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- Lets consider the following situation:

-

T

v

Are ¢ and 1 essentially the same?

v

Is the theory used to prove T necessary?

v

What are the core principles necessary to prove T7?

v

Do ¢ and 1 share these core principles?

v

Is there a unique set of necessary core principle?

v

These questions are not completely trivial.
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Proof Analysis and Induction

- Induction is one of the primary tools in the mathematicians
tool box.
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Furstenberg, primes, and an infinitude of proofs

Flrstenberg produced many proofs of elementary results using an
unexpected intermediate theory.

- Local cut-elimination based proof analysis used by Jean-Yves
Girard on Fiirstenberg's proof of Van der Waerden's theorem.

- Proof analysis of his proof of the infinitude of primes was
performed by Baaz et al. using a global cut-elimination
procedure (CERES).
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(Tangent) Global versus Local cut-elimination

Local cut-elimination reduces a cuts formula complexity or its
distance from the leaves.

- Introduced by Gentzen as a method of proving consistency, the
concept has been expanded well beyond the intended scope.
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(Tangent) Global versus Local cut-elimination

Local cut-elimination reduces a cuts formula complexity or its
distance from the leaves.

- Introduced by Gentzen as a method of proving consistency, the
concept has been expanded well beyond the intended scope.

Global cut-elimination produces an intermediate representation
of a formal proofs cut-structure.

- From this intermediate representation a new proof with a
trivial cut-structure is produced.
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CERES: The Characteristic Clause Set representation

LK-Proof with cuts
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LK-Proof with cuts Paths to cut ancestors
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CERES: The Characteristic Clause Set representation

CL(AFA)={-A}
CL(AFA)={AF}
CL(A-A)={AFA}
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LK-Proof with cuts Paths to cut ancestors Ca Fm x ca’ =

- Construct a clause set from the cut ancestors relation.

- Such a clause set is always unsatisfiable.
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Furstenberg's proof as a Sequence of Proofs

Fiirstenberg proof of the infinitude of primes is inductive.

- Unfortunately, local cut-elimination on inductive arguments is
not a lossless procedure and in the worst case it's not possible.

- In [Baaz et al. 2008] proof analysis of Fiirstenberg's proof was
performed using a global cut-elimination by externalizing the
inductive arguments.

- They formalized the proof as a sequence of cases, i.e assume
n primes exists...

- The end result, a “schema” of proofs.
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Firstenberg's schema and its Clause Set

After schematizing the proof a componentwise characteristic clause
set is be extracted.

- A refutation of each clause set was transformed into a proof
skeleton upon which projections of the original proof are
attached (CERES).

- Analysis of this schema of clause sets resulted in the discovery
of Euclid’s argument as well as other unknown combinatorial
proofs within Fiirstenberg's proof.
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Firstenberg's schema and its Clause Set

After schematizing the proof a componentwise characteristic clause
set is be extracted.

- A refutation of each clause set was transformed into a proof
skeleton upon which projections of the original proof are
attached (CERES).

- Analysis of this schema of clause sets resulted in the discovery
of Euclid’s argument as well as other unknown combinatorial
proofs within Fiirstenberg's proof.

Later work [Dunchev et al. 2013] and [Leitsch et al. 2017]
formalize the above procedure, while in [Cerna et al. 2016] the
earlier method is used to perform proof analysis of a weak version
of the pigeonhole principle.
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Schematic CERES, and Fiirstenberg’'s Proof

Analysis of Fiirstenberg’s Proof has not been performed using the
method of [Dunchev et al. 2013] nor [Leitsch et al. 2017].

- Though neither method can deal with equational reasoning,

- the really problem is constructing a representable recursive
refutation:
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Schematic CERES, and Fiirstenberg’'s Proof

Analysis of Fiirstenberg’s Proof has not been performed using the
method of [Dunchev et al. 2013] nor [Leitsch et al. 2017].

- Though neither method can deal with equational reasoning,

- the really problem is constructing a representable recursive

refutation:
F E(f(x),0),--- E(f(x),a+1) F L(x, x)
L(max(x,y), z) F L(x, z) L(max(x,y),z) b L(y, z)

E(f(x),0), E(f(¥),0), L(s(y): ) = E(f(x),1), E(f(y), 1), L(s(y), x) -

E(f(x), ), E(f(y), @), L(s(y), x) b E(f(x),a +1), E(f(y), e + 1), L(s(y), x) -
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Clausal analysis: Reductive C.E. and Global Cut Structure

- Baaz and Leitsch, 2006 show how locally reducing cuts
impacts the global cut structure.

- Every proof can be transformed into a proof with a
minimally complex cut structure.

- The extracted clause set, is subsumed by the clause sets of
the more complex cut structure.

Reduction can result in
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Clausal analysis: Reductive C.E. and Global Cut Structure

- Baaz and Leitsch, 2006 show how locally reducing cuts
impacts the global cut structure.

- Every proof can be transformed into a proof with a
minimally complex cut structure.

- The extracted clause set, is subsumed by the clause sets of
the more complex cut structure.

e Local elimination

can result in a multi-
plication of the cuts

e  Essentially, the
cut-structure gets
more redundant.

e Redundancy =
structural simplicity,

Reduction can result in the following proof. refuting is easier.
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The Structurally Simplest Clause set

- The size of the top clause set is exponential in the
number unique literals.

- Consider the following:
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- The size of the top clause set is exponential in the

number unique literals.

- Consider the following:
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Refutations of Top Clause Sets

Top clause sets are huge but easy to refute.

There is pretty much only one way to refute them.

F A, P(3), P(4) - F A, P(3) - P(4) F A, R(3), P(4) F P(3) F A F P(3), P(4)
A, P(3) + A, R(3) + P(3)
AL R(3) F

As one might imagine to refute A, R(3) - we need a
derivation using
AF R(3),P(3),P(4)
AF R(3),P(3)

similar to the construction of a semantic tree.
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Benefits of Top Clause Sets

- The structurally simplicity of top clause set allow a compact
representation of their refutation.

- [Condoluci, 2016], for propositional logic, showed that an
ordered sequence of the atoms A can produce a top clause
set with the following compact refutation:

REF({P} U A/,X) — REF(.A/,XO - P) REF(.A/,X oP }—)
X

€s

REF((,X) = X

- Top clause sets and the above results provide a
cut-elimination complete method for Schematic
Propositional Logic.
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Schematic Proofs

- Before further discussing schematic clausal analysis and top
clause sets we introduce proof schemata:

SEPO),A TPk P(s(a),T

-
LS F P, AT
P(s(a))

— The Proof is indexed by .

— Proof anaylsis without instantiation.

— Instantiating « results in an LK-proof .
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Example: Proof Schema

- Let ® = ((p, m,v(k))) and

&={5(k+1)=s(5(Kk): $(0)=0; k+s(1)=s(k+1)}.

P(a 4 0) F P(o + 0)
T = P(a+ 0),Vx.P(x) = P(s(x)) - P(a +0)
P(a + 0),Vx.P(x) = P(s(x)) F P(a + 5(0))

w:l

P(a+0),Vx.P(x) = P(s(x)) F P(a+ _?(n)) P(s(c JrASA'(n))) F P(s(a Jié(n))) N
P(a+0),Vx.P(x) = P(s(x)), P(ac+ S(n)) = P(s(a+ S(n))) = P(s(cx + S(n))) vl
V(k) = Pa+0),vxP(x) = P(s(x)).¥x.P(x) = P(s(x)) F P(s(cx + 5(n)))
P(a + 0),Vx.P(x) = P(s(x)),¥x.P(x) = P(s(x)) F P(a + s(5(n)))
P(a+0),Vx.P(x) = P(s(x)),Vx.P(x) = P(s(x)) F P(a + §(n +1))
P(a+ 0),¥x.P(x) — P(s(x)) - P(a + §(n+1))

a ot ™

/
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Why [Baaz and Leitsch, 2006] is not Enough

- In [Baaz and Leitsch, 2006], local cut-elimination is used to
perform clausal analysis.

- Unfortunately, this method fails when a cut reduction step
reaches a link.

Jent®) o (e thR)
C.AFT AFT,C
ANFET,T cut

- To solve the problem we need to see proof schemata as more
than a recursive LK-proof.

- Extend local cut-elimination to proof schemata.
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Towards Schematic Local Cut-Elimination
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Towards Schematic Local Cut-Elimination
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Example: Lazy Instantiation

- Let & = ((v, m,v(k)))

v(k)=
(w,n,)
P(ns1) AL P() o?oTA,-"Zo?E(ff va@) _
Ay P(i) = Qi) P(n+1) = Q(n+1) F (Ag =P(i) V Q1)) A (=P(n+1) V Q(n+ 1)) '
A PGi) = Qi), P(n+1) = Q(n+1) = ATX =P(i) v Q())
(Ao P(i) = QD) A P(n+1) = Q(n+1) F AT =P()) v Q(i)
A PG) — Q) = Aty =P(3i) v Q()

P(0) - P(0)

PO, PO Q(0) - Q(0)
= P(0) > Q) - <P(0), Q) -

P(0) — Q(0) - =P(0) Vv Q(0)
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Lazy Instantiation by Example

- We construct 2 = (A, Cy) from & by adding
= (x, 7',V (k)):

W1y
Ay P(i) = Qi) F Ay =P(i) v Q(i)
P(0) - P(0) .
= =P(0), P(0) ' Q(0) - Q(0) N
= P(0) — Q(0) F =P(0), Q(0) '

P(0) = Q(0) = ~P(0) v Q(0)
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Lazy Instantiation by Example

- Instantiating v/(k) with v(n + 1) we get a proof schema
®? = (A, Cy) from ® by adding the component
A= (x, 7", D(k)):

Pn+1) Ao P()) = Qi) = Alq =P(i) V Q(i)
AL P() = Qi), P(n+1) = Q(n+1) = (Ao =P(i)) V Q()) A (=P(n+1) Vv Q(n +1))
D(k)= AL PG = QG), P(n+ 1) = Q(n+1) = AIXS =P(i) v Q(i)
(Af=o P() = QD) A P(n+1) = Q(n+1)  ATX =P(i) v Q(i)
A P — Q) = AT =P(i) v Q(i)

- Ok nothing new yet, lets do it again
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Lazy Instantiation by Example

— Repeating the process with get ®* = </5, C1> where A = (x, 7, v*(k)):

v*(k)=
I A
C(ni1) Ao PU0) = QW) F AL POV QW)
c:
(ns2) A3 P() = Qi) - /\"“ ~P(i) v Q() N
A3 (i) = Q(0), PO = @(n+2) B (A% =P(i) V Q1)) A (=P(n+2) V Q(n +2))
&

c:

NZ5 PG) = Q) F /\”+2 P(i) v Qi)
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Map of results

v) (vii){ ECRNON

PP o @(P) - (LAY
(vi)
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Lazy Instantiation and Lemma (1)

v) (vii){ ECRNON

PP o @(P) - (LAY
(vi)
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Reductive Cut-Elimination and Lemma (2)
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Clause sets and Clausal Subsumption
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Consequences and Future Work

¢,,,(1),,9¢,a ,,,,, (,ii},,,,>¢/,,,,,,,,,(\,/), ,,,,,,, sy
(iii) (iii) J("i) )
(iv) oY —— Y
T o 1
5 V) i) ‘(In)
0 T @(\U J,/B) — SV s (xi)
v) (vii){ RO

por s ) o b, crecavy 20
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Conclusion & Future Work

» The work presented here justifies an alternative method for
dealing with the cut-structure of proof schemata.

» Essentially the results justify the procedure of [Condoluci,
2016] for propositional proof schemata.

» As for future work, we would like to extend the procedure of
[Condoluci, 2016] to first order and investigate how to deal
with substitutions in recursive resolution refutations .

» Also of interest is a generalization of lazy instantiation to any
component in a proof schema.
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Thank you for your time.

slide 28/28



