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Introduction

— LogicGuard: A coordination language for runtime monitoring of network
traffic.

— Stream monitors are written in a fragment of predicate logic.
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Introduction

— LogicGuard: A coordination language for runtime monitoring of network

traffic.
— Stream monitors are written in a fragment of predicate logic.
— Monitor instances are evaluated using an operational semantics.
— Violations, monitor instances evaluating to false, are flagged.

— The work presented here is a solution and analysis of the following

problem:

slide 2/28



The Space Problem
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The Space Problem

Monitor: Yo<.Vy € [z +a,2 + b F(y)

x= 0 1 2 3
T[] ] —

Instances

> Vye[0+a,04 b F(y)

slide 4/28



The Space Problem

Monitor: Vo<.Vy € [x +a,2 + b F(y)

X =
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> Vye[l+a,l+bF(y)
> Vye[24a,2+b]F(y)




The Space Problem

Monitor: Vo<.Vy € [z +a,z +b] F(y)

1 2 3 ... a

X =
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The Space Problem

Monitor: Vo<.Vy € [z +a,z +b] F(y)

x= 0 12 3 ... a ... b...
Tl ] ] —
Instances

Vi et T (y)
$ Vye[l+a,1+0F(y)
- V;L{E[Qira,Qﬁ»b]F(y)

F(a), F(a+1), ..., I*:(b)
Vyeb+ab+bFly) &

» We will refer to this measurement of space complexity as
runtime representation size.
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Previous Work

— Previous work focused on analysis of the stream history [Kutsia and

Schreiner 2014], and space complexity results [Cerna et al. 2016a-b].

— In this work we perform an analysis of the previous results and provide a

categorization of specifications into two types based on the our analysis.
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The Core Language

M= Vo<v: F.

Fi= QV|-F|F ANF|F&F[Vygpp:F.
B:= 0]|oo|V]|BLN.

Vi= x|ylz]| ...

N:= 0|1]2]...

Vo<x :vye[x+1,x+5] : ((vze[y,x+3] 1m0z & 0z) & G(x,y))
G(X,y) = vWE[)<—+-2,y—&-2] : (ﬁ©y & (vme[y,w] 1 —0x & @m))
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Nested Variables

— Lets consider the example monitor again:

Vo<x : Vyexaixts] - ((Vzepy 43 1 7@z & ©z) & G(x,y))
G(x,y) = Vwex2,y+2 : (7OY & (Vingpy,u] 1 7@x & @m))
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Nested Variables

— Lets consider the example monitor again:

Vo<x : Vyexaixts] - ((Vzepy 43 1 7@z & ©z) & G(x,y))
G(x,y) = Vwex2,y+2 : (7OY & (Vingpy,u] 1 7@x & @m))

— In [Cerna et al. 2016a] we developed the concept of dominating monitor

tranformation to remove nested variables.

— It was also shown that the space requirements of a dominating monitor

upper bound the original monitor.
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Example Monitor Transformed

— The dominating monitor of

Vo<x vy€[x+1,x+5] : ((vze[y,er?:] 120z & @z) & G(x,y))
G(x,y) = Vwelx42,42] - (—0y & (Vme[%w] : =0x & ©m))

is the following monitor

Vo<x  Vyeixaixts] - ((Vzeprixgs) 7@z & ©z) & G(x,y))
G(Xay) = vWE[x—|—2,x-‘,-7] : (_'@.y & (vme[x+1,x+7] 1 =0x & ©m))
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Example Monitor Transformed

— The dominating monitor of

Vo<x vy€[x+1,x+5] : ((vze[y,er?:] 120z & @z) & G(x,y))
G(x,y) = Vwelx42,42] - (—0y & (Vme[%w] : =0x & ©m))

is the following monitor

Vo<x  Vyeixaixts] - ((Vzeprixgs) 7@z & ©z) & G(x,y))
G(Xay) = vWE[x—|—2,x-‘,-7] : (_'@.y & (vme[x+1,x+7] 1 =0x & ©m))

— This transformation is a key component of the space requirements
algorithm of [Cerna et al. 2016b].

slide 11/28



Dealing with the Runtime Representation Size

— Runtime representation size equals instances kept in memory while

evaluating a monitor.
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Dealing with the Runtime Representation Size

— Runtime representation size equals instances kept in memory while

evaluating a monitor.

