard to construct. But, we
do have the local unifiers, which are pretty much the same unifier repeated at every step in Lem. 7. Unlike
in the case of ANCF construction where the abundance of some clauses gets in the way, the redundancy
of the local unifiers helps us construct a schematic Herbrand sequent. In the next section we will show
how a schematic Herbrand sequent (for this specific case) can be constructed. No general method exist as
of yet. Though, we will not construct a minimal Herbrand sequent, we show that patterns in the resolution
refutation lead to the extraction of the finite pigeon-hole principle.

4 Herbrand Sequent Extraction

Traditionally, the projections constructed from a formalized proof for the CERES method are built
algorithmically from the structure of the said proof. This holds true for the schematic CERES method as
well. However, being that we have not been able to construct a global unifier, if we want to get information
about which instantiation of the weak quantifiers are needed, we need to know how the local unifiers
change the terms at the leaves of the derivation (our proof does not have ground axioms).

We introduce quasi-projections which are the same as projections, except we drop the weak quantifier
rules from the projections and we do not weaken in the end-sequent formulae, which are not proven from
the axioms used in the given projection. This concept is still in its infancy and will probably need more
work to generalize it to arbitrary LKSε projections. This results in the formulae which are ancestors of
the cut sharing variables with the ancestors of the end-sequent. Thus as we apply the local unifiers used
in the resolution refutation to the clauses extended with the end-sequent formulae, we can gather the
instantiations for the weak quantifiers. This method does not have much amount to much concerning the
instantiations up to Lem. 5; however, for the more complex induction found in Lem. 7 a pattern emerges.
The only quasi projections we need to construct are for clauses (C4i) and (C5):
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4.0.1 Quasi-Projection for (C4i)

s(α)≤ β ` α < β
f (α)∼ i, f (β )∼ i `

f (α)∼ f (β )
∧ : r

f (α)∼ i, f (β )∼ i,s(α)≤ β `
α < β ∧ f (α)∼ f (β )

4.0.2 Quasi-Projection for (C5)

∨n
j=0 f (β )∼ j `

∨n
j=0 f (β )∼ j

One more problem to deal with concerning the construction of the Herbrand sequent is given the fact
that a factorial number of schematic length clauses are necessary for the refutation, the number of local
unifiers will be even more numerous, leaving us again with a plethora of mostly useless information (a lot
of repeated instances). We are able to alleviate this issue by introducing equivalence classes based on the
nesting depth of the iterated max function of definition 2. The following definitions cover the equivalence
classes.

Definition 5. We define dom(σx) as the domain of σx. Let σx where x ∈ V be a substitution such that
x 6∈ dom(σx) and in the range σx the only variable symbol is x.

Definition 6. Let N k for k ∈ N and x ∈ V be the class of all equivalences classes n(x,k) of the following
form:

0(x,k) ≡ {xi|i ∈ [0,k]}

n(x,k) ≡

{
mk(k, ȳk)σx

∣∣∣∣∣σx =
{

y0← w0, · · · ,yi−1← wi−1,yi← wi,yi+1← wi+1, · · · ,yk← wk

}
y ∈ V , i ∈ [0,k] ,

 ∧
j∈[0,···i−1,i+1,···k]

∨
v∈[0(x,k),··· ,n−1(x,k)]

w j ∈ v

,wi ∈ n−1(x,k)

}

As one can see 1(x,k) = mk(k, x̄k). What is important to see about these equivalence classes is that
applying the substitution

σx =
{

y0← x0, · · · ,yi−1← xi−1,yi← mk(k, x̄k),yi+1← xi+1, · · · ,yk← xk

}
to a member of the class n(y,k) gives you a member of the class n+1(x,k). This is exactly the substitution
used in the local unification of Lem. 7. We will use the equivalence classes in the resolution refutation to
replace the terms in end-sequent formulae with the equivalence classes. When two formulae have different
substitutions applied to them, but the resulting terms are in the same equivalence class, we contract the
formulae. Also important to note is how to interpret a formula with equivalence classes replacing terms:

` ϕ(n(x,k))≡ `
∨

t∈n(x,k)

ϕ(t)

ϕ(n(x,k)) ` ≡
∧

t∈n(x,k)

ϕ(t) `
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The whole idea of the equivalence classes is to group together terms that state roughly the same thing.
The sequent proven derivable in Lem. 5 after adding the end-sequent formulae and equivalence classes

is as follows:

k∧
i=0

f (xo(i))∼ o(i),
n∨

i=0

f (1(x,n))∼ i `
k∨

i=0

(0o(i)
(x,n) < 1(x,n)∧ f (0o(i)

(x,n))∼ f (1(x,n))),
n∨

i=k+1

f (mn(n, x̄n))∼ o(i)

The superscript on the equivalence classes 0(x,n) denotes the index of the variable. Using the above sequent
instead of the one derived in Lem. 5 in the proof of Lem. 7 and Thm. 1 we derive the following end
sequent:

n+1∧
w=0

n∨
i=0

f (w(x,n))∼ i `
n∨

i=0

n+1∨
w=i+1

(i(x,n) < w(x,n)∧ f (i(x,n))∼ f (w(x,n)))

Showing that the resolution refutation actually results in this end sequent requires a lot of work and would
not fit in the bounds of this paper. However, intuitively we are just gathering the terms of Lem. 7 after
substitution into sets based on a similarity condition (iterated max nesting). The main problem with the
method outlined above is that it relies too much on the structure of this particular proof. However, part
of the reason this proof was chosen in the first place to analyse the schematic CERES method is the
redundancy and how it is at the limits of what the method can handle. We will discuss our plans dealing
with application of this work in the next section.

What we have shown so far is how one can use schematic CERES to analyse a proof of a mathematical
statement formalized in the LKSε calculus. We have also shown that the resolution calculus of [8] is
too weak to express refutations of clause sets derived from fairly simple schematic proofs. The proof
used in this paper, for example, only used two proofs links which have a simple call structure. Although
we were able to construct a refutation in a mathematical meta-language, we have not yet been able to
generalize the language of the schematic resolution refutation calculus. To circumvent this issue we
extract a Herbrand sequent using the patterns found in the local unifiers of the proof of refutability. To get
around the immense amount of repetition we construct equivalence classes which capture an important
property of the term language, i.e. term depth. Using these equivalence classes we are able to extract the
finite pigeon-hole principle.

5 Open Problem and Future Work

Many holes are left open in this work, most importantly the construction of a generalized language for the
schematic resolution refutation calculus. Not only would the development of a language allow for ACNF
construction, it could also help sharpen the method we introduce here for Herbrand sequent extraction.
Also, we hope the construction of such a language would lead to a generalization of the Herbrand sequent
extraction method as well, being that the method introduced here is very proof specific. Though, we expect
that analysing the work showcased above will help lead to a generalization of the language, this was one
of the motivations. For example, prior to the proof analysis of the tape proof, it was not clear that one
would need all possible permutations of the values in the numeric sort. On a positive and unexpected note,
only one free parameter exists in the resolution refutation and in the original language of the schematic
resolution refutation calculus. It was considered at one point that multiple free parameters might occur in
the resolution refutation of the proof.
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Though constructing an ACNF has been the goal of proof analysis using CERES, in the schematic
case having an ACNF does not provide as much information as expected, more correctly, it provides an
overwhelming amount which is impossible to parse. Thus, we envision a move from constructing an
ACNF at the end of schematic proof analysis to extraction of the Herbrand sequent. The main goal of
future work will be to develop a method of Herbrand sequent extraction for a reasonable class of schematic
proofs formalizable in LKSε .

Acknowledgements: We would like to give special thanks to Sanja Ivkov 3 for Editorial help.
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