The Problem	Idea	Evaluation Structure	Results	Bounding Function

Space Analysis of a Predicate Logic Fragment for the Specification of Stream Monitors

David M. Cerna, Wolfgang Schreiner, and Temur Kutsia

Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria

March 29th, 2016

- 4 周 ト 4 ヨ ト 4 ヨ ト

The Problem	ldea 000000	Evaluation Structure	Results 0000	Bounding Function
Introduction				

 LogicGuard: A coordination language for runtime monitoring of network traffic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Stream monitors are written in a fragment of predicate logic.

The Problem	Idea 000000	Evaluation Structure	Results 0000	Bounding Function
Introduction				

 LogicGuard: A coordination language for runtime monitoring of network traffic.

- Stream monitors are written in a fragment of predicate logic.
- Monitor instances are evaluated using an operational semantics.
- Violations, monitor instances evaluating to false, are flagged.

The Problem	Idea 000000	Evaluation Structure	Results 0000	Bounding Function
Introduction				

- LogicGuard: A coordination language for runtime monitoring of network traffic.
- Stream monitors are written in a fragment of predicate logic.
- Monitor instances are evaluated using an operational semantics.
- Violations, monitor instances evaluating to false, are flagged.
- Previous work focused on analysis of the stream history [Kutsia and Schreiner 2014]
- $-\,$ In this work, we focus on the space complexity of the instance set.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Problem	Idea	Evaluation Structure	Results	Bounding Function
The Prob	em			

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

The Problem	Idea 000000	Evaluation Structure	Results 0000	Bounding Function
The Problen	า			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Problem	ldea 000000	Evaluation Structure	Results 0000	Bounding Function
The Problem	า			

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

The Problem ●○○	Idea 000000	Evaluation Structure	Results 0000	Bounding Function
The Probler	n			

The Problem	Idea	Evaluation Structure	Results	Bounding Function
000				
TIDU				

The Problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Problem	Idea	Evaluation Structure	Results	Bounding Function
000				
тіріі				

The Problem

 We want to know how large the instance set gets during evaluation.

slide 7/33

The Problem ○○●	ldea 000000	Evaluation Structure	Results 0000	Bounding Function
Outline				

- Abstraction of the specification language.
- Background required to understand the results.
- Simplified operational semantics for the our abstraction.
- Results concerning our abstraction and evaluation method.
- Use the results to produce a bounding function for a much larger fragment of the LogicGuard specification language.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Conclusion and future work.

The Problem 000	ldea ●00000	Evaluation Structure	Results 0000	Bounding Function
Basic Idea				

- Precise space analysis of the entire core language is quite difficult.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Many individual cases to consider.
- Large formulas can allow for complex variable interaction.

The Problem	Idea ●○○○○○	Evaluation Structure	Results 0000	Bounding Function
Basic Idea				

- Precise space analysis of the entire core language is quite difficult.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□ ● ● ●

- Many individual cases to consider.
- Large formulas can allow for complex variable interaction.

$$M \quad ::= \quad \forall_{0 \le V} : F.$$

$$F \qquad ::= \qquad @V \Big| \neg F \Big| F \& F \Big| F \land F \Big| \forall_{V \in [B,B]} : F.$$

$$B \qquad ::= \qquad \infty |\mathbf{0}| V | B + N | B - N \; .$$

 $V \qquad ::= \qquad x|y|z|\ldots \ .$

N ::= 0|1|2|....

The Problem 000	ldea ●○○○○○	Evaluation Structure	Results 0000	Bounding Function
Basic Idea				

- Precise space analysis of the entire core language is quite difficult.
- Many individual cases to consider.
- Large formulas can allow for complex variable interaction.

$$\begin{split} M & ::= \quad \forall_{0 \leq V} : F. \\ F & ::= \quad @V \Big| \neg F \Big| F \& F \Big| F \land F \Big| \forall_{V \in [B,B]} : F. \\ B & ::= \quad \infty |0| V | B + N | B - N \\ V & ::= \quad x |y|z| \dots \\ N & ::= \quad 0 |1|2| \dots \\ \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Removal of constants provides uniformity.
- Variable definition nesting can still result in complex structure.

The Problem 000	ldea ○●○○○○	Evaluation Structure	Results 0000	Bounding Function
Basic Idea:1				

- We focus on a very simple class of monitors.

The Problem 000	Idea ○●○○○○	Evaluation Structure	Results 0000	Bounding Function
Basic Idea:1				

- We focus on a very simple class of monitors.
 - $-\,$ Deriving precise bounds for this simple class is easier.

◆□> <圖> < E> < E> < E < のへで</p>

The Problem 000	Idea ○●○○○○	Evaluation Structure	Results 0000	Bounding Function
Basic Idea:1				

- We focus on a very simple class of monitors.
 - Deriving precise bounds for this simple class is easier.
- We can use the solutions for the simple cases as an invariant for a recursive function.
- $-\,$ The function will be inductively defined over the formula structure.

(日) (日) (日) (日) (日) (日) (日) (日)

The Problem 000	Idea ○●○○○○	Evaluation Structure	Results 0000	Bounding Function
Basic Idea:1				

- We focus on a very simple class of monitors.
 - Deriving precise bounds for this simple class is easier.
- We can use the solutions for the simple cases as an invariant for a recursive function.
- $-\,$ The function will be inductively defined over the formula structure.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□ ● ● ●

- The following assumptions are made.

