
Measuring the Gap: Algorithmic Approximation
Bounds for the Space Complexity of Stream

Specifications

David M. Cerna and Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

April 8th, 2017

slide 1/28

Introduction

− LogicGuard: A coordination language for runtime monitoring of network

traffic.

− Stream monitors are written in a fragment of predicate logic.

− Monitor instances are evaluated using an operational semantics.

− Violations, monitor instances evaluating to false, are flagged.

− The work presented here is a solution and analysis of the following

problem:

slide 2/28

Introduction

− LogicGuard: A coordination language for runtime monitoring of network

traffic.

− Stream monitors are written in a fragment of predicate logic.

− Monitor instances are evaluated using an operational semantics.

− Violations, monitor instances evaluating to false, are flagged.

− The work presented here is a solution and analysis of the following

problem:

slide 2/28

Introduction

− LogicGuard: A coordination language for runtime monitoring of network

traffic.

− Stream monitors are written in a fragment of predicate logic.

− Monitor instances are evaluated using an operational semantics.

− Violations, monitor instances evaluating to false, are flagged.

− The work presented here is a solution and analysis of the following

problem:

slide 2/28

The Space Problem

x = 0 1 2 3 . . .

. . .

slide 3/28

The Space Problem

x = 0 1 2 3 . . .

Instances

. . .

Monitor:

slide 4/28

The Space Problem

x = 0 1 2 3 . . .

Instances

. . .

Monitor:

. . .

. . .

. . .

. . .

a . . .

. . .

slide 5/28

The Space Problem

x = 0 1 2 3 . . .

Instances

. . .

Monitor:

. . .

. . .

. . .

. . .

a . . .

. . .

F(a)

slide 6/28

The Space Problem

x = 0 1 2 3 . . .

Instances

. . .

Monitor:

. . .

. . .

. . .

. . .

a . . . b . . .

.

F(a) , F(a+1), ..., F(b)

I We will refer to this measurement of space complexity as
runtime representation size.

slide 7/28

Previous Work

− Previous work focused on analysis of the stream history [Kutsia and

Schreiner 2014], and space complexity results [Cerna et al. 2016a-b].

− In this work we perform an analysis of the previous results and provide a

categorization of specifications into two types based on the our analysis.

slide 8/28

The Core Language

M ::= ∀0≤V : F .
F ::= @V | ¬F | F ∧ F | F & F | ∀V∈[B,B] : F .
B ::= 0 | ∞ | V | B ± N.
V ::= x | y | z | . . .
N ::= 0 | 1 | 2 | . . .

∀0≤x : ∀y∈[x+1,x+5] : ((∀z∈[y ,x+3] : ¬@z & @z) & G (x , y))

G (x , y) = ∀w∈[x+2,y+2] : (¬@y & (∀m∈[y ,w] : ¬@x & @m))

slide 9/28

Nested Variables

− Lets consider the example monitor again:

∀0≤x : ∀y∈[x+1,x+5] : ((∀z∈[y ,x+3] : ¬@z & @z) & G (x , y))

G (x , y) = ∀w∈[x+2,y+2] : (¬@y & (∀m∈[y ,w] : ¬@x & @m))

− In [Cerna et al. 2016a] we developed the concept of dominating monitor

tranformation to remove nested variables.

− It was also shown that the space requirements of a dominating monitor

upper bound the original monitor.

slide 10/28

Nested Variables

− Lets consider the example monitor again:

∀0≤x : ∀y∈[x+1,x+5] : ((∀z∈[y ,x+3] : ¬@z & @z) & G (x , y))

G (x , y) = ∀w∈[x+2,y+2] : (¬@y & (∀m∈[y ,w] : ¬@x & @m))

− In [Cerna et al. 2016a] we developed the concept of dominating monitor

tranformation to remove nested variables.

− It was also shown that the space requirements of a dominating monitor

upper bound the original monitor.

slide 10/28

Example Monitor Transformed

− The dominating monitor of

∀0≤x : ∀y∈[x+1,x+5] : ((∀z∈[y ,x+3] : ¬@z & @z) & G (x , y))

G (x , y) = ∀w∈[x+2,y+2] : (¬@y & (∀m∈[y ,w] : ¬@x & @m))

is the following monitor

∀0≤x : ∀y∈[x+1,x+5] : ((∀z∈[x+1,x+3] : ¬@z & @z) & G (x , y))

G (x , y) = ∀w∈[x+2,x+7] : (¬@y & (∀m∈[x+1,x+7] : ¬@x & @m))

