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Introduction

− LogicGuard: A coordination language for runtime monitoring of network

traffic.

− Stream monitors are written in a fragment of predicate logic.

− Monitor instances are evaluated using an operational semantics.

− Violations, monitor instances evaluating to false, are flagged.

− The work presented here is a solution and analysis of the following

problem:
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The Space Problem

x =   0    1   2   3   .  .  .  

.  .  .
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The Space Problem
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F(a) , F(a+1), ..., F(b)

I We will refer to this measurement of space complexity as
runtime representation size.
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Previous Work

− Previous work focused on analysis of the stream history [Kutsia and

Schreiner 2014], and space complexity results [Cerna et al. 2016a-b].

− In this work we perform an analysis of the previous results and provide a

categorization of specifications into two types based on the our analysis.

slide 8/28



The Core Language

M ::= ∀0≤V : F .
F ::= @V | ¬F | F ∧ F | F & F | ∀V∈[B,B] : F .
B ::= 0 | ∞ | V | B ± N.
V ::= x | y | z | . . .
N ::= 0 | 1 | 2 | . . .

∀0≤x : ∀y∈[x+1,x+5] : ((∀z∈[y ,x+3] : ¬@z & @z) & G (x , y))

G (x , y) = ∀w∈[x+2,y+2] : (¬@y & (∀m∈[y ,w ] : ¬@x & @m))
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Nested Variables

− Lets consider the example monitor again:

∀0≤x : ∀y∈[x+1,x+5] : ((∀z∈[y ,x+3] : ¬@z & @z) & G (x , y))

G (x , y) = ∀w∈[x+2,y+2] : (¬@y & (∀m∈[y ,w ] : ¬@x & @m))

− In [Cerna et al. 2016a] we developed the concept of dominating monitor

tranformation to remove nested variables.

− It was also shown that the space requirements of a dominating monitor

upper bound the original monitor.
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Example Monitor Transformed

− The dominating monitor of

∀0≤x : ∀y∈[x+1,x+5] : ((∀z∈[y ,x+3] : ¬@z & @z) & G (x , y))

G (x , y) = ∀w∈[x+2,y+2] : (¬@y & (∀m∈[y ,w ] : ¬@x & @m))

is the following monitor

∀0≤x : ∀y∈[x+1,x+5] : ((∀z∈[x+1,x+3] : ¬@z & @z) & G (x , y))

G (x , y) = ∀w∈[x+2,x+7] : (¬@y & (∀m∈[x+1,x+7] : ¬@x & @m))

− This transformation is a key component of the space requirements

algorithm of [Cerna et al. 2016b].
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Dealing with the Runtime Representation Size

− Runtime representation size equals instances kept in memory while

evaluating a monitor.

− Consider the following simple monitor:

∀0≤x : ∀y∈[x ,x+4] : ∀z∈[x ,x+4] : ∀r∈[x ,x+4] : @r

− We can simplify its representation:

[0, 4] [0, 4] [0, 4]

− Now let us consider its behaviour as it is evaluated.
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Initial State

[0,4][0,4][0,4]:1

[0,4][0,4]:0

[0,4]:0

Initial state
∀y∈[0,4] : ∀z∈[0,4] : ∀r∈[0,4] : @r

∀z∈[0,4] : ∀r∈[0,4] : @r

∀r∈[0,4] : @r
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Evaluation

[0,4][0,4][0,4]:1

[0,4][0,4]:0

[0,4]:0

Initial state

[1,4][0,4][0,4]:1

[1,4][0,4]:1

[1,4]:1

Step 0

[2,4][0,4][0,4]:1

[2,4][0,4]:2

[2,4]:4

Step 1

[3,4][0,4][0,4]:1

[3,4][0,4]:3

[3,4]:9

Step 2

[4,4][0,4][0,4]:1

[4,4][0,4]:4

[4,4]:16

Step 3

[4,4][0,4][0,4]:0 (1)

[3,4][0,4]:0 (5)

[3,4]:0 (25)

Step 4

− Notice that we did not add new instances.

− How does this relate to true evaluation?
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Instance to Position Mapping

− It turns out that there is a mapping from the evaluation of a single

instance at various positions to the evaluation of multiple instances at a

single position.

[5,8][4,8][4,8]:1

[5,8][4,8]:1

[5,8]:1

Instance 4 at position 4

[1,4][0,4][0,4]:1

[1,4][0,4]:1

[1,4]:1

Instance 0 at position 0
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Instance to Position Mapping

[4,4][0,4][0,4]:0 (1)

[4,4][0,4]:0 (5)

[4,4]:0 (25)

[5,9][5,9][5,9]:1

[5,9][5,9]:0

[5,9]:0

Instance 5 at position 4

[5,8][4,8][4,8]:1

[5,8][4,8]:1

[5,8]:1

Instance 4 at position 4

[5,7][3,7][3,7]:1

[5,7][3,7]:2

[5,7]:4

Instance 3 at position 4

[5,6][2,6][2,6]:1

[5,6][2,6]:3

[5,6]:9

Instance 2 at position 4

[5,5][1,5][1,5]:1

[5,5][1,5]:4

[5,5]:16

Instance 1 at position 4 Instance 0 at position 4

− Notice that going to the next position does not change anything
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Instance to Position Mapping, Next Position

[5,5][1,5][1,5]:0 (1)

[5,5][1,5]:0 (5)

[5,5]:0 (25)

[6,10][6,10][6,10]:1

[6,10][6,10]:0

[6,10]:0

Instance 6 at position 5

[6,9][5,9][5,9]:1

[6,9][5,9]:1

[6,9]:1

Instance 5 at position 5

[6,8][4,8][4,8]:1

[6,8][4,8]:2

[6,8]:4

Instance 4 at position 5

[6,7][3,7][3,7]:1

[6,7][3,7]:3

[6,7]:9

Instance 3 at position 5

[6,6][2,6][2,6]:1

[6,6][2,6]:4

[6,6]:16

Instance 2 at position 5 Instance 1 at position 5

− Essentially, we only need to look at the behaviour of one instance up to

the largest upper bound. This is the key to the algorithm.
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Experimental Results: Realistic Monitoring

− We ran the algorithm on the following monitor written in the
full specification language:

type int; type message; stream<int> IP;

stream<int> S = stream<IP> x satisfying @x>=0 :

value[seq,@x,plus]<IP> y with x < _ <=# x+10000: @y;

monitor<S> M = monitor<S> x :

forall<S> y with x < _ <=# x+15000:

exists<S> z with y < _ <=# y+4000: IsEven(#z);
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Experimental Results: Interesting

− We also ran the algorithm on the following monitor
specifications:

∀0≤x : ∀y∈[x,x+80] : ∀z∈[x,x+80] : @z (1a)
∀0≤x : ∀y∈[x,x+80] : ∀z∈[x,y ] : @z (1b)
∀0≤x : ∀y∈[x,x+40] : ∀z∈[x,x+80] : @z (2a)
∀0≤x : ∀y∈[x,x+40] : ∀z∈[x,y+40] : @z (2b)
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Experimental Results: Interesting

− Notice that the prediction for (1a) is roughly 21 times greater
than the actual complexity of (1b).

− Also the prediction for (2a) is roughly 1.5 times greater than
the actual complexity of (2b).

− Strange? We thought so too.
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Distinguishing Dominating Like Specifications

− Naively, (1b) looks less like (1a) than (2b) looks like (2a).

− In some sense we can say (2b) is a dominating-like monitor.

− Can this property be formalized in such a way allowing one to
distinguish dominating-like monitors from the rest.

− The key seems to be how the variable nesting is constructed.
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Relationship Between Upper Bounds: Good Monitors

− It turns out that the relationship between the constants within
the quantifier intervals plays an important role.

− Let m be a monitor and a1, b1, a2, b2 ∈ Z such that
m = ∀0≤x : ∀y∈[x+a1,x+b1] : ∀z∈[x+a2,y+b2] : @z .

− We place the following constraints on the constants:
I 0 < b1 and a1 ≤ b1

I d = mini∈[a1,b1] {0 < b2 + i}
I a2 ≤ b2 + d , k ≥ 1, and b1 = k + b2 + d

− Then the ratio between the runtime representation size of the
monitor and its dominating form is O(k) (propositional in k).
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Relationship Between Upper Bounds: Bad Monitors

− The following constraints pinpoint the dominating-like
monitors.

− Let m be a monitor and a1, b1, a2, b2 ∈ Z such that
m = ∀0≤x : ∀y∈[x+a1,x+b1] : ∀z∈[x+a2,y+b2] : @z .

− We place the following constraints on the constants:
I 0 < b1 and a1 ≤ b1

I d = mini∈[a1,b1] {0 < b2 + i}
I a2 ≤ b2 + d and b1 ≤ b2 + d

− Then the ratio between the runtime representation size of the
monitor and its dominating form is O(1) (constant).
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Categorization of the Core Language

I The following Lemma is needed to extend the results to the
core language.

Lemma
Let m ∈M, a1, b1, a2, b2 ∈ Z, x , y , z ∈ V , and Q,Q ′ ⊂ QT such that
q ∈ Q iff D(q) ∈ Q ′ and |Q ′|sc is a O(k r

1)-approximation, where
r ∈ {0, 1}. If

D(QT (m)) = (x , 0, 0, (y , x+a1, x+b1, (z , x+a2, x+max {a1, b1}+b2, ∅)))

is an O(k r ′

2 )-approximation, where r ′ ∈ {0, 1}, of
QT (m) = (x , 0, 0, (y , x + a1, x + b1, (z , x + a2, y + b2, ∅))), then

D(QT (m)) = (x , 0, 0, (y , x+a1, x+b1, (z , x+a2, x+max {a1, b1}+b2,Q
′)))

is at most an O(max {k1, k2}max{r ,r ′})-approximation of
QT (m) = (x , 0, 0, (y , x + a1, x + b1, (z , x + a2, y + b2,Q))).
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Categorization of the Core Language

Definition
Let q ∈ QT. We say that q.ν is related to q.ν.µ, where q.ν.µ 6= q.ν, if
(q.ν.µ)3 = y + b2, where y ∈ V and b2 ∈ Z, and (q.ν)1 = y . We define
the set of pairs SRq as follows: (q′, q′′) ∈ SRq if ∃ q.ν = q′ and
q′.µ = q′′ such that q′ 6= q′.µ and q′ is related to q′′.

Definition
Let q ∈ QT. We say that a set S ⊆ SRq is a relation chain of q if the
undirected graph (V ,S), where
V = {q | ∃r ∈ QT((q, r) ∈ S ∨ (r , q) ∈ S)} , is a connected path.

Theorem
Let m ∈M and S the longest relation chain of QT (m). Then
|QT (D(m))|sc is at most an O(n)-approximation of |QT (m)|sc , where n
is dependent on Ci (QT (m)).
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Future Work

− Recently, we investigated the time complexity of LogicGuard
monitor specifications.

− For time complexity we count the number of variable
assignments per message.

− Though this measure is closely related to runtime
representation size it behaves quite differently.

− We plan to perform a similar analysis of monitor specifications
based on our time complexity measure, that is a categorization
of specifications similar to the one presented here.
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