The Problem 000	ldea ○○●○○○	Evaluation Structure	Results 0000	Bounding Function
Basic Idea:2				

- We assume that the given formula is a sentence, i.e. no free variables.
- Propositional formulas evaluate instantly when the needed positions of the stream are available.

(日) (日) (日) (日) (日) (日) (日) (日)

- Quantifier bounds only contain the stream variable.

The Problem 000	ldea ○○●○○○	Evaluation Structure	Results 0000	Bounding Function
Basic Idea:2				

- We assume that the given formula is a sentence, i.e. no free variables.
- Propositional formulas evaluate instantly when the needed positions of the stream are available.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Quantifier bounds only contain the stream variable.
- The last assumption is easier to give by example.

The Problem	Idea ○○○●○○	Evaluation Structure	Results 0000	Bounding Function
Basic Idea:3				

$$\forall_{0 \leq x} : \left(\forall_{y \in [x, x+5]} : (@x \& (\forall_{z \in [x+1, x+2]} : (@z \& @y))) \right)$$

The Problem 000	ldea ○○○●○○	Evaluation Structure	Results 0000	Bounding Function
Basic Idea:3				

$$\forall_{0 \leq x} : (\forall_{y \in [x, x+5]} : (@x \& (\forall_{z \in [x+1, x+2]} : (@z \& @y))))$$

 $-\,$ We also "drop" nested quantifiers using the following method.

The Problem 000	Idea ○○○●○○	Evaluation Structure	Results 0000	Bounding Function
Basic Idea:3				

$$\forall_{0 \leq x} : (\forall_{y \in [x, x+5]} : (@x \& (\forall_{z \in [x+1, x+2]} : (@z \& @y))))$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

 $-\,$ We also "drop" nested quantifiers using the following method.

 $\forall_{0 \le x} : (@x \& (\forall_{z \in [x+1,x+2]} : (@z \& (\forall_{w \in [x+5,x+5]} : @w)))))$

The Problem 000	ldea ○○○●○○	Evaluation Structure	Results 0000	Bounding Function
Basic Idea:3				

$$\forall_{0 \leq x} : (\forall_{y \in [x, x+5]} : (@x \& (\forall_{z \in [x+1, x+2]} : (@z \& @y))))$$

 $-\,$ We also "drop" nested quantifiers using the following method.

$$\forall_{0 \le x} : (@x \& (\forall_{z \in [x+1,x+2]} : (@z \& (\forall_{w \in [x+5,x+5]} : @w)))) \\ \forall_{0 \le x} : (@x \& (\forall_{z \in [x+1,x+2]} : (@z \& F'[(\forall_{w \in [x+5,x+5]} : @w),x,z])))$$

The Problem 000	ldea ○○○●○○	Evaluation Structure	Results 0000	Bounding Function
Basic Idea:3				

$$\forall_{0 \leq x} : (\forall_{y \in [x, x+5]} : (@x \& (\forall_{z \in [x+1, x+2]} : (@z \& @y))))$$

 $-\,$ We also "drop" nested quantifiers using the following method.

$$\begin{aligned} &\forall_{0 \leq x} : \left(e_{x} \& \left(\forall_{z \in [x+1,x+2]} : \left(e_{z} \& \left(\forall_{w \in [x+5,x+5]} : e_{w} \right) \right) \right) \right) \\ &\forall_{0 \leq x} : \left(e_{x} \& \left(\forall_{z \in [x+1,x+2]} : \left(e_{z} \& F'[(\forall_{w \in [x+5,x+5]} : e_{w}),x,z] \right) \right) \right) \\ &\forall_{0 \leq x} : F[(\forall_{z \in [x+1,x+2]} : e_{z} \& F'[(\forall_{w \in [x+5,x+5]} : e_{w}),x,z]),x] \end{aligned}$$

The Problem 000	Idea ○○○●○○	Evaluation Structure	Results 0000	Bounding Function
Basic Idea:3				

$$\forall_{0 \leq x} : (\forall_{y \in [x, x+5]} : (@x \& (\forall_{z \in [x+1, x+2]} : (@z \& @y))))$$

 $-\,$ We also "drop" nested quantifiers using the following method.

$$\begin{aligned} &\forall_{0 \leq x} : \left(e_{x} \& \left(\forall_{z \in [x+1,x+2]} : \left(e_{z} \& \left(\forall_{w \in [x+5,x+5]} : e_{w} \right) \right) \right) \right) \\ &\forall_{0 \leq x} : \left(e_{x} \& \left(\forall_{z \in [x+1,x+2]} : \left(e_{z} \& F'[(\forall_{w \in [x+5,x+5]} : e_{w}),x,z] \right) \right) \right) \\ &\forall_{0 \leq x} : F[(\forall_{z \in [x+1,x+2]} : e_{z} \& F'[(\forall_{w \in [x+5,x+5]} : e_{w}),x,z]),x] \end{aligned}$$

$$\langle 1, 2, 5 \rangle_{\mathbb{N}}$$

The Problem	Idea ○○○●○○	Evaluation Structure	Results 0000	Bounding Function
Basic Idea:3				

$$\forall_{0 \leq x} : (\forall_{y \in [x, x+5]} : (@x \& (\forall_{z \in [x+1, x+2]} : (@z \& @y))))$$

 $-\,$ We also "drop" nested quantifiers using the following method.