— Consider the following simple monitor:

vOSX : vye[x,x+4] : vze[x,x—i-4] : vr€[><,x+4] : @r
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[0,4][0,4][0,4]
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Dealing with the Runtime Representation Size

— Runtime representation size equals instances kept in memory while

evaluating a monitor.

— Consider the following simple monitor:

vOSX : vye[x,x+4] : vze[x,x—i-4] : vr€[><,x+4] : @r

— We can simplify its representation:

[0,4][0,4][0,4]

— Now let us consider its behaviour as it is evaluated.
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Initial State

Initial state

[0,4][0,4][0,4]:1 Vyeo,4] : Vzelo,4]  Vrefo4) : @r
[0,4][0,4]:0 Vzel0,4] : Vrelo,4] : @
[0,4]:0 Vrepoa) : ©F
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Evaluation
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Initial state
[0,4][0,4]1[0,4]:1
[0,4][0,4]:0
[0,4]:0

_Stepl
[2,4][0,41[0,4]:1
[2,4][0,4]:2
[2,4]:4

_Step3
[4,4][0,4][0,4]:1
[4,4][0,4]:4
[4,4]:16

ﬁ

/

ﬁ

/

ﬁ

_Step0
[1,4][0,4][0,4]:1
[1,4][0,4]:1
[1,4]:1

_Step2
[3,4][0,4][0,4]:1
[3,41(0,4]:3
[3,4]:9

_Step4
[4,41(0,4][0,4]:0 (1)
[3,4100,4]:0 (5)
[3,4]:0 (25)



Evaluation

Initial state Step 0
[0,4][0,4]1[0,4]:1 [1,4][0,4][0,4]:1
[0,41[0,4]:0 —> [1,41[0,4]:1
[0,4]:0 [1,4]:1

Step 1 / Step 2
[2,4][0,4](0,4]:1 [3,4][0,4][0,4]:1
[2,4][0,4]:2 % [3,4][0,4]1:3
[2,4]:4 [3,4]:9

Step 3 / Step 4
[4,4100,4]1[0,4]:1 [4,4100,4]1[0,4]:0 (1)
[4,4][0,4]:4 % [3,4][0,4]:0 (5)
[4,4]:16 [3,4]:0 (25)

— Notice that we did not add new instances.
— How does this relate to true evaluation?
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Instance to Position Mapping

— It turns out that there is a mapping from the evaluation of a single
instance at various positions to the evaluation of multiple instances at a

single position.

Instance 4 at position 4 Instance 0 at position 0
[5,81[4,8][4,8]:1 [1,4100,41(0,4]:1
[5,8](4,8:1 ———» [1,4](0,4]:1
[5,8]:1 [1,4]:1
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Instance to Position Mapping

Instance 5 at position 4 Instance 4 at position 4
[5,91[5,91[5,9]:1 [5,81(4,8][4,8]:1
[5,9105,91:0 — [5,8104,8]:1
[5,9]:0 [5,8]:1

Instance 3 at position 4 / Instance 2 at position 4

[5,7113,71(3,7]1:1 [5,61[2,6][2,6]:1
[5,7113,7]:2 —> [5,6][2,6]:3
[5,7]:4 [5,6]:9

Instance 1 at position 4 / Instance 0 at position 4

[5,51(1,5][1,5]:1 [4,4](0,4][0,4]:0 (1)
[5,5](1,5]:4 — [4,41[0,4]:0 (5)
[5,5]:16 [4,4]:0 (25)
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Instance to Position Mapping

Instance 5 at position 4 Instance 4 at position 4
[5,91[5,91[5,9]:1 [5,81(4,8][4,8]:1
[5,9105,91:0 — [5,8104,8]:1
[5,9]:0 [5,8]:1

Instance 3 at position 4 / Instance 2 at position 4

[5,7113,71(3,7]1:1 [5,61[2,6][2,6]:1
[5,7113,7]:2 —> [5,6][2,6]:3
[5,7]:4 [5,6]:9

Instance 1 at position 4 / Instance 0 at position 4

[5,51(1,5][1,5]:1 [4,4](0,4][0,4]:0 (1)
[5,5](1,5]:4 — [4,41[0,4]:0 (5)
[5,5]:16 [4,4]:0 (25)

— Notice that going to the next position does not change anything
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Instance to Position Mapping, Next Position

Instance 6 at position 5 Instance 5 at position 5
[6,101[6,10][6,10]:1 [6,91[5,91[5,9]:1
[6,101[6,101:0 ———3 [6,91[5,9]:1
[6,10]:0 [6,9]:1

Instance 4 at position 5 / Instance 3 at position 5

[6,8][4,8][4,8]:1 [6,71[3,71[3,71:1
[6,81(4,8]:2 [6,71[3,71:3
[6,8]:4 [6,71:9

Instance 2 at position 5 / Instance 1 at position 5

[6,61[2,6][2,6]:1 [5,5][1,5][1,5]:0 (1)
[6,6][2,6]:4 —> [5,51[1,5]:0 (5)
[6,6]:16 [5,5]:0 (25)
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Instance to Position Mapping, Next Position

Instance 6 at position 5 Instance 5 at position 5
[6,101[6,10][6,10]:1 [6,91[5,91[5,9]:1
[6,101[6,101:0 ———3 [6,91[5,9]:1
[6,10]:0 [6,9]:1

Instance 4 at position 5 / Instance 3 at position 5

[6,8][4,8][4,8]:1 [6,71[3,71[3,71:1
[6,81(4,8]:2 [6,71[3,71:3
[6,8]:4 [6,71:9

Instance 2 at position 5 / Instance 1 at position 5

[6,61[2,6][2,6]:1 [5,5][1,5][1,5]:0 (1)
[6,6][2,6]:4 —> [5,51[1,5]:0 (5)
[6,6]:16 [5,5]:0 (25)

— Essentially, we only need to look at the behaviour of one instance up to

the largest upper bound. This is the key to the algorithm.
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Experimental Results: Realistic Monitoring

— We ran the algorithm on the following monitor written in the
full specification language:

type int; type message; stream<int> IP;
stream<int> S = stream<IP> x satisfying 0x>=0 :
value[seq,@x,plus]<IP> y with x < _ <=# x+10000: Qy;
monitor<S> M = monitor<S> x :
forall<S> y with x < _ <=# x+15000:

exists<S> z with y < _ <=# y+4000: IsEven(#z);

200
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Experimental Results: Interesting

— We also ran the algorithm on the following monitor
specifications:

Vo<x  Vyelx,x+80] © Vzelxx+80) - @2 (1a)
vng : vye[x,x-s—80] : vz€[><,y] 1 0z (1b)
vng : vy€[x,x+40] : vz€[><,><+80] : 0z (23)
Vo<x © Vyelxx+40] © Vzex,y+a0) - @z (2b)

=3

TEL PP R PEEPT RSP LIPLE L PSP
Numnermmessages

&

@
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Experimental Results: Interesting

— We also ran the algorithm on the following monitor
specifications:

vng : vye[x,x+80] : vz€[><,><+80] : @z (la)

vng : vye[x,><+80] : vze[x,y] 0z (lb)

Yo<x : vye[x7x+40] : vze[x,erso] 10z (2a)

vOSX : vye[><,><-',—40] : vz€[><,y-"-40] 10z (2b)
3000 1a
0 e &

>
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Experimental Results: Interesting

— We also ran the algorithm on the following monitor
specifications:

vng : vye[x,x+80] : vz€[><,><+80] : @z (la)
vng : vye[x,><+80] : vze[x,y] 0z (lb)
Vogx : vye[x7x+40] : vze[x,erso] 4 (23)
vOSX : vye[><,><-',—40] : vz€[><,y-"-40] 10z (2b)

>

NOLD HE DD ORD OO DD S I R
RPOLDRGFECPR® S FPPPS PGS
Number of messages

Q

»
AR RS
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Experimental Results: Interesting

— Notice that the prediction for (1a) is roughly 21 times greater
than the actual complexity of (1b).
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the actual complexity of (2b).
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Experimental Results: Interesting

— Notice that the prediction for (1a) is roughly 21 times greater
than the actual complexity of (1b).

— Also the prediction for (2a) is roughly 1.5 times greater than
the actual complexity of (2b).
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Experimental Results: Interesting

— Notice that the prediction for (1a) is roughly 21 times greater
than the actual complexity of (1b).

— Also the prediction for (2a) is roughly 1.5 times greater than
the actual complexity of (2b).

— Strange? We thought so too.
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Distinguishing Dominating Like Specifications

— Naively, (1b) looks less like (1a) than (2b) looks like (2a).
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Distinguishing Dominating Like Specifications
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Distinguishing Dominating Like Specifications

— Naively, (1b) looks less like (1a) than (2b) looks like (2a).
— In some sense we can say (2b) is a dominating-like monitor.

— Can this property be formalized in such a way allowing one to
distinguish dominating-like monitors from the rest.
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Distinguishing Dominating Like Specifications

Naively, (1b) looks less like (1a) than (2b) looks like (2a).

In some sense we can say (2b) is a dominating-like monitor.

Can this property be formalized in such a way allowing one to
distinguish dominating-like monitors from the rest.

The key seems to be how the variable nesting is constructed.
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Relationship Between Upper Bounds: Good Monitors

— It turns out that the relationship between the constants within
the quantifier intervals plays an important role.

— Let m be a monitor and as, b1, as, bp € Z such that
m = Vo<x v}/€[><-‘r~31,><-|—b1] : VZE[X+32,y+b2] 1 Qz.
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Relationship Between Upper Bounds: Good Monitors

— It turns out that the relationship between the constants within
the quantifier intervals plays an important role.

— Let m be a monitor and as, b1, as, bp € Z such that
m = Vo<x : vy€[><+al,><—|—b1] : VZE[X+327y+b2] : 0z

— We place the following constraints on the constants:

» 0< by and a1 < by
> d:minie[al,bl] {O< bz—‘ri}
» &< by+d, k>1 and by =k+ by +d
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Relationship Between Upper Bounds: Good Monitors

— It turns out that the relationship between the constants within
the quantifier intervals plays an important role.
— Let m be a monitor and as, b1, as, bp € Z such that
m = Vo<x : vy€[><+al,><—|—b1] : VZE[X+327y+b2] : 0z
— We place the following constraints on the constants:
» 0< by and a1 < by
> d = minigpa, 110 < b2 + i}
» &< by+d, k>1,and by =k+ by +d
— Then the ratio between the runtime representation size of the
monitor and its dominating form is O(k) (propositional in k).
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Relationship Between Upper Bounds: Bad Monitors

— The following constraints pinpoint the dominating-like
monitors.

— Let m be a monitor and as, b1, as, bp € Z such that
m = Yo<x v}/€[><-‘r~31,><-|—b1] : VZE[X+32,y+b2] 1 0z
— We place the following constraints on the constants:
» 0< by and a1 < by
> d= min,-e[al,bl] {O < by + i}
» o< by +dand by < b, +d
— Then the ratio between the runtime representation size of the
monitor and its dominating form is O(1) (constant).
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Categorization of the Core Language

» The following Lemma is needed to extend the results to the
core language.

Lemma

Let me M, ay, by, a2, b0 €Z, x,y,z€ V, and Q, Q" C QT such that
g€ Qiff D(q) € Q" and |Q'|sc is a O(k{)-approximation, where
re{0,1}. If

D(QT(m)) = (x,0,0,(y, x+a1, x+b1, (z, x+az, x+max{a1, by } + b2, 0)))

is an O(k}')-approximation, where r' € {0,1}, of
QT(m) = (Xa 0707 (}/7X + ar, X + b1> (27X + a,y + b2a w)))' then

D(QT(IT))) = (X707 Oa (an+al7X+bla (Z,X+32,X+max{al, b1}+b27 Ql)))

is at most an O(max { ki, kg}max{r’r/})—approximation of
QT(m) = (Xu0707 (}/7X + ai, X + blv (27X + a,y + b2a Q)))
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Categorization of the Core Language

Definition

Let g € QT. We say that qg.v is related to g.v.u, where q.v.u # q.v, if
(q.v.pt)3 =y + by, where y € V and b, € Z, and (q.v)1 = y. We define
the set of pairs SR as follows: (g’,¢"”) € SR, if 3 g.v = ¢ and

q' .= q" such that ¢’ # q’.;e and ¢’ is related to g”.

Definition

Let g € QT. We say that a set S C SRy is a relation chain of g if the
undirected graph (V,S), where

V={q|3reQT((q,r) € SV (r,q) €S)}, is a connected path.

Theorem

Let m € M and S the longest relation chain of QT (m). Then
|QT(D(m))|sc is at most an O(n)-approximation of |QT(m)|sc, where n
is dependent on C;(QT(m)).
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Future Work

— Recently, we investigated the time complexity of LogicGuard
monitor specifications.

— For time complexity we count the number of variable
assignments per message.

— Though this measure is closely related to runtime
representation size it behaves quite differently.

— We plan to perform a similar analysis of monitor specifications
based on our time complexity measure, that is a categorization
of specifications similar to the one presented here.
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