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Motivation

» Unification of term sequences (term schemata) is essential for
automated reasoning driven inductive proof analysis.

» Proof analysis is removal of auxiliary lemmata from proofs.

» An interactive analysis of Furstenburg’'s proof of the infinitude
of primes was performed using a rudimentary schematic
formalism [Baaz et al., 2008].

> A formal framework for working with schematic proofs and
term schemata did not exists at the time of this earlier work.

» Here we address the unification problem presented in our
recent publication on the subject

“Schematic Refutations of Formula Schemata”, David M.
Cerna, Alexander Leitsch, and Anela Lolic, 2021
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Motivation: Schematic Proofs in a Nutshell
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by o to numerals.

YBase Cannot
make  proof
calls.

o > o' but no order relation
between o and 7.

 cannot be referenced in %, and
1) cannot be referenced in v, etc.




Motivation: Lemmata (Cuts) as Recursive Formulas

CL(A-A)={A}
CL(AFA)={-A}
CL(AFA)={-AVA}

CL( AR p)ECL(Al—ﬂ)

AFN A
al axn ARV o) =
A// '_ |-|//
{ CL(A F M) A CL(A” + 1)
Proof with cuts Paths to cut ancestors armva =n)

- Proof references are denoted by defined symbols.
- The recursive formula is always unsatisfiable.

- Analysis requires refuting in a finitely representable way.

- This implies schematic unification.
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Motivation: Example Extracted Formula

O(X,y, n, m) =>ﬁ(x, n,m) A Is(x7y, n, m)
D(x,n,0) =f(x) = 5(n,a) vV f(x) < S(n,a)
D(x,n,s(m)) =f(5(s(m),x) = 5(n,a) V f(x) < S(n,a))A D(x,n, m)
P(x,y,0,m) =C(y,0,m) A f(a)£0
Iﬁ(x,y,s(n),m) :>(€(y7 s(n), m)) A (7A'(x7 n,m)) A .f’(x,z7 n, m)
E(x,m,0) =F(x) £ $(n.2)
E(x, m,s(m)) = F(3(s(m), x)) # 8(n.2) v E(x,m,m)
T(x,n,0) =f(x) £ 5(s(n),a) Vv f(x)=S8(n,a) vV f(x) < 5(n,a)
7x, m, s(m)) = F(3(s(m), X)) £ $(s(n).a) v F(E(s(m),x)) = $(n,a) v
f(x) < S(n,a) A T(x,n,m)

5(0,x) =x S(s(n), x) = suc(5(s(n), x))

> Yes, quite ugly! Goal is to handle mostly automatically.
» We need to provide unifiers for “instances” of x and y.
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Simplified Representation

>
| 2
>
| 2
>
>

Technical motivation, but can be presented in simpler terms:
Let V be a countable set of variables symbol, and

Let 5,3 be a special variable symbol not in V

For x € Vlet V§ ={x; | i € N},

S(xi) = Xi+1, ex3(d) = s, and

o(s, t) is a substitution s.t. so(s,t) = to(s,t) and o is an
m.g.u without renaming variables.

v

Let s and t be first-order terms such that:
> Var(s) c V§ U {4}
> Var(t) c VU {b}
> Xy, B,é are all distinct.
» We will refer to pairs of such terms are Loops (denoted (s, t))
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How to think about Loop Unification?

1: function Loor(s, t, c)

2: if 3 or b € dom(o(s,t))A&o(s,t),bo(s,t) ¢ V) then
3: Loor(ex3(S(s)), ex5(S(t)), exs, ex;)
4: end if

5. end function

Question: Is termination of Loop(s, t, ex3, ex[t;) decidable ?

» Can we finitely represent the unifier of all extensions?

» Cannot be easily reduced to Narrowing, nor Primal Grammars.

» We can also think about this as follows:
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Definition of Loop Unification

Definition (Loop Unification Problem)

Decide if for every extension of a loop (s, t), the corresponding
terms are unifiable. If for any extension the terms are not unifiable
then the Loop is not Unifiable.

Definition
Let a loop (s, t) be loop unifiable. We say (s, t) is infinitely loop
unifiable if every extension is extendably unifiable. Otherwise, we
say (s, t) is finitely loop unifiable.

» We focus on semiloops, only one term is extended.

» Doesn't seem hard, let's look at some examples.
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Terminating and Unifiable

» Consider (s, t| = (h(h(x2,x1),3), h(y1,h(y2,y3))| together
with the function ex3.

o ={y1+ h(x2,x1)} U{d— h(y2,y3)} unifies (s, t|.

We refer such term pairs as extendably unifiable.

Now consider (s, t|1 = (ex3(5(s)),  h(y1, h(y2,¥3))|.
ex3(5(s)) = h(h(xs, x2), h(h(x2, x1), 8))

o' ={y1— h(x3,x2)} U{y2 — h(x2,x1)} U {y3 — &} unifies
(s, t]1.

This semiloop is finitely Loop unifiable.

vVvyYvyyvyy

vy

All extensions are unified by a substitution similar to o’.
» What about terminating and not unifiable?
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Terminating and Not unifiable

> <57 t| = <h(h(h(X2aX1)7 h(X2)X3))7 §)a h(h(}’3a)/1)7 h()/47)/4))|
together with the function ex3.

» 09 ={ys — h(xe,x1), y1+> h(x2,x3), &+ h(ya,ya)} unifies
<57 t|1-
» (s, t|2 is unified by o1 =

{y3 = h(x3,%x2), ya = h(h(x2,x1), h(x2, x3)),
y1—= h(X3,X4), a— h(h(XQ,Xl)7 h(XQ,X3))}.

» However, the irreducible form derived from (s, t|3 is

{.y3 = h(X47X3)7 ya = h(h(X37X2)7 h(X37X4))7
y1 = h(xa,xs), &= h(x3,xa), x3 = h(x2, x1),
xo = h(x2,x3)}.
> After finite steps we know some extensions are not unifiable.

» Are there infinitely Loop unifiable term pairs?
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Non-terminating, but Unifiable!

>
>
>
> .
>

Consider (s, t| = (h(h(x1,x1), ), h(y1, y1)|
og = {§ — h(Xl,Xl)} unifies <S, t|1.
o1 = {4+~ h(x1,x1)} unifies (s, t|>.

Cyclic behavior is also possible:

(s, t] = ((a, h(h(h(x1, x1),x1),x1)), h(h(h(h(y1,y1), 1), ¥1), y1)|

» There are three types of unifiers depending on the extension.
> The solved form of (s, t|s, contains 4 = h(h(t(1), t(1)), t(1)),
> the solved form of (s, t[3,1 contains & = h(t(1), t(1)),

> the solved form of (s, t|3,42 contains 4 = t(1),
> where t(n) = h(h(h(xni1,Xn+1), Xn+1), Xnt1)-
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Sufficient Condition for Finite Unifiability

> Not enough to be unifiable and non-extendable.
> <57 t‘ = <h(X27 h(X47 é\))a h(ylayl)l
> A unifier of (s, t|; is {y1 — h(xa, d) , x2 — h(xq, 3)}
» A unifier of (s, t|, from the above unifier:

{}/1 — h(X5, h(XQ, h(X4, §))), X3 > h(X5, h(X2, h(X4. é)))}
> However, generating the unifier for (s, t|3 this way fails:

{}/1 — h(X(,, h(X37 h(X5, h(X27 h(X4, é\))))),
x4 =+ h(xe, h(x3, h(xs, h(x2, h(xs, 3)))))}

» Extension results in an occurrence check.

» Every variable must be large enough not to cause occurrence
checks through extension.

» Or, variables indices form an interval without gaps.
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Sufficient Condition for Infinite Unifiability: Decomposition

» Given enough information about the extensions of (s, t| one
can decomposed the unifier of (s, t|x .

» We transform the unifier of (s, t|x into a compositions of
unifiers for the semiloops (s, t1],- - (s, tk—1]-.

» Too technical to present here, instead we provide an example.
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Sufficient Condition for Infinite Unifiability: Example

» Consider the following: (s, t| = (h(t(0),4) , h(y1, h(y2,y1))|
where t(n) = h(xp16, h(Xn+1, Xn+6))-

> (s, tls = (h(t(2), h(t(1), h(£(0), 3))) , hly1, h(y2, 1))

» The solved form of h(t(2), h(t(1), h(t(0),a))) =t is

{y1 = h(xs, h(x3,%8)), y2 = h(x7, h(x2, x7))

xg = h(xs, h(x1,6)), 4= h(x3, h(xs, h(x1,x6))}
» The unifier of (s, t|3 can be written as

D(/dah(t(0)7§)7h()/1a (}/2a)/1))73)
sh*(a?)D(sh*(c?), s, h(y2, 1(1))),2) =
sh?(02)sht (1) D(sh (o), 5, £(2), 1) =

sh*(0?)sh' (o1 D(sh' (0°), s, h(xa, £(1)),0) =
sh?(0?)sh (o) 0{5’—>h(X3ah(h(X67h( 1,%))}
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Sufficient Condition for Infinite Unifiability: Example

» where
o® = {y1 — h(xe, h(x1, %))}

ol = {y» — h(xg, h(x1,x5))}
o0 = {Xg — h(Xﬁ, h(Xl,Xﬁ))}

» Surprisingly, this loop is not infinitely unifiable as the
14-extension is not unifiable.
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Sufficient Condition for Infinite Unifiability

» The second and fourth argument of the decomposition do not
directly influence the construction of the unifier.

» This leaves the substitution and the non-extendable term.

» When a unifier is large enough it may decompose as follows:

D'(ld,s, t,r +1) = O(r + 1)D'(cf,s,t1,r)
D/(O'r—i+17 S, tr—i+1, i) = @(i)D/(U*, s, t*, i — 1)

D/(O-rfj+1)s7 tr7j+17.j) = @U)D/(U*,S, t*7.j - 1)

> We can use this to construct a primitive recursive definition of
a unifier for any extension.
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Example with a Cycle

» Consider the semiloop

<57 t’ - (h(§7 h(h(Xlﬂxl)vxl)) ) h(h(h()/l7YI)7y1)ay1)|7

and we define t(n) = h(h(Xp+1, Xn+1)s Xn+1))-
» Now consider the decomposition of (s, t|s:

D(ld,s,t,5) =
sh*(o4)D(Id, s, h(h(t(1), t(1)), t(1)),4) =
sh*(aa)sh®(03)D'(Id, s, h(t(1)), 1(1))),3) =
sh*(o4)sh®(a3)sh?(o2)D'(Id, s, t(1),2) =
sh*(04)sh®(o3)sh?(o2)sh (o1)D(Id, s, h(t(1), t(1)),1) =
sh*(o4)sh®(03)sh?(o2)sht (o1)o0{4 — h(h(x2,x2), x2)}
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Example with a Cycle

Where the substitutions o; are as follows:

o4 ={y2 — h(h(x1,x1),x1)}
o3 :{Xz —> Xl}
o ={xo — x1}
o1 ={x2 — h(h(x1,x1),x1)}
oo ={x2 — x1}

» Cycle repeats within the unifiers of large extensions of (s, t|.

» If a cycle is found within the decomposition of a large enough
extension, then the semiloop is infinite loop unifiable.
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When Extension is not Large Enough

» Consider (s, t| where:
s = h(h(x1, h(x16, h(x32, h(x1, h(x16, x32))))), 4)
t = h(y1, h(y2, h(ys, h(y1, h(y2,3)))))
» The unifier of (s, t|11 decomposes such that
D(ld, s, h(xa, h(x19, h(x3s, h(xa, h(x19,x35))))),9)

D(ld, s, h(xa, h(x19, h(x35, h(xa, h(x19, x35))))), 4)
occur.
» This fits the cycle requirement, yet, (s, t|2g is not unifiable.
» Large enough: 2n+1 where n is the length of the interval

containing all variables.
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Conclusion

> We present a sufficient condition for semiloop unification.
» Evidence suggest this condition is necessary, still open.
» This concerns only a fragment of the loop unification problem.

» Future work: Extending results to full loop unification with a
restricted number of variable classes.
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