$$\begin{aligned} &\forall_{0 \leq x} : \left(e_{x} \& \left(\forall_{z \in [x+1,x+2]} : \left(e_{z} \& \left(\forall_{w \in [x+5,x+5]} : e_{w} \right) \right) \right) \right) \\ &\forall_{0 \leq x} : \left(e_{x} \& \left(\forall_{z \in [x+1,x+2]} : \left(e_{z} \& F'[(\forall_{w \in [x+5,x+5]} : e_{w}),x,z] \right) \right) \right) \\ &\forall_{0 \leq x} : F[(\forall_{z \in [x+1,x+2]} : e_{z} \& F'[(\forall_{w \in [x+5,x+5]} : e_{w}),x,z]),x] \end{aligned}$$

$$\langle 1, 2, 5 \rangle_{\mathbb{N}}$$

- We refer to the last object as an N-triple.
- The formulas represented by ℕ-triples are referred to as the restricted fragment.

slide 12/33

The Problem	ldea ○○○○●○	Evaluation Structure	Results 0000	Bounding Function
Basic Idea:4				

- \mathbb{N} -triples essentially represent sets of formulas.

The Problem 000	ldea ○○○○●○	Evaluation Structure	Results 0000	Bounding Function
Basic Idea:4				

- $\,\mathbb N\text{-triples}$ essentially represent sets of formulas.
- $-\,$ Also, $\mathbb N\text{-triples}$ are independent of the variables used.
 - $-\,$ This is a side effect of bounds containing the stream variable only
- The set of formulas an $\mathbb N\text{-triple }\langle a,b,c\rangle_{\mathbb N}$ represents can be written as follows:

 $\forall_{0 \leq x} : F[(\forall_{z \in [x+a, x+b]} : @z \& F'[(\forall_{w \in [x+c, x+c]} : @w), x, z]), x]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Problem 000	ldea ○○○○●○	Evaluation Structure	Results 0000	Bounding Function
Basic Idea:4				

- $\,\mathbb N\text{-triples}$ essentially represent sets of formulas.
- $-\,$ Also, $\mathbb N\text{-triples}$ are independent of the variables used.
 - This is a side effect of bounds containing the stream variable only
- The set of formulas an $\mathbb N\text{-triple }\langle a,b,c\rangle_{\mathbb N}$ represents can be written as follows:

$$\forall_{0 \leq x} : F[(\forall_{z \in [x+a,x+b]} : @z \& F'[(\forall_{w \in [x+c,x+c]} : @w),x,z]),x]$$

- An instance of an \mathbb{N} -triple given the position *n* for the stream variable is $\langle a, b, c \rangle_{\mathbb{N}}(n)$ and the set can be written as follows:

 $F[(\forall_{z \in [n+a, n+b]}: @z \& F'[(\forall_{w \in [n+c, n+c]}: @w), n, z]), n]$

(日) (日) (日) (日) (日) (日) (日) (日)

The Problem 000	ldea ○○○○○●	Evaluation Structure	Results 0000	Bounding Function
Basic Idea:5				

Today we will address the following question: Given an \mathbb{N} -triple $\langle a, b, c \rangle_{\mathbb{N}}$ and an external stream S starting at some value α , how many instances do we need to keep in memory when evaluating $\langle a, b, c \rangle_{\mathbb{N}}$ on S starting at α ?

The Problem 000	Idea 000000	Evaluation Structure	Results 0000	Bounding Function
Core Language Evaluation				

- $-\ \mathbb{N}\text{-triples}$ are extremely simple compared to sentences of the core language.
- Evaluation of \mathbb{N} -triples only requires a fragment of the evaluation rules used for sentences of the core language.
- Most of the reduction in the number of rules concerns the removal of propositional structure from ℕ-triples.

The Problem 000	ldea 000000	Evaluation Structure	Results 0000	Bounding Function
Core Langu	age Evaluz	ation		

- $-\ \mathbb{N}\text{-triples}$ are extremely simple compared to sentences of the core language.
- Evaluation of \mathbb{N} -triples only requires a fragment of the evaluation rules used for sentences of the core language.
- Most of the reduction in the number of rules concerns the removal of propositional structure from ℕ-triples.
- Evaluation of monitors written using the core language is done by a small step operational semantics.

$$\forall_{0\leq x}^{IS}: f \rightarrow_{p,MS,m,RS} \forall_{0\leq x}^{IS'}: f$$

- The transition from IS to IS' is defined as a formula transition relation:

$$f \rightarrow_{p,MS,m,c} f'$$

(日) (日) (日) (日) (日) (日) (日) (日)

О

The Problem	Idea 000000	Evaluation Structure	Results 0000	Bounding Function
	 1.1	D. L. J		

	KOBOIT		at an
i orriu	Iaisi		auon

	Atomic Formulas					
#	Transition	Constraints				
A1	$n(@y) \rightarrow d(c.2(y)))$	$y \in dom(c.2)$				
A2	$n(\mathbb{Q}_Y) \to d(\perp)$	y ∉ dom(c.2)				
	Nega	ation				
N1	$n(\neg f) \rightarrow n(\neg n(f'))$	$f ightarrow \mathbf{n}(f')$				
N2	$n(\neg f) \to d(\bot)$	$f ightarrow \mathbf{d}(op)$				
N3	$n(\neg f) \to d(\top)$	$f ightarrow {\sf d}(ot)$				
	Sequential	conjunction				
C1	$\mathbf{n}(f_1 \And f_2) \to \mathbf{n}(\mathbf{n}(f_1') \And f_2)$	$f_1 ightarrow \mathbf{n}(f_1')$				
C2	$n(f_1 \And f_2) \to d(\bot)$	$f_1 ightarrow {\sf d}(ot)$				
C3	$n(f_1 \And f_2) \to n(f_2')$	$f_1 \rightarrow d(\top), f_2 \rightarrow n(f_2')$				
	Quanti	fication				
Q1	$\forall_{y \in [b_1, b_2]} : f \to \mathbf{d}(\top)$	$p_1=b_1(c)$, $p_2=b_2(c)$, $p_1>p_2 \lor p_1=\infty$				
Q2	$\forall_{y \in [b_1, b_2]} : f \to F'$	$p_1 = b_1(c)$, $p_2 = b_2(c)$, $p_1 \neq \infty$, $p_1 \leq p_2$, $\mathbf{n}(\forall_{\gamma \in [p_1, p_2]} : f) \rightarrow F'$				
Q3	$\mathbf{n}(\forall_{y\in[p_1,p_2]}:f)\to\mathbf{n}(\forall_{y\in[p_1,p_2]}:f)$	$p < p_1$				
Q4	$\mathbf{n}(\forall_{y\in[\rho_1,\rho_2]}:f)\to F'$	$p_1 \leq p, \ n(orall_{y \leq P_2}^{IS^f}: f) ightarrow F'$				
Q5	$n(\forall_{y\leq p_2}^{IS^f}:f)\tod(\bot)$	DF				
Q6	$n(\forall_{y\leq p_2}^{IS^f}:f)\tod(\top)$	$\neg DF, IS_1^f = \emptyset, p_2 < p$				
Q7	$\mathbf{n}(\forall_{y\leq p_2}^{lS^f}:f)\to\mathbf{n}(\forall_{y\leq p_2}^{lS^f_1}:f)$	$\neg DF, (IS_1^f \neq \emptyset \lor p \le p_2)$				

The Problem 000	ldea 000000	Evaluation Structure	Results 0000	Bounding Function
Defining N	J-triple Ev	aluation		

- For \mathbb{N} -triple evaluation we only need to consider the quantifier rules of core language formula evaluation.

	Quantification					
Q1	$\forall_{y \in [b_1, b_2]} : f \to \mathbf{d}(\top)$	$p_1=b_1(c)$, $p_2=b_2(c)$, $p_1>p_2$ \lor $p_1=\infty$				
Q2	$\forall_{y \in [b_1, b_2]} : f \to F'$	$p_1 = b_1(c)$, $p_2 = b_2(c)$, $p_1 \neq \infty$, $p_1 \leq p_2$, $\mathbf{n}(\forall_{y \in [p_1, p_2]} : f) \to F'$				
Q3	$\mathbf{n}(\forall_{y\in[p_1,p_2]}:f)\to\mathbf{n}(\forall_{y\in[p_1,p_2]}:f)$	$p < p_1$				
Q4	$\mathbf{n}(\forall_{y\in[\rho_1,\rho_2]}:f)\to F'$	$p_1 \leq p, \ \mathbf{n}(orall_{y \leq P_2}^{IS^f}: f) ightarrow F'$				
Q5	$n(orall_{y\leq p_2}^{IS^f}:f) ightarrowd(\perp)$	DF				
Q6	$n(\forall_{y\leq p_2}^{IS^f}:f)\tod(\top)$	$\neg DF, IS_1^f = \emptyset, p_2 < p$				
Q7	$\mathbf{n}(\forall_{y\leq p_2}^{lSf}:f)\to\mathbf{n}(\forall_{y\leq p_2}^{lS_1^f}:f)$	$\neg DF, (IS_1^f \neq \emptyset \lor p \le p_2)$				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Problem	Idea	Evaluation Structure	Results	Bounding Function
		0000000		
D C ·		1		

Defining \mathbb{N} -triple Evaluation

- Though, not all the quantifier rules are needed.

	Quantification				
Q1	$\forall_{y \in [b_1, b_2]} : f \to \mathbf{d}(\top)$	$p_1=b_1(c)$, $p_2=b_2(c)$, $p_1>p_2\lor p_1=\infty$			
Q3	$\mathbf{n}(\forall_{y\in[p_1,p_2]}:f)\to\mathbf{n}(\forall_{y\in[p_1,p_2]}:f)$	$p < p_1$			
Q5	$n(orall_{y\leq p_2}^{IS^f}:f) ightarrowd(\perp)$	DF			
Q6	$n(\forall_{y\leq p_2}^{IS^f}:f)\tod(\top)$	$\neg DF, IS_1^f = \emptyset, p_2 < p$			
Q7	$\mathbf{n}(\forall_{y \le p_2}^{lS^f} : f) \to \mathbf{n}(\forall_{y \le p_2}^{lS_1^f} : f)$	$\neg DF, (IS_1^f \neq \emptyset \lor p \le p_2)$			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Problem 000	ldea 000000	Evaluation Structure	Results 0000	Bounding Function
Evaluation of	of ℕ-triples			

- To apply the above transition rules to $\mathbb N\text{-triples}$ we need the notion of atomic $\mathbb N\text{-triples}.$
- $-\,$ Also, splitting of $\mathbb N\text{-triples}.$

The Problem 000	ldea 000000	Evaluation Structure	Results 0000	Bounding Function
Evaluation c	of ℕ-triples			

- To apply the above transition rules to $\mathbb N\text{-triples}$ we need the notion of atomic $\mathbb N\text{-triples}.$
- $-\,$ Also, splitting of $\mathbb N\text{-triples}.$

The Problem 000	ldea 000000	Evaluation Structure	Results 0000	Bounding Function
Evaluation of	of ℕ-triples			

- To apply the above transition rules to $\mathbb N\text{-triples}$ we need the notion of atomic $\mathbb N\text{-triples}.$
- Also, splitting of \mathbb{N} -triples.

$$\langle \mathsf{a},\mathsf{b},\mathsf{c}
angle_{\mathbb{N}} \equiv \langle \mathsf{a}+1,\mathsf{b},\mathsf{c}
angle_{\mathbb{N}} \wedge \langle \mathsf{a},\mathsf{a},\mathsf{c}
angle_{\mathbb{N}}$$

The Problem 000	ldea 000000	Evaluation Structure	Results 0000	Bounding Function
Evaluation c	of ℕ-triples			

- To apply the above transition rules to $\mathbb N\text{-triples}$ we need the notion of atomic $\mathbb N\text{-triples}.$
- $-\,$ Also, splitting of $\mathbb N\text{-triples}.$

$$\langle \mathsf{a},\mathsf{b},\mathsf{c}
angle_{\mathbb{N}} \equiv \langle \mathsf{a}+1,\mathsf{b},\mathsf{c}
angle_{\mathbb{N}} \wedge \langle \mathsf{a},\mathsf{a},\mathsf{c}
angle_{\mathbb{N}}$$

- Though, $\langle a, a, c \rangle_{\mathbb{N}}(\alpha)$ is "propositional", it cannot be evaluated till $\alpha + c$ is available.

slide 19/33

The Problem 000	ldea 000000	Evaluation Structure	Results 0000	Bounding Function
Evaluation c	of ℕ-triples			

- Essentially as soon as a needed stream position is available we split the triple instances.
- Also as soon as the third component of a triple instance $\langle a, a, c \rangle_{\mathbb{N}}(\alpha)$ is available we remove it from memory.
- We encapsulate these ideas in the following structure:

$$\ldots \xrightarrow{[\alpha,\infty]} \left[n, \left\langle {\textbf{\textit{a}}}, {\textbf{\textit{b}}}, {\textbf{\textit{c}}} \right\rangle_{\mathbb{N}}, {\textbf{\textit{l}}} \right] \xrightarrow{[\alpha,\infty]} \left[n+1, \left\langle {\textbf{\textit{a}}}, {\textbf{\textit{b}}}, {\textbf{\textit{c}}} \right\rangle_{\mathbb{N}}, {\textbf{\textit{l}}}' \right] \xrightarrow{[\alpha,\infty]} \ldots$$

- *n* is the initial stream variable position and **I** is the initial memory.
- n+1 is the new stream variable position and **I**' is the new memory state.

The Problem	ldea 000000	Evaluation Structure	Results 0000	Bounding Function
Evaluation s	structure			

- An evaluation structure is an object:

$$\left[\textit{n},\left\langle \textit{a},\textit{b},\textit{c}\right\rangle _{\mathbb{N}},\textit{I}
ight]$$

- We will start from an initial evaluation structure:

$$\left[arphi, \left\langle \pmb{a}, \pmb{b}, \pmb{c}
ight
angle_{\mathbb{N}}, \emptyset
ight]$$

where \triangleright is the position to left of the interval we are evaluating over.

The Problem 000	ldea 000000	Evaluation Structure	Results 0000	Bounding Function
Evaluation e	example			

- Let us consider the evaluation of $t = \langle 0, 2, 2 \rangle_{\mathbb{N}}$ over the interval $[0, \infty)$ starting at 0.

The Problem 000	ldea 000000	Evaluation Structure	Results 0000	Bounding Function
Evaluation	example			

- Let us consider the evaluation of $t = \langle 0, 2, 2 \rangle_{\mathbb{N}}$ over the interval $[0, \infty)$ starting at 0.

$$[\rhd, t, \emptyset] \xrightarrow{[0,\infty)} \left[0, t, \left\{ \begin{array}{c} \langle 1, 2, 2 \rangle_{\mathbb{N}} \left(0 \right) \\ \langle 0, 0, 2 \rangle_{\mathbb{N}} \left(0 \right) \end{array} \right\} \right] \xrightarrow{[\alpha,\infty)} \left[1, t, \left\{ \begin{array}{c} \langle 2, 2, 2 \rangle_{\mathbb{N}} \left(0 \right) \\ \langle 1, 1, 2 \rangle_{\mathbb{N}} \left(0 \right) \\ \langle 0, 0, 2 \rangle_{\mathbb{N}} \left(0 \right) \\ \langle 1, 2, 2 \rangle_{\mathbb{N}} \left(1 \right) \\ \langle 0, 0, 2 \rangle_{\mathbb{N}} \left(1 \right) \end{array} \right\} \right]$$

The Problem	ldea	Evaluation Structure	Results	Bounding Function
000	000000	○○○○○○●	0000	
Evaluation	example			

- Let us consider the evaluation of $t = \langle 0, 2, 2 \rangle_{\mathbb{N}}$ over the interval $[0, \infty)$ starting at 0.

$$[\triangleright, t, \emptyset] \xrightarrow{[0,\infty)} \left[0, t, \left\{ \begin{array}{c} \langle 1, 2, 2 \rangle_{\mathbb{N}} \left(0 \right) \\ \langle 0, 0, 2 \rangle_{\mathbb{N}} \left(0 \right) \end{array} \right\} \right] \xrightarrow{[\alpha,\infty)} \left[1, t, \left\{ \begin{array}{c} \langle 2, 2, 2 \rangle_{\mathbb{N}} \left(0 \right) \\ \langle 1, 1, 2 \rangle_{\mathbb{N}} \left(0 \right) \\ \langle 0, 0, 2 \rangle_{\mathbb{N}} \left(0 \right) \\ \langle 1, 2, 2 \rangle_{\mathbb{N}} \left(1 \right) \\ \langle 0, 0, 2 \rangle_{\mathbb{N}} \left(1 \right) \end{array} \right\} \right]$$

$$\begin{bmatrix} 2, t, \left\{ \begin{array}{c} \langle 2, 2, 2 \rangle_{\mathbb{N}} \left(1\right) \\ \langle 1, 1, 2 \rangle_{\mathbb{N}} \left(1\right) \\ \langle 0, 0, 2 \rangle_{\mathbb{N}} \left(1\right) \\ \langle 1, 2, 2 \rangle_{\mathbb{N}} \left(2\right) \\ \langle 0, 0, 2 \rangle_{\mathbb{N}} \left(2\right) \end{bmatrix} \right\} \xrightarrow{[\alpha, \infty)} \begin{bmatrix} 3, t, \left\{ \begin{array}{c} \langle 2, 2, 2 \rangle_{\mathbb{N}} \left(2\right) \\ \langle 1, 1, 2 \rangle_{\mathbb{N}} \left(2\right) \\ \langle 0, 0, 2 \rangle_{\mathbb{N}} \left(2\right) \\ \langle 1, 2, 2 \rangle_{\mathbb{N}} \left(3\right) \\ \langle 0, 0, 2 \rangle_{\mathbb{N}} \left(3\right) \end{bmatrix} \right\} \xrightarrow{[\alpha, \infty)} \cdots$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

The Problem 000	Idea 000000	Evaluation Structure	Results ●○○○	Bounding Function
Base Case				

- We start by considering \mathbb{N} -triples of the form $\langle 0, b, b \rangle_{\mathbb{N}}$.
- These are the simplest because all atomic instances are removed at the same time.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

- Also, there is no shift in position

The Problem 000	ldea 000000	Evaluation Structure	Results ●○○○	Bounding Function
Base Case				

- We start by considering \mathbb{N} -triples of the form $\langle 0, b, b \rangle_{\mathbb{N}}$.
- These are the simplest because all atomic instances are removed at the same time.
- Also, there is no shift in position
- The following theorem concerns bounding of the instance set:

Theorem

Given an \mathbb{N} -triple t of the form $\langle 0, b, b \rangle_{\mathbb{N}}$ and an interval $[\alpha, \beta]$ such that $\alpha \leq b < \beta$, then there exists a value $x \in [\alpha, \beta]$ such that given the complete proper evaluation chain:

$$[\triangleright, t, \emptyset] \xrightarrow{[\alpha, \beta]} \cdots \xrightarrow{[\alpha, \beta]} [x - 1, t, \mathsf{I}_0] \xrightarrow{[\alpha, \beta]} [x, t, \mathsf{I}_1] \xrightarrow{[\alpha, \beta]} \cdots \xrightarrow{[\alpha, \beta]} [\beta, t, \mathsf{I}_{\beta - x}]$$

(日) (日) (日) (日) (日) (日) (日) (日)

the following holds $|\mathbf{I}_0| \neq |\mathbf{I}_1| = \cdots = |\mathbf{I}_{\beta-x}|$.

The Problem	Idea 000000	Evaluation Structure	Results ○●○○	Bounding Function
Base Case				

- The instance $\langle 0, b, b \rangle_{\mathbb{N}}(\alpha)$ is the first instance and any sub-instance will not be removed from memory till the position $\alpha + b$. There are b+1 sub-instances of $\langle 0, b, b \rangle_{\mathbb{N}}(\alpha)$ at $\alpha + b - 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Problem	Idea 000000	Evaluation Structure	Results ○●○○	Bounding Function
Base Case				

- The instance $\langle 0, b, b \rangle_{\mathbb{N}}(\alpha)$ is the first instance and any sub-instance will not be removed from memory till the position $\alpha + b$. There are b+1 sub-instances of $\langle 0, b, b \rangle_{\mathbb{N}}(\alpha)$ at $\alpha + b - 1$.
- We also need to count the instances $\langle 0, b, b \rangle_{\mathbb{N}} (\alpha + 1)$, \cdots , $\langle 0, b, b \rangle_{\mathbb{N}} (\alpha + b 1)$ of which there are

$$\sum_{i=2}^{b} i = \frac{b \cdot (b+1)}{2} - 1.$$

The Problem	Idea 000000	Evaluation Structure	Results ○●○○	Bounding Function
Base Case				

- The instance $\langle 0, b, b \rangle_{\mathbb{N}}(\alpha)$ is the first instance and any sub-instance will not be removed from memory till the position $\alpha + b$. There are b+1 sub-instances of $\langle 0, b, b \rangle_{\mathbb{N}}(\alpha)$ at $\alpha + b - 1$.
- $\begin{array}{l} \ \, \mbox{We also need to count the instances } \langle 0,b,b\rangle_{\mathbb N}\,(\alpha+1),\,\cdots,\\ \langle 0,b,b\rangle_{\mathbb N}\,(\alpha+b-1) \mbox{ of which there are} \end{array}$

$$\sum_{i=2}^{b} i = \frac{b \cdot (b+1)}{2} - 1.$$

- At $\alpha + b$ we remove b + 1 instances from memory, unroll b - 1 new ones, and add two instances for $\langle 0, b, b \rangle_{\mathbb{N}} (\alpha + b)$. Thus the used portion of memory stays the same.

The Problem	Idea 000000	Evaluation Structure	Results ○●○○	Bounding Function
Base Case				

- The instance $\langle 0, b, b \rangle_{\mathbb{N}}(\alpha)$ is the first instance and any sub-instance will not be removed from memory till the position $\alpha + b$. There are b+1 sub-instances of $\langle 0, b, b \rangle_{\mathbb{N}}(\alpha)$ at $\alpha + b - 1$.
- $\begin{array}{l} \ \, \mbox{We also need to count the instances } \langle 0,b,b\rangle_{\mathbb N}\,(\alpha+1),\,\cdots,\\ \langle 0,b,b\rangle_{\mathbb N}\,(\alpha+b-1) \mbox{ of which there are} \end{array}$

$$\sum_{i=2}^{b} i = \frac{b \cdot (b+1)}{2} - 1.$$

- At $\alpha + b$ we remove b + 1 instances from memory, unroll b 1 new ones, and add two instances for $\langle 0, b, b \rangle_{\mathbb{N}} (\alpha + b)$. Thus the used portion of memory stays the same.
- − It can be shown inductively that the same pattern holds for every position $\alpha + b \leq$, thus, $x = \alpha + b 1$.

The Problem 000	ldea 000000	Evaluation Structure	Results ○○●○	Bounding Function
Base Case				

The following two corollaries follow from the result:

Corollary

Given an \mathbb{N} -triple t of the form $\langle 0, b, b \rangle_{\mathbb{N}}$ and an interval $[\alpha, \infty]$, then there exists a value $x \in [\alpha, \infty]$ such that given the proper evaluation chain:

$$[\triangleright, t, \emptyset] \xrightarrow{[\alpha, \infty]} \cdots [x - 1, t, \mathsf{I}_0] \xrightarrow{[\alpha, \infty]} [x, t, \mathsf{I}_1] \xrightarrow{[\alpha, \infty]} \cdots$$

the following holds $|\mathbf{I}_0| \neq |\mathbf{I}_1| = |\mathbf{I}_2| = \cdots$.

Corollary

Given an \mathbb{N} -triple t of the form $\langle 0, b, b \rangle_{\mathbb{N}}$, an interval $[\alpha, \infty]$, and the proper evaluation chain:

$$[\rhd,t,\emptyset] \xrightarrow{[\alpha,\infty]} [\alpha,t,\mathbf{I}_{\alpha}] \xrightarrow{[\alpha,\infty]} [\alpha+1,t,\mathbf{I}_{\alpha+1}] \xrightarrow{[\alpha,\infty]} \cdots$$

then,

$$|\mathbf{I}_n| \le rac{(b+1)*(b+2)}{2} - 1$$

◆□▶ ◆@▶ ◆臣▶ ◆臣▶ ─ 臣 ─

for all $n \in [\alpha, \infty]$.

slide 25/33

The Problem	ldea 000000	Evaluation Structure	Results ○○○●	Bounding Function
All ℕ-Triple	S			

— The space complexity of any $\mathbb N\text{-triple }\langle a,b,c\rangle_{\mathbb N}$ is as follows:

Theorem

Given an \mathbb{N} -triple t of the form $\langle a, b, c \rangle_{\mathbb{N}}$, where $0 \leq a \leq b$, $0 \leq c$, an interval $[\alpha, \infty]$, and the proper evaluation chain:

$$[\triangleright, t, \emptyset] \xrightarrow{[\alpha, \infty]} [\alpha, t, \mathsf{I}_{\alpha}] \xrightarrow{[\alpha, \infty]} [\alpha + 1, t, \mathsf{I}_{\alpha + 1}] \xrightarrow{[\alpha, \infty]} \cdots$$

then,

$$|\mathbf{I}_n| \leq BT(a, b, c)$$

for all $n \in [\alpha, \infty]$, where

$$BT(a, b, c) = \begin{cases} a + (l-1) & c \le a \\ a + \frac{(l-d)(l-d+1)}{2} + (d-1) & = b - d \& a \le c < b \\ a + \frac{l*(l+1)}{2} + d*l - 1 & c = b + d \end{cases}$$

We define I = (b - a) + 1.

The Problem	ldea	Evaluation Structure	Results	Bounding Function
000	000000		0000	●●●●●●
Bounding F	unction			

- Now we move from bounding ℕ-triples to bounding the reduced core language, i.e. without infinity, constants, and subtraction.
- Formulas of the reduced core language can still have variable nesting.
- Before introducing our transformation removing variable nesting we add one more assumption.
- We assume that each quantifier in a given formula has a unique variable name.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Problem	ldea	Evaluation Structure	Results	Bounding Function
000	000000		0000	○●○○○○○
Dominating	Formula			

Definition (Dominating Formula Transformation)

Given a sentence $f \in \mathbb{M}^{vb}$ we construct the <u>dominating formula</u> f_D of f using the following transformation

$$D(\forall_{0 \le x} : f_D, \emptyset, \emptyset) \Longrightarrow D(\forall_{0 \le x} : D(f, \{x \leftarrow x\}, \{x \leftarrow x\}))$$

$$D(f_1 \& f_2, \sigma_l, \sigma_h) \Longrightarrow D(f_1, \sigma_l, \sigma_h) \& D(f_2, \sigma_l, \sigma_h)$$

$$D(\neg f, \sigma_l, \sigma_h) \Longrightarrow \neg D(f, \sigma_l, \sigma_h)$$

$$D(\forall_{y \in [b_1, b_2]} : f, \sigma_l, \sigma_h) \Longrightarrow \forall_{y \in [h_L(b_1), h_H(b_2)]} : D(f, \sigma_l \{y \leftarrow h_L(b_1)\}, \sigma_h \{y \leftarrow h_H(b_2)\})$$

$$D(@x, \sigma_l, \sigma_h) \Longrightarrow @x$$

where $h_L(b_1) = \min \{ b_1 \sigma_l, b_1 \sigma_h \}$ and $h_H(b_2) = \max \{ b_2 \sigma_l, b_2 \sigma_h \}$.

 The Problem
 Idea
 Evaluation Structure
 Results
 Bounding Function

 000000
 0000000
 000000
 0000000
 0000000

 Example Dominating Formula
 Formula

Definition (Quantifier Tree of a Monitor (Formula)) Given $m \in M$, and $f \in F$, we define the <u>quantifier tree QT(m) of</u> <u>m</u>, respectively QT(f) of f, recursively as follows:

$$QT(\forall_{0 \le V} : F) = (V, 0, 0, QT(F))$$
$$QT(F\&G) = QT(F) \cup QT(G)$$
$$QT(F \land G) = QT(F) \cup QT(G)$$
$$QT(\neg F) = QT(F)$$
$$QT(\forall_{V \in [B_1, B_2]} : F) = (V, B_1, B_2, QT(F))$$
$$QT(@V) = \emptyset$$

The Problem 000	ldea 000000	Evaluation Structure	Results 0000	Bounding Function	
The Bounding Function					

Now we introduce the bounding function:

Definition (Bounding Function)

Given a sentence $f \in \mathbb{M}^{\nu b}$, let f_D be its dominating formula. We construct the bounding function $b(f_D)$ as follows:

The Problem 000	ldea 000000	Evaluation Structure	Results 0000	Bounding Function
Bounding Fi	unction Exa	ample		

 We can compute the upper bound of the previous example using this bounding function:

 $\begin{array}{l} \forall_{0 \leq x} : \forall_{y \in [x+1,x+5]} : \\ \left(\forall_{z \in [x+1,x+3]} : \neg @z \& @y\right) \& \left(\forall_{w \in [x,x+7]} : \neg @y \& \forall_{m \in [x+1,x+7]} : \neg @z \& @m\right) \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Problem 000	ldea 000000	Evaluation Structure	Results 0000	Bounding Function
Bounding F	unction Exa	ample		

 We can compute the upper bound of the previous example using this bounding function:

 $\begin{array}{l} \forall_{0 \leq x} : \forall_{y \in [x+1,x+5]} : \\ \left(\forall_{z \in [x+1,x+3]} : \neg @z \& @y\right) \& \left(\forall_{w \in [x,x+7]} : \neg @y \& \forall_{m \in [x+1,x+7]} : \neg @z \& @m\right) \end{array}$

BT(1,5,7) * (BT(1,3,5) + BT(-1,7,7) * BT(1,7,7)) =25 * (12 + 34 * 28) = 24100

The Problem 000	Idea 000000	Evaluation Structure	Results 0000	Bounding Function
Bounding F	⁻ unction E	xample		

 We can compute the upper bound of the previous example using this bounding function:

 $\begin{array}{l} \forall_{0 \leq x} : \forall_{y \in [x+1,x+5]} : \\ \left(\forall_{z \in [x+1,x+3]} : \neg @z \& @y\right) \& \left(\forall_{w \in [x,x+7]} : \neg @y \& \forall_{m \in [x+1,x+7]} : \neg @z \& @m\right) \end{array}$

$$BT(1,5,7) * (BT(1,3,5) + BT(-1,7,7) * BT(1,7,7)) =$$

25 * (12 + 34 * 28) = 24100

- This is the resulting bound for the naive method
- $-\,$ With a few simple optimization we are able to get a more accurate result, \approx 1000.
- Though the true value for the dominating formula is 240 and non-dominating formula 18

(日) (同) (目) (日) (日) (0) (0)

000	000000	00000000	0000	
Conclusions	and Future	e Work		

- We have developed the method completely for the entire core language.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Though, as one can see the method is quite coarse.

			0000	000000
The Problem	Idea 000000	Evaluation Structure	Results 0000	Bounding Function

- We have developed the method completely for the entire core language.
- Though, as one can see the method is quite coarse.
- Our future work will focus on extending the method to more general structures.
 For example, quantifier chains.

The Problem	ldea	Evaluation Structure	Results	Bounding Function
000	000000		0000	○○○○○●○

Conclusions and Future Work

- We have developed the method completely for the entire core language.
- Though, as one can see the method is quite coarse.
- Our future work will focus on extending the method to more general structures.
 For example, quantifier chains.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- $-\,$ Also, we would like to investigate the dominating formula transformation.
- For example, how coarse is the transformation.

The Problem	ldea	Evaluation Structure	Results	Bounding Function
000	000000		0000	○○○○○●○

Conclusions and Future Work

- We have developed the method completely for the entire core language.
- Though, as one can see the method is quite coarse.
- Our future work will focus on extending the method to more general structures.
 For example, quantifier chains.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- $-\,$ Also, we would like to investigate the dominating formula transformation.
- For example, how coarse is the transformation.
- Still open is finding a precise bound for the entire core language.

The Problem	Idea	Evaluation Structure	Results	Bounding Function
				000000

Thank you for your time.