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Motivation

I Unification of term sequences (term schemata) is essential for
automated reasoning driven inductive proof analysis.

I Proof analysis is removal of auxiliary lemmata from proofs.

I An interactive analysis of Fürstenburg’s proof of the infinitude
of primes was performed using a rudimentary schematic
formalism [Baaz et al., 2008].

I A formal framework for working with schematic proofs and
term schemata did not exists at the time of this earlier work.

I Here we address the unification problem presented in our
recent publication on the subject

“Schematic Refutations of Formula Schemata”, David M.
Cerna, Alexander Leitsch, and Anela Lolic, 2021
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Motivation: Schematic Proofs in a Nutshell

ϕ has free variables instantiated
by σ to numerals.

σ > σ′ but no order relation
between σ and τ .

ϕ cannot be referenced in ψ, and
ψ cannot be referenced in ν, etc.∆σ`Πσ

ϕ

∆1σ
′`Π1σ

′ ∆2τ`Π2τ

∆1`Π1

ϕ

∆2`Π2

ψ

∆3`Π3

χ

∆4`Π4

ν

∆5`Π5

µ

ϕ ψ

ψχν Nested proof
calls allowed.

µ

µ µ is the least proof and
only references itself.

ϕ

ϕBase

ϕBase cannot
make proof
calls.
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Motivation: Lemmata (Cuts) as Recursive Formulas

cut 

∆`Π

Proof with cuts

cut 

Paths to cut ancestors

CL(A`A)≡{A}
CL(A`A)≡{¬A}

CL(A`A)≡{¬A∨A}

CL

(
∆ ` Π ρ

∆′ ` Π′

)
≡ CL(∆ ` Π)

CL

(
∆ ` Π ∆′ ` Π′

ρ
∆′′ ` Π′′

)
≡

 CL(∆ ` Π) ∧ CL(∆′ ` Π′)

CL(∆ ` Π) ∨ CL(∆′ ` Π′)

- Proof references are denoted by defined symbols.

- The recursive formula is always unsatisfiable.

- Analysis requires refuting in a finitely representable way.

- This implies schematic unification.
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Motivation: Example Extracted Formula

Ô(x , y , n,m) =⇒D̂(x , n,m) ∧ P̂(x , y , n,m)

D̂(x , n, 0) =⇒f (x) = Ŝ(n, a) ∨ f (x) < Ŝ(n, a)

D̂(x , n, s(m)) =⇒f (Ŝ(s(m), x) = Ŝ(n, a) ∨ f (x) < Ŝ(n, a)) ∧ D̂(x , n,m)

P̂(x , y , 0,m) =⇒Ĉ (y , 0,m) ∧ f (a) 6< 0

P̂(x , y , s(n),m) =⇒(Ĉ (y , s(n),m)) ∧ (T̂ (x , n,m)) ∧ P̂(x , z , n,m)

Ĉ (x , n, 0) =⇒f (x) 6= Ŝ(n, a)

Ĉ (x , n, s(m)) =⇒f (Ŝ(s(m), x)) 6= Ŝ(n, a) ∨ Ĉ (x , n,m)

T̂ (x , n, 0) =⇒f (x) 6< Ŝ(s(n), a) ∨ f (x) = Ŝ(n, a) ∨ f (x) < Ŝ(n, a)

T̂ (x , n, s(m)) =⇒f (Ŝ(s(m), x)) 6< Ŝ(s(n), a) ∨ f (Ŝ(s(m), x)) = Ŝ(n, a) ∨
f (x) < Ŝ(n, a) ∧ T̂ (x , n,m)

Ŝ(0, x) =⇒x Ŝ(s(n), x) =⇒ suc(Ŝ(s(n), x))

I Yes, quite ugly! Goal is to handle mostly automatically.

I We need to provide unifiers for “instances” of x and y.
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Simplified Representation

I Technical motivation, but can be presented in simpler terms:

I Let V be a countable set of variables symbol, and

I Let â, b̂ be a special variable symbol not in V

I For x ∈ V ,let V x
N = {xi | i ∈ N},

I S(xi ) = xi+1, exsâ(â) = s, and

I σ(s, t) is a substitution s.t. sσ(s, t) = tσ(s, t) and σ is an
m.g.u without renaming variables.

I Let s and t be first-order terms such that:
I Var(s) ⊂ V x

N ∪ {â}
I Var(t) ⊂ V y

N ∪ {b̂}
I x , y , b̂, â are all distinct.
I We will refer to pairs of such terms are Loops (denoted 〈s, t〉)
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How to think about Loop Unification?

1: function Loop(s, t, c)

2: if â or b̂ ∈ dom(σ(s, t))∧ âσ(s, t), b̂σ(s, t) 6∈ V ) then
3: Loop(exsâ(S(s)), exsâ(S(t)), exsâ, ext

b̂
)

4: end if
5: end function

Question: Is termination of Loop(s, t, exsâ, ext
b̂
) decidable ?

I Can we finitely represent the unifier of all extensions?

I Cannot be easily reduced to Narrowing, nor Primal Grammars.

I We can also think about this as follows:
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Definition of Loop Unification

Definition (Loop Unification Problem)

Decide if for every extension of a loop 〈s, t〉, the corresponding
terms are unifiable. If for any extension the terms are not unifiable
then the Loop is not Unifiable.

Definition
Let a loop 〈s, t〉 be loop unifiable. We say 〈s, t〉 is infinitely loop
unifiable if every extension is extendably unifiable. Otherwise, we
say 〈s, t〉 is finitely loop unifiable.

I We focus on semiloops, only one term is extended.

I Doesn’t seem hard, let’s look at some examples.
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Terminating and Unifiable

I Consider 〈s, t| = 〈h(h(x2, x1), â), h(y1, h(y2, y3))| together
with the function exsâ.

I σ = {y1 7→ h(x2, x1)} ∪ {â 7→ h(y2, y3)} unifies 〈s, t|.
I We refer such term pairs as extendably unifiable.

I Now consider 〈s, t|1 = 〈exsâ(S(s)), h(y1, h(y2, y3))|.
I exsâ(S(s)) = h(h(x3, x2), h(h(x2, x1), â))

I σ′ = {y1 7→ h(x3, x2)} ∪ {y2 7→ h(x2, x1)} ∪ {y3 7→ â} unifies
〈s, t|1.

I This semiloop is finitely Loop unifiable.

I All extensions are unified by a substitution similar to σ′.

I What about terminating and not unifiable?
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Terminating and Not unifiable

I 〈s, t| = 〈h(h(h(x2, x1), h(x2, x3)), â), h(h(y3, y1), h(y4, y4))|
together with the function exsâ.

I σ0 = {y3 7→ h(x2, x1) , y1 7→ h(x2, x3) , â 7→ h(y4, y4)} unifies
〈s, t|1.

I 〈s, t|2 is unified by σ1 =

{y3 7→ h(x3, x2), y4 7→ h(h(x2, x1), h(x2, x3)),
y1 7→ h(x3, x4), â 7→ h(h(x2, x1), h(x2, x3))}.

I However, the irreducible form derived from 〈s, t|3 is

{y3
?

= h(x4, x3), y4
?

= h(h(x3, x2), h(x3, x4)),

y1
?

= h(x4, x5), â
?

= h(x3, x4), x3
?

= h(x2, x1),

x2
?

= h(x2, x3)}.

I After finite steps we know some extensions are not unifiable.
I Are there infinitely Loop unifiable term pairs?
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Non-terminating, but Unifiable!

I Consider 〈s, t| = 〈h(h(x1, x1), â), h(y1, y1)|
I σ0 = {â 7→ h(x1, x1)} unifies 〈s, t|1.

I σ1 = {â 7→ h(x1, x1)} unifies 〈s, t|2.

I · · ·
I Cyclic behavior is also possible:

〈s, t| = 〈(â, h(h(h(x1, x1), x1), x1)), h(h(h(h(y1, y1), y1), y1), y1)|

I There are three types of unifiers depending on the extension.
I The solved form of 〈s, t|3n contains â

?
= h(h(t(1), t(1)), t(1)),

I the solved form of 〈s, t|3n+1 contains â
?

= h(t(1), t(1)),
I the solved form of 〈s, t|3n+2 contains â

?
= t(1),

I where t(n) = h(h(h(xn+1, xn+1), xn+1), xn+1).
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Sufficient Condition for Finite Unifiability

I Not enough to be unifiable and non-extendable.
I 〈s, t| = 〈h(x2, h(x4, â)), h(y1, y1)|
I A unifier of 〈s, t|1 is {y1 7→ h(x4, â) , x2 7→ h(x4, â)}
I A unifier of 〈s, t|2 from the above unifier:

{y1 7→ h(x5, h(x2, h(x4, â))), x3 7→ h(x5, h(x2, h(x4, â)))}

I However, generating the unifier for 〈s, t|3 this way fails:

{y1 7→ h(x6, h(x3, h(x5, h(x2, h(x4, â))))),
x4 7→ h(x6, h(x3, h(x5, h(x2, h(x4, â)))))}

I Extension results in an occurrence check.
I Every variable must be large enough not to cause occurrence

checks through extension.
I Or, variables indices form an interval without gaps.
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Sufficient Condition for Infinite Unifiability: Decomposition

I Given enough information about the extensions of 〈s, t| one
can decomposed the unifier of 〈s, t|k .

I We transform the unifier of 〈s, t|k into a compositions of
unifiers for the semiloops 〈s, t1|, · · · 〈s, tk−1|.

I Too technical to present here, instead we provide an example.
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Sufficient Condition for Infinite Unifiability: Example

I Consider the following: 〈s, t| = 〈h(t(0), â) , h(y1, h(y2, y1))|
where t(n) = h(xn+6, h(xn+1, xn+6)).

I 〈s, t|3 = 〈h(t(2), h(t(1), h(t(0), â))) , h(y1, h(y2, y1))〉
I The solved form of h(t(2), h(t(1), h(t(0), â)))

?
= t is

{y1
?

= h(x8, h(x3, x8)), y2
?

= h(x7, h(x2, x7))

x8
?

= h(x6, h(x1, x6)), â
?

= h(x3, h(x6, h(x1, x6))}

I The unifier of 〈s, t|3 can be written as

D(Id , h(t(0), â), h(y1, h(y2, y1)), 3) =

sh2(σ2)D(sh1(σ2), s, h(y2, t(1))), 2) =

sh2(σ2)sh1(σ1)D(sh1(σ1), s, t(2), 1) =

sh2(σ2)sh1(σ1)σ0D(sh1(σ0), s, h(x4, t(1)), 0) =

sh2(σ2)sh1(σ1)σ0{â 7→ h(x3, h(h(x6, h(x1, x6))}
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Sufficient Condition for Infinite Unifiability: Example

I where
σ2 = {y1 7→ h(x6, h(x1, x6))}

σ1 = {y2 7→ h(x6, h(x1, x6))}

σ0 = {x8 7→ h(x6, h(x1, x6))}

I Surprisingly, this loop is not infinitely unifiable as the
14-extension is not unifiable.
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Sufficient Condition for Infinite Unifiability

I The second and fourth argument of the decomposition do not
directly influence the construction of the unifier.

I This leaves the substitution and the non-extendable term.

I When a unifier is large enough it may decompose as follows:

D ′(Id , s, t, r + 1) = Θ(r + 1)D ′(σ∆
1 , s, t1, r)

...

D ′(σr−i+1, s, tr−i+1, i) = Θ(i)D ′(σ∗, s, t∗, i − 1)

...

D ′(σr−j+1, s, tr−j+1, j) = Θ(j)D ′(σ∗, s, t∗, j − 1)

I We can use this to construct a primitive recursive definition of
a unifier for any extension.
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Example with a Cycle

I Consider the semiloop

〈s, t| = 〈h(â, h(h(x1, x1), x1)) , h(h(h(y1, y1), y1), y1)|,

and we define t(n) = h(h(xn+1, xn+1), xn+1)).

I Now consider the decomposition of 〈s, t|5:

D(Id , s, t, 5) =

sh4(σ4)D(Id , s, h(h(t(1), t(1)), t(1)), 4) =

sh4(σ4)sh3(σ3)D ′(Id, s, h(t(1)), t(1))), 3) =

sh4(σ4)sh3(σ3)sh2(σ2)D ′(Id , s, t(1), 2) =

sh4(σ4)sh3(σ3)sh2(σ2)sh1(σ1)D(Id, s, h(t(1), t(1)), 1) =

sh4(σ4)sh3(σ3)sh2(σ2)sh1(σ1)σ0{â 7→ h(h(x2, x2), x2)}
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Example with a Cycle

Where the substitutions σi are as follows:

σ4 ={y2 7→ h(h(x1, x1), x1)}
σ3 ={x2 7→ x1}
σ2 ={x2 7→ x1}
σ1 ={x2 7→ h(h(x1, x1), x1)}
σ0 ={x2 7→ x1}

I Cycle repeats within the unifiers of large extensions of 〈s, t|.
I If a cycle is found within the decomposition of a large enough

extension, then the semiloop is infinite loop unifiable.
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When Extension is not Large Enough

I Consider 〈s, t| where:

s = h(h(x1, h(x16, h(x32, h(x1, h(x16, x32))))), â)

t = h(y1, h(y2, h(y3, h(y1, h(y2, y3)))))

I The unifier of 〈s, t|11 decomposes such that

D(Id , s, h(x4, h(x19, h(x35, h(x4, h(x19, x35))))), 9)

D(Id , s, h(x4, h(x19, h(x35, h(x4, h(x19, x35))))), 4)

occur.

I This fits the cycle requirement, yet, 〈s, t|28 is not unifiable.

I Large enough: 2n+1 where n is the length of the interval
containing all variables.
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Conclusion

I We present a sufficient condition for semiloop unification.

I Evidence suggest this condition is necessary, still open.

I This concerns only a fragment of the loop unification problem.

I Future work: Extending results to full loop unification with a
restricted number of variable classes.
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