
The Problem Idea Evaluation Structure Results Bounding Function

Space Analysis of a Predicate Logic Fragment for
the Specification of Stream Monitors

David M. Cerna, Wolfgang Schreiner, and Temur Kutsia

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

March 29th, 2016

slide 1/33

The Problem Idea Evaluation Structure Results Bounding Function

Introduction

− LogicGuard: A coordination language for runtime monitoring of network

traffic.

− Stream monitors are written in a fragment of predicate logic.

− Monitor instances are evaluated using an operational semantics.

− Violations, monitor instances evaluating to false, are flagged.

− Previous work focused on analysis of the stream history [Kutsia and

Schreiner 2014]

− In this work, we focus on the space complexity of the instance set.

slide 2/33

The Problem Idea Evaluation Structure Results Bounding Function

Introduction

− LogicGuard: A coordination language for runtime monitoring of network

traffic.

− Stream monitors are written in a fragment of predicate logic.

− Monitor instances are evaluated using an operational semantics.

− Violations, monitor instances evaluating to false, are flagged.

− Previous work focused on analysis of the stream history [Kutsia and

Schreiner 2014]

− In this work, we focus on the space complexity of the instance set.

slide 2/33

The Problem Idea Evaluation Structure Results Bounding Function

Introduction

− LogicGuard: A coordination language for runtime monitoring of network

traffic.

− Stream monitors are written in a fragment of predicate logic.

− Monitor instances are evaluated using an operational semantics.

− Violations, monitor instances evaluating to false, are flagged.

− Previous work focused on analysis of the stream history [Kutsia and

Schreiner 2014]

− In this work, we focus on the space complexity of the instance set.

slide 2/33

The Problem Idea Evaluation Structure Results Bounding Function

The Problem

x = 0 1 2 3 . . .

. . .

slide 3/33

The Problem Idea Evaluation Structure Results Bounding Function

The Problem

x = 0 1 2 3 . . .

Instances

. . .

Monitor:

slide 4/33

The Problem Idea Evaluation Structure Results Bounding Function

The Problem

x = 0 1 2 3 . . .

Instances

. . .

Monitor:

. . .

. . .

. . .

. . .

a . . .

. . .

slide 5/33

The Problem Idea Evaluation Structure Results Bounding Function

The Problem

x = 0 1 2 3 . . .

Instances

. . .

Monitor:

. . .

. . .

. . .

. . .

a . . .

. . .

F(a)

slide 6/33

The Problem Idea Evaluation Structure Results Bounding Function

The Problem

x = 0 1 2 3 . . .

Instances

. . .

Monitor:

. . .

. . .

. . .

. . .

a . . . b . . .

.

F(a) , F(a+1), ..., F(b)

− We want to know how large the instance set gets during
evaluation.

slide 7/33

The Problem Idea Evaluation Structure Results Bounding Function

The Problem

x = 0 1 2 3 . . .

Instances

. . .

Monitor:

. . .

. . .

. . .

. . .

a . . . b . . .

.

F(a) , F(a+1), ..., F(b)

− We want to know how large the instance set gets during
evaluation.

slide 7/33

The Problem Idea Evaluation Structure Results Bounding Function

Outline

− Abstraction of the specification language.

− Background required to understand the results.

− Simplified operational semantics for the our abstraction.

− Results concerning our abstraction and evaluation method.

− Use the results to produce a bounding function for a much larger

fragment of the LogicGuard specification language.

− Conclusion and future work.

slide 8/33

The Problem Idea Evaluation Structure Results Bounding Function

Basic Idea

− Precise space analysis of the entire core language is quite difficult.

− Many individual cases to consider.

− Large formulas can allow for complex variable interaction.

M ::= ∀0≤V : F .

F ::= @V
∣∣∣¬F

∣∣∣F & F
∣∣∣F ∧ F

∣∣∣∀V∈[B,B] : F .

B ::= ∞|0|V |B + N|B − N .

V ::= x|y|z|. . . .

N ::= 0|1|2|. . . .

M ::= ∀0≤V : F .

F ::= @V
∣∣∣¬F

∣∣∣F & F
∣∣∣F ∧ F

∣∣∣∀V∈[B,B] : F .

B ::= V |B + N .

V ::= x|y|z|. . . .

N ::= 0|1|2|. . . .

− Removal of constants provides uniformity.

− Variable definition nesting can still result in complex structure.

slide 9/33

The Problem Idea Evaluation Structure Results Bounding Function

Basic Idea

− Precise space analysis of the entire core language is quite difficult.

− Many individual cases to consider.

− Large formulas can allow for complex variable interaction.

M ::= ∀0≤V : F .

F ::= @V
∣∣∣¬F

∣∣∣F & F
∣∣∣F ∧ F

∣∣∣∀V∈[B,B] : F .

B ::= ∞|0|V |B + N|B − N .

V ::= x|y|z|. . . .

N ::= 0|1|2|. . . .

M ::= ∀0≤V : F .

F ::= @V
∣∣∣¬F

∣∣∣F & F
∣∣∣F ∧ F

∣∣∣∀V∈[B,B] : F .

B ::= V |B + N .

V ::= x|y|z|. . . .

N ::= 0|1|2|. . . .

− Removal of constants provides uniformity.

− Variable definition nesting can still result in complex structure.

slide 9/33

The Problem Idea Evaluation Structure Results Bounding Function

Basic Idea

− Precise space analysis of the entire core language is quite difficult.

− Many individual cases to consider.

− Large formulas can allow for complex variable interaction.

M ::= ∀0≤V : F .

F ::= @V
∣∣∣¬F

∣∣∣F & F
∣∣∣F ∧ F

∣∣∣∀V∈[B,B] : F .

B ::= ∞|0|V |B + N|B − N .

V ::= x|y|z|. . . .

N ::= 0|1|2|. . . .

M ::= ∀0≤V : F .

F ::= @V
∣∣∣¬F

∣∣∣F & F
∣∣∣F ∧ F

∣∣∣∀V∈[B,B] : F .

B ::= V |B + N .

V ::= x|y|z|. . . .

N ::= 0|1|2|. . . .

− Removal of constants provides uniformity.

− Variable definition nesting can still result in complex structure.

slide 9/33

The Problem Idea Evaluation Structure Results Bounding Function

Basic Idea:1

− We focus on a very simple class of monitors.

− Deriving precise bounds for this simple class is easier.

− We can use the solutions for the simple cases as an invariant for a

recursive function.

− The function will be inductively defined over the formula structure.

− The following assumptions are made.

slide 10/33

The Problem Idea Evaluation Structure Results Bounding Function

Basic Idea:1

− We focus on a very simple class of monitors.

− Deriving precise bounds for this simple class is easier.

− We can use the solutions for the simple cases as an invariant for a

recursive function.

− The function will be inductively defined over the formula structure.

− The following assumptions are made.

slide 10/33

The Problem Idea Evaluation Structure Results Bounding Function

Basic Idea:1

− We focus on a very simple class of monitors.

− Deriving precise bounds for this simple class is easier.

− We can use the solutions for the simple cases as an invariant for a

recursive function.

− The function will be inductively defined over the formula structure.

− The following assumptions are made.

slide 10/33

The Problem Idea Evaluation Structure Results Bounding Function

Basic Idea:1

− We focus on a very simple class of monitors.

− Deriving precise bounds for this simple class is easier.

− We can use the solutions for the simple cases as an invariant for a

recursive function.

− The function will be inductively defined over the formula structure.

− The following assumptions are made.

slide 10/33

The Problem Idea Evaluation Structure Results Bounding Function

Basic Idea:2

− We assume that the given formula is a sentence, i.e. no free variables.

− Propositional formulas evaluate instantly when the needed positions of

the stream are available.

− Quantifier bounds only contain the stream variable.

− The last assumption is easier to give by example.

slide 11/33

The Problem Idea Evaluation Structure Results Bounding Function

Basic Idea:2

− We assume that the given formula is a sentence, i.e. no free variables.

− Propositional formulas evaluate instantly when the needed positions of

the stream are available.

− Quantifier bounds only contain the stream variable.

− The last assumption is easier to give by example.

slide 11/33

The Problem Idea Evaluation Structure Results Bounding Function

Basic Idea:3

− Consider the following:

∀0≤x :(∀y∈[x,x+5]:(@x & (∀z∈[x+1,x+2]:(@z & @y))))

− We also “drop” nested quantifiers using the following method.

∀0≤x :(@x & (∀z∈[x+1,x+2]:(@z & (∀w∈[x+5,x+5]:@w))))
∀0≤x :(@x & (∀z∈[x+1,x+2]:(@z & F ′[(∀w∈[x+5,x+5]:@w),x ,z])))
∀0≤x :F [(∀z∈[x+1,x+2]:@z & F ′[(∀w∈[x+5,x+5]:@w),x ,z]),x]

〈1, 2, 5〉N

− We refer to the last object as an N-triple.

− The formulas represented by N-triples are referred to as the restricted

fragment.

slide 12/33

The Problem Idea Evaluation Structure Results Bounding Function

Basic Idea:3

− Consider the following:

∀0≤x :(∀y∈[x,x+5]:(@x & (∀z∈[x+1,x+2]:(@z & @y))))

− We also “drop” nested quantifiers using the following method.

∀0≤x :(@x & (∀z∈[x+1,x+2]:(@z & (∀w∈[x+5,x+5]:@w))))
∀0≤x :(@x & (∀z∈[x+1,x+2]:(@z & F ′[(∀w∈[x+5,x+5]:@w),x ,z])))
∀0≤x :F [(∀z∈[x+1,x+2]:@z & F ′[(∀w∈[x+5,x+5]:@w),x ,z]),x]

〈1, 2, 5〉N

− We refer to the last object as an N-triple.

− The formulas represented by N-triples are referred to as the restricted

fragment.

slide 12/33

The Problem Idea Evaluation Structure Results Bounding Function

Basic Idea:3

− Consider the following:

∀0≤x :(∀y∈[x,x+5]:(@x & (∀z∈[x+1,x+2]:(@z & @y))))

− We also “drop” nested quantifiers using the following method.

∀0≤x :(@x & (∀z∈[x+1,x+2]:(@z & (∀w∈[x+5,x+5]:@w))))

∀0≤x :(@x & (∀z∈[x+1,x+2]:(@z & F ′[(∀w∈[x+5,x+5]:@w),x ,z])))
∀0≤x :F [(∀z∈[x+1,x+2]:@z & F ′[(∀w∈[x+5,x+5]:@w),x ,z]),x]

〈1, 2, 5〉N

− We refer to the last object as an N-triple.

− The formulas represented by N-triples are referred to as the restricted

fragment.

slide 12/33

The Problem Idea Evaluation Structure Results Bounding Function

Basic Idea:3

− Consider the following:

∀0≤x :(∀y∈[x,x+5]:(@x & (∀z∈[x+1,x+2]:(@z & @y))))

− We also “drop” nested quantifiers using the following method.

∀0≤x :(@x & (∀z∈[x+1,x+2]:(@z & (∀w∈[x+5,x+5]:@w))))
∀0≤x :(@x & (∀z∈[x+1,x+2]:(@z & F ′[(∀w∈[x+5,x+5]:@w),x ,z])))

∀0≤x :F [(∀z∈[x+1,x+2]:@z & F ′[(∀w∈[x+5,x+5]:@w),x ,z]),x]

〈1, 2, 5〉N

− We refer to the last object as an N-triple.

− The formulas represented by N-triples are referred to as the restricted

fragment.

slide 12/33

The Problem Idea Evaluation Structure Results Bounding Function

Basic Idea:3

− Consider the following:

∀0≤x :(∀y∈[x,x+5]:(@x & (∀z∈[x+1,x+2]:(@z & @y))))

− We also “drop” nested quantifiers using the following method.

∀0≤x :(@x & (∀z∈[x+1,x+2]:(@z & (∀w∈[x+5,x+5]:@w))))
∀0≤x :(@x & (∀z∈[x+1,x+2]:(@z & F ′[(∀w∈[x+5,x+5]:@w),x ,z])))
∀0≤x :F [(∀z∈[x+1,x+2]:@z & F ′[(∀w∈[x+5,x+5]:@w),x ,z]),x]

〈1, 2, 5〉N

− We refer to the last object as an N-triple.

− The formulas represented by N-triples are referred to as the restricted

fragment.

slide 12/33

The Problem Idea Evaluation Structure Results Bounding Function

Basic Idea:3

− Consider the following:

∀0≤x :(∀y∈[x,x+5]:(@x & (∀z∈[x+1,x+2]:(@z & @y))))

− We also “drop” nested quantifiers using the following method.

∀0≤x :(@x & (∀z∈[x+1,x+2]:(@z & (∀w∈[x+5,x+5]:@w))))
∀0≤x :(@x & (∀z∈[x+1,x+2]:(@z & F ′[(∀w∈[x+5,x+5]:@w),x ,z])))
∀0≤x :F [(∀z∈[x+1,x+2]:@z & F ′[(∀w∈[x+5,x+5]:@w),x ,z]),x]

〈1, 2, 5〉N

− We refer to the last object as an N-triple.

− The formulas represented by N-triples are referred to as the restricted

fragment.

slide 12/33

The Problem Idea Evaluation Structure Results Bounding Function

Basic Idea:3

− Consider the following:

∀0≤x :(∀y∈[x,x+5]:(@x & (∀z∈[x+1,x+2]:(@z & @y))))

− We also “drop” nested quantifiers using the following method.

∀0≤x :(@x & (∀z∈[x+1,x+2]:(@z & (∀w∈[x+5,x+5]:@w))))
∀0≤x :(@x & (∀z∈[x+1,x+2]:(@z & F ′[(∀w∈[x+5,x+5]:@w),x ,z])))
∀0≤x :F [(∀z∈[x+1,x+2]:@z & F ′[(∀w∈[x+5,x+5]:@w),x ,z]),x]

〈1, 2, 5〉N

− We refer to the last object as an N-triple.

− The formulas represented by N-triples are referred to as the restricted

fragment.

slide 12/33

The Problem Idea Evaluation Structure Results Bounding Function

Basic Idea:4

− N-triples essentially represent sets of formulas.

− Also, N-triples are independent of the variables used.

− This is a side effect of bounds containing the stream variable only

− The set of formulas an N-triple 〈a, b, c〉N represents can be written as
follows:

∀0≤x :F [(∀z∈[x+a,x+b]:@z & F ′[(∀w∈[x+c,x+c]:@w),x,z]),x]

− An instance of an N-triple given the position n for the stream variable is
〈a, b, c〉N (n) and the set can be written as follows:

F [(∀z∈[n+a,n+b]:@z & F ′[(∀w∈[n+c,n+c]:@w),n,z]),n]

slide 13/33

The Problem Idea Evaluation Structure Results Bounding Function

Basic Idea:4

− N-triples essentially represent sets of formulas.

− Also, N-triples are independent of the variables used.

− This is a side effect of bounds containing the stream variable only

− The set of formulas an N-triple 〈a, b, c〉N represents can be written as
follows:

∀0≤x :F [(∀z∈[x+a,x+b]:@z & F ′[(∀w∈[x+c,x+c]:@w),x,z]),x]

− An instance of an N-triple given the position n for the stream variable is
〈a, b, c〉N (n) and the set can be written as follows:

F [(∀z∈[n+a,n+b]:@z & F ′[(∀w∈[n+c,n+c]:@w),n,z]),n]

slide 13/33

The Problem Idea Evaluation Structure Results Bounding Function

Basic Idea:4

− N-triples essentially represent sets of formulas.

− Also, N-triples are independent of the variables used.

− This is a side effect of bounds containing the stream variable only

− The set of formulas an N-triple 〈a, b, c〉N represents can be written as
follows:

∀0≤x :F [(∀z∈[x+a,x+b]:@z & F ′[(∀w∈[x+c,x+c]:@w),x,z]),x]

− An instance of an N-triple given the position n for the stream variable is
〈a, b, c〉N (n) and the set can be written as follows:

F [(∀z∈[n+a,n+b]:@z & F ′[(∀w∈[n+c,n+c]:@w),n,z]),n]

slide 13/33

The Problem Idea Evaluation Structure Results Bounding Function

Basic Idea:5

Today we will address the following question: Given an
N-triple 〈a, b, c〉N and an external stream S starting at some
value α, how many instances do we need to keep in memory
when evaluating 〈a, b, c〉N on S starting at α?

slide 14/33

The Problem Idea Evaluation Structure Results Bounding Function

Core Language Evaluation

− N-triples are extremely simple compared to sentences of the core

language.

− Evaluation of N-triples only requires a fragment of the evaluation rules

used for sentences of the core language.

− Most of the reduction in the number of rules concerns the removal of

propositional structure from N-triples.

− Evaluation of monitors written using the core language is done by a small
step operational semantics.

∀IS
0≤x : f →p,MS,m,RS ∀IS′

0≤x : f

− The transition from IS to IS ′ is defined as a formula transition relation:

f →p,MS,m,c f ′

slide 15/33

The Problem Idea Evaluation Structure Results Bounding Function

Core Language Evaluation

− N-triples are extremely simple compared to sentences of the core

language.

− Evaluation of N-triples only requires a fragment of the evaluation rules

used for sentences of the core language.

− Most of the reduction in the number of rules concerns the removal of

propositional structure from N-triples.

− Evaluation of monitors written using the core language is done by a small
step operational semantics.

∀IS
0≤x : f →p,MS,m,RS ∀IS′

0≤x : f

− The transition from IS to IS ′ is defined as a formula transition relation:

f →p,MS,m,c f ′

slide 15/33

The Problem Idea Evaluation Structure Results Bounding Function

Formula Transition Relation

Atomic Formulas
Transition Constraints
A1 n(@y)→ d(c.2(y))) y ∈ dom(c.2)
A2 n(@y)→ d(⊥) y 6∈ dom(c.2)

Negation

N1 n(¬f)→ n(¬n(f ′)) f → n(f ′)
N2 n(¬f)→ d(⊥) f → d(>)
N3 n(¬f)→ d(>) f → d(⊥)

Sequential conjunction

C1 n(f1 & f2)→ n(n(f ′1) & f2) f1 → n(f ′1)
C2 n(f1 & f2)→ d(⊥) f1 → d(⊥)

C3 n(f1 & f2)→ n(f ′2) f1 → d(>), f2 → n(f ′2)
Quantification

Q1 ∀y∈[b1,b2] : f → d(>) p1 = b1(c) , p2 = b2(c) , p1 > p2 ∨ p1 =∞

Q2 ∀y∈[b1,b2] : f → F ′ p1 = b1(c) , p2 = b2(c), p1 6=∞ , p1 ≤ p2,
n(∀y∈[p1,p2] : f)→ F ′

Q3 n(∀y∈[p1,p2] : f)→ n(∀y∈[p1,p2] : f) p < p1

Q4 n(∀y∈[p1,p2] : f)→ F ′ p1 ≤ p, n(∀ISf

y≤p2
: f)→ F ′

Q5 n(∀ISf

y≤p2
: f)→ d(⊥) DF

Q6 n(∀ISf

y≤p2
: f)→ d(>) ¬DF , IS f

1 = ∅, p2 < p

Q7 n(∀ISf

y≤p2
: f)→ n(∀

ISf
1

y≤p2
: f) ¬DF , (IS f

1 6= ∅ ∨ p ≤ p2)

slide 16/33

The Problem Idea Evaluation Structure Results Bounding Function

Defining N-triple Evaluation

− For N-triple evaluation we only need to consider the quantifier
rules of core language formula evaluation.

Quantification
Q1 ∀y∈[b1,b2] : f → d(>) p1 = b1(c) , p2 = b2(c) , p1 > p2 ∨ p1 =∞

Q2 ∀y∈[b1,b2] : f → F ′ p1 = b1(c) , p2 = b2(c), p1 6=∞ , p1 ≤ p2,
n(∀y∈[p1,p2] : f)→ F ′

Q3 n(∀y∈[p1,p2] : f)→ n(∀y∈[p1,p2] : f) p < p1

Q4 n(∀y∈[p1,p2] : f)→ F ′ p1 ≤ p, n(∀ISf

y≤p2
: f)→ F ′

Q5 n(∀ISf

y≤p2
: f)→ d(⊥) DF

Q6 n(∀ISf

y≤p2
: f)→ d(>) ¬DF , IS f

1 = ∅, p2 < p

Q7 n(∀ISf

y≤p2
: f)→ n(∀

ISf
1

y≤p2
: f) ¬DF , (IS f

1 6= ∅ ∨ p ≤ p2)

slide 17/33

The Problem Idea Evaluation Structure Results Bounding Function

Defining N-triple Evaluation

− Though, not all the quantifier rules are needed.

Quantification
Q1 ∀y∈[b1,b2] : f → d(>) p1 = b1(c) , p2 = b2(c) , p1 > p2 ∨ p1 =∞
Q3 n(∀y∈[p1,p2] : f)→ n(∀y∈[p1,p2] : f) p < p1

Q5 n(∀ISf

y≤p2
: f)→ d(⊥) DF

Q6 n(∀ISf

y≤p2
: f)→ d(>) ¬DF , IS f

1 = ∅, p2 < p

Q7 n(∀ISf

y≤p2
: f)→ n(∀

ISf
1

y≤p2
: f) ¬DF , (IS f

1 6= ∅ ∨ p ≤ p2)

slide 18/33

The Problem Idea Evaluation Structure Results Bounding Function

Evaluation of N-triples

− To apply the above transition rules to N-triples we need the notion of

atomic N-triples.

− Also, splitting of N-triples.

〈a, b, c〉N

〈a + 1, b, c〉N

〈a, a, c〉N

〈a, b, c〉N ≡ 〈a + 1, b, c〉N ∧ 〈a, a, c〉N

− Though, 〈a, a, c〉N (α) is “propositional”, it cannot be evaluated till α + c

is available.

slide 19/33

The Problem Idea Evaluation Structure Results Bounding Function

Evaluation of N-triples

− To apply the above transition rules to N-triples we need the notion of

atomic N-triples.

− Also, splitting of N-triples.

〈a, b, c〉N

〈a + 1, b, c〉N

〈a, a, c〉N

〈a, b, c〉N ≡ 〈a + 1, b, c〉N ∧ 〈a, a, c〉N

− Though, 〈a, a, c〉N (α) is “propositional”, it cannot be evaluated till α + c

is available.

slide 19/33

The Problem Idea Evaluation Structure Results Bounding Function

Evaluation of N-triples

− To apply the above transition rules to N-triples we need the notion of

atomic N-triples.

− Also, splitting of N-triples.

〈a, b, c〉N

〈a + 1, b, c〉N

〈a, a, c〉N

〈a, b, c〉N ≡ 〈a + 1, b, c〉N ∧ 〈a, a, c〉N

− Though, 〈a, a, c〉N (α) is “propositional”, it cannot be evaluated till α + c

is available.

slide 19/33

The Problem Idea Evaluation Structure Results Bounding Function

Evaluation of N-triples

− To apply the above transition rules to N-triples we need the notion of

atomic N-triples.

− Also, splitting of N-triples.

〈a, b, c〉N

〈a + 1, b, c〉N

〈a, a, c〉N

〈a, b, c〉N ≡ 〈a + 1, b, c〉N ∧ 〈a, a, c〉N

− Though, 〈a, a, c〉N (α) is “propositional”, it cannot be evaluated till α + c

is available.

slide 19/33

The Problem Idea Evaluation Structure Results Bounding Function

Evaluation of N-triples

− Essentially as soon as a needed stream position is available we split the

triple instances.

− Also as soon as the third component of a triple instance 〈a, a, c〉N (α) is

available we remove it from memory.

− We encapsulate these ideas in the following structure:

. . .
[α,∞]−−−→

[
n, 〈a, b, c〉N , I

] [α,∞]−−−→
[
n + 1, 〈a, b, c〉N , I

′] [α,∞]−−−→ . . .

− n is the initial stream variable position and I is the initial memory.

− n + 1 is the new stream variable position and I′ is the new memory state.

slide 20/33

The Problem Idea Evaluation Structure Results Bounding Function

Evaluation structure

− An evaluation structure is an object:[
n, 〈a, b, c〉N , I

]
− We will start from an initial evaluation structure:[

B, 〈a, b, c〉N , ∅
]

where B is the position to left of the interval we are evaluating over.

slide 21/33

The Problem Idea Evaluation Structure Results Bounding Function

Evaluation example

− Let us consider the evaluation of t = 〈0, 2, 2〉N over the
interval [0,∞) starting at 0.

[B, t, ∅] [0,∞)−−−→
[

0, t,

{
〈1, 2, 2〉N (0)
〈0, 0, 2〉N (0)

}]
[α,∞)−−−→

1, t,


〈2, 2, 2〉N (0)
〈1, 1, 2〉N (0)
〈0, 0, 2〉N (0)
〈1, 2, 2〉N (1)
〈0, 0, 2〉N (1)



 [α,∞)−−−→

2, t,


〈2, 2, 2〉N (1)
〈1, 1, 2〉N (1)
〈0, 0, 2〉N (1)
〈1, 2, 2〉N (2)
〈0, 0, 2〉N (2)



 [α,∞)−−−→

3, t,


〈2, 2, 2〉N (2)
〈1, 1, 2〉N (2)
〈0, 0, 2〉N (2)
〈1, 2, 2〉N (3)
〈0, 0, 2〉N (3)



 [α,∞)−−−→ · · ·

slide 22/33

The Problem Idea Evaluation Structure Results Bounding Function

Evaluation example

− Let us consider the evaluation of t = 〈0, 2, 2〉N over the
interval [0,∞) starting at 0.

[B, t, ∅] [0,∞)−−−→
[

0, t,

{
〈1, 2, 2〉N (0)
〈0, 0, 2〉N (0)

}]
[α,∞)−−−→

1, t,


〈2, 2, 2〉N (0)
〈1, 1, 2〉N (0)
〈0, 0, 2〉N (0)
〈1, 2, 2〉N (1)
〈0, 0, 2〉N (1)



 [α,∞)−−−→

2, t,


〈2, 2, 2〉N (1)
〈1, 1, 2〉N (1)
〈0, 0, 2〉N (1)
〈1, 2, 2〉N (2)
〈0, 0, 2〉N (2)



 [α,∞)−−−→

3, t,


〈2, 2, 2〉N (2)
〈1, 1, 2〉N (2)
〈0, 0, 2〉N (2)
〈1, 2, 2〉N (3)
〈0, 0, 2〉N (3)



 [α,∞)−−−→ · · ·

slide 22/33

The Problem Idea Evaluation Structure Results Bounding Function

Evaluation example

− Let us consider the evaluation of t = 〈0, 2, 2〉N over the
interval [0,∞) starting at 0.

[B, t, ∅] [0,∞)−−−→
[

0, t,

{
〈1, 2, 2〉N (0)
〈0, 0, 2〉N (0)

}]
[α,∞)−−−→

1, t,


〈2, 2, 2〉N (0)
〈1, 1, 2〉N (0)
〈0, 0, 2〉N (0)
〈1, 2, 2〉N (1)
〈0, 0, 2〉N (1)



 [α,∞)−−−→

2, t,


〈2, 2, 2〉N (1)
〈1, 1, 2〉N (1)
〈0, 0, 2〉N (1)
〈1, 2, 2〉N (2)
〈0, 0, 2〉N (2)



 [α,∞)−−−→

3, t,


〈2, 2, 2〉N (2)
〈1, 1, 2〉N (2)
〈0, 0, 2〉N (2)
〈1, 2, 2〉N (3)
〈0, 0, 2〉N (3)



 [α,∞)−−−→ · · ·

slide 22/33

The Problem Idea Evaluation Structure Results Bounding Function

Base Case

− We start by considering N-triples of the form 〈0, b, b〉N.

− These are the simplest because all atomic instances are removed at the

same time.

− Also, there is no shift in position

− The following theorem concerns bounding of the instance set:

Theorem
Given an N-triple t of the form 〈0, b, b〉N and an interval [α, β] such that
α ≤ b < β, then there exists a value x ∈ [α, β] such that given the complete
proper evaluation chain:

[B, t, ∅] [α,β]−−−→ · · · [α,β]−−−→ [x − 1, t, I0]
[α,β]−−−→ [x , t, I1]

[α,β]−−−→ · · · [α,β]−−−→ [β, t, Iβ−x]

the following holds |I0| 6= |I1| = · · · = |Iβ−x |.

slide 23/33

The Problem Idea Evaluation Structure Results Bounding Function

Base Case

− We start by considering N-triples of the form 〈0, b, b〉N.

− These are the simplest because all atomic instances are removed at the

same time.

− Also, there is no shift in position

− The following theorem concerns bounding of the instance set:

Theorem
Given an N-triple t of the form 〈0, b, b〉N and an interval [α, β] such that
α ≤ b < β, then there exists a value x ∈ [α, β] such that given the complete
proper evaluation chain:

[B, t, ∅] [α,β]−−−→ · · · [α,β]−−−→ [x − 1, t, I0]
[α,β]−−−→ [x , t, I1]

[α,β]−−−→ · · · [α,β]−−−→ [β, t, