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Abstract

This extended abstract has been written with two goals in mind: 1) to motivate the
need for a prover which derives sequences of proofs rather than a single proof, and 2) to
present this problem to an audience of experts who can critique this approach and who
may be interested in the further development of this project. A uniform sequence prover
can address issues arising in the area of inductive theorem proving, in particular automated
discovery of induction invariants by instance analysis. We illustrate this approach using a
novel tree grammar based method introduced by S. Eberhard and S. Hetzl (implemented as
Viper within the GAPT system). This method necessitates that first-order theorem prover
produces sequences of instance proofs which are “related”. This notion of relatedness
has so far remained extra-logical and any precision has come from empirical analysis of
numerous examples.

While automated theorem proving in the presence of induction is in general undecidable
(concerning both the validity and unsatisfiability problems), there are fragments of first-order
logic extended by inductive definitions which have a semi-decidable unsatisfiability problem [6].
Unfortunately, these fragments are mathematically quite weak. Even the most powerful the-
orem provers, based on the techniques outlined in [6]1, such as the superposition prover of
V. Aravantinos et al. [1], fail to find invariants for even the simplest mathematically interest-
ing problems; for an example see the analysis of the Eventually Constant Assertion [5]. Even
statements as simple as x+ (x+ x) = (x+ x) + x are problematic for loop discovery methods.

Given the apparent limitations of loop discovery methods, S. Eberhard & S. Hetzl [7] took a
different approach to the invariant discovery problem by extracting information from instance
proofs. Consider your run-of-the-mill theorem prover such as SPASS, prover9, etc. When such
a theorem prover finds a proof, this proof will be cut-free2. Herbrand’s Theorem (also known
as the Mid-Sequent Theorem) [9] tells us that we can find and extract a set of quantifier-free
instances of the proven statement which together provide a proof of validity.

Without going into too much detail consider a valid statement of first-order logic extended
by inductive definitions ∀xP (x) provable from a set of formula ∆ where x is a variable over the
natural numbers3. If ∀xP (x) is provable from ∆ using a single induction, then P (α) ought to be
provable from ∆ without induction (α being a natural number). Thus, using a theorem prover
we can get an instance proof Πα from which we can extract a Herbrand sequent (mid-sequent)
denoted by Hα. In [7], they produce a special type of tree grammar (based on Herbrand’s
Theorem) from Π0, · · · ,Πα which induces a quantifier-free second-order unification problem.
Solving this problem results is the discovery of an invariant.

Unlike loop discovery methods which have an exceedingly hard time with x + (x + x) =
(x+ x) + x, the tree grammar approach is able to find the invariant (x+ x) + y = x+ (x+ y)

1What we will refer to as loop discovery methods.
2For those unfamiliar with the concept of cut, this essentially means analytic.
3In [7] one is not limited to numerals.
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and show that x+ (x+ x) = (x+ x) + x is provable by induction from the axioms of addition
and successor [8]. While this is a significant step toward more general methods of automated
inductive theorem proving, solving the second-order unification problem requires the discovery
of uniform constructs within the instance proofs Π0, · · · ,Πα. Consider, instead of x+(x+x) =
(x+ x) + x the statement x ∗ (x ∗ x) = (x ∗ x) ∗ x. Note that multiplication is typically defined
in terms of addition, and thus it is not entirely clear if the invariant ought to be multiplication
based or an addition based, or a mix of both. Each of these possibilities can be abstracted from
a particular sequence of instance proofs. A theorem prover may instead of producing instance
proofs from one of these sequences unfruitfully zig-zag between various sequences. This makes
solving the second-order unification problem intractable.

However, this unfortunate behavior does not mean that the prover is incapable of handling
harder problems. Consider the following sentence:

F = ∀n(∀x(E(g(x), n) ∨ L(x, n) ∧ ∀x(E(x, n) ∨ L(x, n)) ∧ Q̂(n))

where Q̂ is defined as follows:

Q̂(0) ⇒ ¬L(a, 0) ∧ ∀x(¬E(x, 0) ∨ ¬E(g(x), 0))

∀n(Q̂(s(n)) ⇒ ∀x(¬E(x, s(n)) ∨ ¬E(g(x), s(n))) ∀x(¬L(x, s(n)) ∨ E(x, n) ∨ L(x, n))

∧ ∀x(¬L(g(x), s(n)) ∨ E(g(x), n) ∨ L(x, n)) ∧ Q̂(n))

This sentence is unsatisfiable for all values of n, though it is not completely obvious how one
can prove this by resolution. To provide a more intuitive understanding of what the sentence
states, one ought to consider it as an invariant of the Infinitary Pigeonhole Principle. Encoded
in the predicates E and L is a total function f from the natural numbers (encoded by g and
a) to a finite set of natural numbers (encoded by s and 0). The sentence F is the negation of
the statement that there exists a value α in the domain of f such that f(α) = f(g(α)). Viper
found the following invariant after roughly 5 hours of search.

(F{n← x} → (E(0, g(a)) ∨ E(0, a) ∨ Q̂(0))) ∧ ¬(Q̂(s(x)) ∧ Q̂(x) ∧ F{n← s(x)})

Unlike x ∗ (x ∗ x) = (x ∗ x) ∗ x, it is not the difficulty of sifting through the various instance
proofs which makes the problem difficult because there is (modulo structural variation) only
one way to prove each instance, and furthermore each instance is relatively straight forward to
prove. Thus, a significant portion of the 5 hours was spend on finding the invariant.

What this example highlights is how difficult constructing the invariant is even when we are
provided with a uniform sequence of instance proofs. Instead of producing an arbitrary sequence
of instance proofs Π0, · · · ,Πs(α), the prover ought to relate Πs(α), to the proofs Π0, · · · ,Πα.
These observations leave a few open questions:

• What does it mean for two proofs Π1 and Π2 to be “related”?

• How does one compute whether or not two proofs are “related”?

• Is “related” enough to guarantee discovery of the uniform structures hidden within the
instance proofs?

The first question is currently under investigation and is limited to the class of primitive recur-
sive sentences F (see above) inhabits [2]. In [2], we consider a notion of relatedness based on a
intrinsic clausal representation of the instances of a primitive recursive formula definition. The
clauses of this intrinsic representations can be related through anti-unification techniques [4, 3].
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Thus, we consider two clauses arising from the intrinsic clausal representation of two different
instance formula related if they have the same anti-unifier. This is a great simplification of the
idea and for more details please see [2].

Concerning the other two questions, these are open research question which have so far
been approach empirically. Our conjecture is that modern artificial intelligence techniques,
especially those arising from the sub-field of machine learning, can be of benefit to computation
of “relatedness”, i.e. how to choose which clauses which have the same anti-unifier ought to be
used in the instance proofs. How one would precisely integrate such methods is still an open
question and begs further investigation.
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