− This transformation is a key component of the space requirements

algorithm of [Cerna et al. 2016b].

slide 11/28

Example Monitor Transformed

− The dominating monitor of

∀0≤x : ∀y∈[x+1,x+5] : ((∀z∈[y ,x+3] : ¬@z & @z) & G (x , y))

G (x , y) = ∀w∈[x+2,y+2] : (¬@y & (∀m∈[y ,w] : ¬@x & @m))

is the following monitor

∀0≤x : ∀y∈[x+1,x+5] : ((∀z∈[x+1,x+3] : ¬@z & @z) & G (x , y))

G (x , y) = ∀w∈[x+2,x+7] : (¬@y & (∀m∈[x+1,x+7] : ¬@x & @m))

− This transformation is a key component of the space requirements

algorithm of [Cerna et al. 2016b].

slide 11/28

Dealing with the Runtime Representation Size

− Runtime representation size equals instances kept in memory while

evaluating a monitor.

− Consider the following simple monitor:

∀0≤x : ∀y∈[x ,x+4] : ∀z∈[x ,x+4] : ∀r∈[x ,x+4] : @r

− We can simplify its representation:

[0, 4] [0, 4] [0, 4]

− Now let us consider its behaviour as it is evaluated.

slide 12/28

Dealing with the Runtime Representation Size

− Runtime representation size equals instances kept in memory while

evaluating a monitor.

− Consider the following simple monitor:

∀0≤x : ∀y∈[x ,x+4] : ∀z∈[x ,x+4] : ∀r∈[x ,x+4] : @r

− We can simplify its representation:

[0, 4] [0, 4] [0, 4]

− Now let us consider its behaviour as it is evaluated.

slide 12/28

Dealing with the Runtime Representation Size

− Runtime representation size equals instances kept in memory while

evaluating a monitor.

− Consider the following simple monitor:

∀0≤x : ∀y∈[x ,x+4] : ∀z∈[x ,x+4] : ∀r∈[x ,x+4] : @r

− We can simplify its representation:

[0, 4] [0, 4] [0, 4]

− Now let us consider its behaviour as it is evaluated.

slide 12/28

Dealing with the Runtime Representation Size

− Runtime representation size equals instances kept in memory while

evaluating a monitor.

− Consider the following simple monitor:

∀0≤x : ∀y∈[x ,x+4] : ∀z∈[x ,x+4] : ∀r∈[x ,x+4] : @r

− We can simplify its representation:

[0, 4] [0, 4] [0, 4]

− Now let us consider its behaviour as it is evaluated.

slide 12/28

Initial State

[0,4][0,4][0,4]:1

[0,4][0,4]:0

[0,4]:0

Initial state
∀y∈[0,4] : ∀z∈[0,4] : ∀r∈[0,4] : @r

∀z∈[0,4] : ∀r∈[0,4] : @r

∀r∈[0,4] : @r

slide 13/28

Evaluation

[0,4][0,4][0,4]:1

[0,4][0,4]:0

[0,4]:0

Initial state

[1,4][0,4][0,4]:1

[1,4][0,4]:1

[1,4]:1

Step 0

[2,4][0,4][0,4]:1

[2,4][0,4]:2

[2,4]:4

Step 1

[3,4][0,4][0,4]:1

[3,4][0,4]:3

[3,4]:9

Step 2

[4,4][0,4][0,4]:1

[4,4][0,4]:4

[4,4]:16

Step 3

[4,4][0,4][0,4]:0 (1)

[3,4][0,4]:0 (5)

[3,4]:0 (25)

Step 4

− Notice that we did not add new instances.

− How does this relate to true evaluation?

slide 14/28

Evaluation

[0,4][0,4][0,4]:1

[0,4][0,4]:0

[0,4]:0

Initial state

[1,4][0,4][0,4]:1

[1,4][0,4]:1

[1,4]:1

Step 0

[2,4][0,4][0,4]:1

[2,4][0,4]:2

[2,4]:4

Step 1

[3,4][0,4][0,4]:1

[3,4][0,4]:3

[3,4]:9

Step 2

[4,4][0,4][0,4]:1

[4,4][0,4]:4

[4,4]:16

Step 3

[4,4][0,4][0,4]:0 (1)

[3,4][0,4]:0 (5)

[3,4]:0 (25)

Step 4

− Notice that we did not add new instances.

− How does this relate to true evaluation?

slide 14/28

Instance to Position Mapping

− It turns out that there is a mapping from the evaluation of a single

instance at various positions to the evaluation of multiple instances at a

single position.

[5,8][4,8][4,8]:1

[5,8][4,8]:1

[5,8]:1

Instance 4 at position 4

[1,4][0,4][0,4]:1

[1,4][0,4]:1

[1,4]:1

Instance 0 at position 0

slide 15/28

Instance to Position Mapping

[4,4][0,4][0,4]:0 (1)

[4,4][0,4]:0 (5)

[4,4]:0 (25)

[5,9][5,9][5,9]:1

[5,9][5,9]:0

[5,9]:0

Instance 5 at position 4

[5,8][4,8][4,8]:1

[5,8][4,8]:1

[5,8]:1

Instance 4 at position 4

[5,7][3,7][3,7]:1

[5,7][3,7]:2

[5,7]:4

Instance 3 at position 4

[5,6][2,6][2,6]:1

[5,6][2,6]:3

[5,6]:9

Instance 2 at position 4

[5,5][1,5][1,5]:1

[5,5][1,5]:4

[5,5]:16

Instance 1 at position 4 Instance 0 at position 4

− Notice that going to the next position does not change anything

slide 16/28

Instance to Position Mapping

[4,4][0,4][0,4]:0 (1)

[4,4][0,4]:0 (5)

[4,4]:0 (25)

[5,9][5,9][5,9]:1

[5,9][5,9]:0

[5,9]:0

Instance 5 at position 4

[5,8][4,8][4,8]:1

[5,8][4,8]:1

[5,8]:1

Instance 4 at position 4

[5,7][3,7][3,7]:1

[5,7][3,7]:2

[5,7]:4

Instance 3 at position 4

[5,6][2,6][2,6]:1

[5,6][2,6]:3

[5,6]:9

Instance 2 at position 4

[5,5][1,5][1,5]:1

[5,5][1,5]:4

[5,5]:16

Instance 1 at position 4 Instance 0 at position 4

− Notice that going to the next position does not change anything

slide 16/28

Instance to Position Mapping, Next Position

[5,5][1,5][1,5]:0 (1)

[5,5][1,5]:0 (5)

[5,5]:0 (25)

[6,10][6,10][6,10]:1

[6,10][6,10]:0

[6,10]:0

Instance 6 at position 5

[6,9][5,9][5,9]:1

[6,9][5,9]:1

[6,9]:1

Instance 5 at position 5

[6,8][4,8][4,8]:1

[6,8][4,8]:2

[6,8]:4

Instance 4 at position 5

[6,7][3,7][3,7]:1

[6,7][3,7]:3

[6,7]:9

Instance 3 at position 5

[6,6][2,6][2,6]:1

[6,6][2,6]:4

[6,6]:16

Instance 2 at position 5 Instance 1 at position 5

− Essentially, we only need to look at the behaviour of one instance up to

the largest upper bound. This is the key to the algorithm.

slide 17/28

Instance to Position Mapping, Next Position

[5,5][1,5][1,5]:0 (1)

[5,5][1,5]:0 (5)

[5,5]:0 (25)

[6,10][6,10][6,10]:1

[6,10][6,10]:0

[6,10]:0

Instance 6 at position 5

[6,9][5,9][5,9]:1

[6,9][5,9]:1

[6,9]:1

Instance 5 at position 5

[6,8][4,8][4,8]:1

[6,8][4,8]:2

[6,8]:4

Instance 4 at position 5

[6,7][3,7][3,7]:1

[6,7][3,7]:3

[6,7]:9

Instance 3 at position 5

[6,6][2,6][2,6]:1

[6,6][2,6]:4

[6,6]:16

Instance 2 at position 5 Instance 1 at position 5

− Essentially, we only need to look at the behaviour of one instance up to

the largest upper bound. This is the key to the algorithm.

slide 17/28

Experimental Results: Realistic Monitoring

− We ran the algorithm on the following monitor written in the
full specification language:

type int; type message; stream<int> IP;

stream<int> S = stream<IP> x satisfying @x>=0 :

value[seq,@x,plus]<IP> y with x < _ <=# x+10000: @y;

monitor<S> M = monitor<S> x :

forall<S> y with x < _ <=# x+15000:

exists<S> z with y < _ <=# y+4000: IsEven(#z);

slide 18/28

Experimental Results: Interesting

− We also ran the algorithm on the following monitor
specifications:

∀0≤x : ∀y∈[x,x+80] : ∀z∈[x,x+80] : @z (1a)
∀0≤x : ∀y∈[x,x+80] : ∀z∈[x,y] : @z (1b)
∀0≤x : ∀y∈[x,x+40] : ∀z∈[x,x+80] : @z (2a)
∀0≤x : ∀y∈[x,x+40] : ∀z∈[x,y+40] : @z (2b)

slide 19/28

Experimental Results: Interesting

− We also ran the algorithm on the following monitor
specifications:

∀0≤x : ∀y∈[x,x+80] : ∀z∈[x,x+80] : @z (1a)
∀0≤x : ∀y∈[x,x+80] : ∀z∈[x,y] : @z (1b)
∀0≤x : ∀y∈[x,x+40] : ∀z∈[x,x+80] : @z (2a)
∀0≤x : ∀y∈[x,x+40] : ∀z∈[x,y+40] : @z (2b)

1b

1a

slide 20/28

Experimental Results: Interesting

− We also ran the algorithm on the following monitor
specifications:

∀0≤x : ∀y∈[x,x+80] : ∀z∈[x,x+80] : @z (1a)
∀0≤x : ∀y∈[x,x+80] : ∀z∈[x,y] : @z (1b)
∀0≤x : ∀y∈[x,x+40] : ∀z∈[x,x+80] : @z (2a)
∀0≤x : ∀y∈[x,x+40] : ∀z∈[x,y+40] : @z (2b)

2a

2b

slide 21/28

Experimental Results: Interesting

− Notice that the prediction for (1a) is roughly 21 times greater
than the actual complexity of (1b).

− Also the prediction for (2a) is roughly 1.5 times greater than
the actual complexity of (2b).

− Strange? We thought so too.

slide 22/28

Experimental Results: Interesting

− Notice that the prediction for (1a) is roughly 21 times greater
than the actual complexity of (1b).

− Also the prediction for (2a) is roughly 1.5 times greater than
the actual complexity of (2b).

− Strange? We thought so too.

slide 22/28

Experimental Results: Interesting

− Notice that the prediction for (1a) is roughly 21 times greater
than the actual complexity of (1b).

− Also the prediction for (2a) is roughly 1.5 times greater than
the actual complexity of (2b).

− Strange?

We thought so too.

slide 22/28

Experimental Results: Interesting

− Notice that the prediction for (1a) is roughly 21 times greater
than the actual complexity of (1b).

− Also the prediction for (2a) is roughly 1.5 times greater than
the actual complexity of (2b).

− Strange? We thought so too.

slide 22/28

Distinguishing Dominating Like Specifications

− Naively, (1b) looks less like (1a) than (2b) looks like (2a).

− In some sense we can say (2b) is a dominating-like monitor.

− Can this property be formalized in such a way allowing one to
distinguish dominating-like monitors from the rest.

− The key seems to be how the variable nesting is constructed.

slide 23/28

Distinguishing Dominating Like Specifications

− Naively, (1b) looks less like (1a) than (2b) looks like (2a).

− In some sense we can say (2b) is a dominating-like monitor.

− Can this property be formalized in such a way allowing one to
distinguish dominating-like monitors from the rest.

− The key seems to be how the variable nesting is constructed.

slide 23/28

Distinguishing Dominating Like Specifications

− Naively, (1b) looks less like (1a) than (2b) looks like (2a).

− In some sense we can say (2b) is a dominating-like monitor.

− Can this property be formalized in such a way allowing one to
distinguish dominating-like monitors from the rest.

− The key seems to be how the variable nesting is constructed.

slide 23/28

Distinguishing Dominating Like Specifications

− Naively, (1b) looks less like (1a) than (2b) looks like (2a).

− In some sense we can say (2b) is a dominating-like monitor.

− Can this property be formalized in such a way allowing one to
distinguish dominating-like monitors from the rest.

− The key seems to be how the variable nesting is constructed.

slide 23/28

Relationship Between Upper Bounds: Good Monitors

− It turns out that the relationship between the constants within
the quantifier intervals plays an important role.

− Let m be a monitor and a1, b1, a2, b2 ∈ Z such that
m = ∀0≤x : ∀y∈[x+a1,x+b1] : ∀z∈[x+a2,y+b2] : @z .

− We place the following constraints on the constants:
I 0 < b1 and a1 ≤ b1

I d = mini∈[a1,b1] {0 < b2 + i}
I a2 ≤ b2 + d , k ≥ 1, and b1 = k + b2 + d

− Then the ratio between the runtime representation size of the
monitor and its dominating form is O(k) (propositional in k).

slide 24/28

Relationship Between Upper Bounds: Good Monitors

− It turns out that the relationship between the constants within
the quantifier intervals plays an important role.

− Let m be a monitor and a1, b1, a2, b2 ∈ Z such that
m = ∀0≤x : ∀y∈[x+a1,x+b1] : ∀z∈[x+a2,y+b2] : @z .

− We place the following constraints on the constants:
I 0 < b1 and a1 ≤ b1

I d = mini∈[a1,b1] {0 < b2 + i}
I a2 ≤ b2 + d , k ≥ 1, and b1 = k + b2 + d

− Then the ratio between the runtime representation size of the
monitor and its dominating form is O(k) (propositional in k).

slide 24/28

Relationship Between Upper Bounds: Good Monitors

− It turns out that the relationship between the constants within
the quantifier intervals plays an important role.

− Let m be a monitor and a1, b1, a2, b2 ∈ Z such that
m = ∀0≤x : ∀y∈[x+a1,x+b1] : ∀z∈[x+a2,y+b2] : @z .

− We place the following constraints on the constants:
I 0 < b1 and a1 ≤ b1

I d = mini∈[a1,b1] {0 < b2 + i}
I a2 ≤ b2 + d , k ≥ 1, and b1 = k + b2 + d

− Then the ratio between the runtime representation size of the
monitor and its dominating form is O(k) (propositional in k).

slide 24/28

Relationship Between Upper Bounds: Bad Monitors

− The following constraints pinpoint the dominating-like
monitors.

− Let m be a monitor and a1, b1, a2, b2 ∈ Z such that
m = ∀0≤x : ∀y∈[x+a1,x+b1] : ∀z∈[x+a2,y+b2] : @z .

− We place the following constraints on the constants:
I 0 < b1 and a1 ≤ b1

I d = mini∈[a1,b1] {0 < b2 + i}
I a2 ≤ b2 + d and b1 ≤ b2 + d

− Then the ratio between the runtime representation size of the
monitor and its dominating form is O(1) (constant).

slide 25/28

Categorization of the Core Language

I The following Lemma is needed to extend the results to the
core language.

Lemma
Let m ∈M, a1, b1, a2, b2 ∈ Z, x , y , z ∈ V , and Q,Q ′ ⊂ QT such that
q ∈ Q iff D(q) ∈ Q ′ and |Q ′|sc is a O(k r

1)-approximation, where
r ∈ {0, 1}. If

D(QT (m)) = (x , 0, 0, (y , x+a1, x+b1, (z , x+a2, x+max {a1, b1}+b2, ∅)))

is an O(k r ′

2)-approximation, where r ′ ∈ {0, 1}, of
QT (m) = (x , 0, 0, (y , x + a1, x + b1, (z , x + a2, y + b2, ∅))), then

D(QT (m)) = (x , 0, 0, (y , x+a1, x+b1, (z , x+a2, x+max {a1, b1}+b2,Q
′)))

is at most an O(max {k1, k2}max{r ,r ′})-approximation of
QT (m) = (x , 0, 0, (y , x + a1, x + b1, (z , x + a2, y + b2,Q))).

slide 26/28

Categorization of the Core Language

Definition
Let q ∈ QT. We say that q.ν is related to q.ν.µ, where q.ν.µ 6= q.ν, if
(q.ν.µ)3 = y + b2, where y ∈ V and b2 ∈ Z, and (q.ν)1 = y . We define
the set of pairs SRq as follows: (q′, q′′) ∈ SRq if ∃ q.ν = q′ and
q′.µ = q′′ such that q′ 6= q′.µ and q′ is related to q′′.

Definition
Let q ∈ QT. We say that a set S ⊆ SRq is a relation chain of q if the
undirected graph (V ,S), where
V = {q | ∃r ∈ QT((q, r) ∈ S ∨ (r , q) ∈ S)} , is a connected path.

Theorem
Let m ∈M and S the longest relation chain of QT (m). Then
|QT (D(m))|sc is at most an O(n)-approximation of |QT (m)|sc , where n
is dependent on Ci (QT (m)).

slide 27/28

Future Work

− Recently, we investigated the time complexity of LogicGuard
monitor specifications.

− For time complexity we count the number of variable
assignments per message.

− Though this measure is closely related to runtime
representation size it behaves quite differently.

− We plan to perform a similar analysis of monitor specifications
based on our time complexity measure, that is a categorization
of specifications similar to the one presented here.

slide 28/28

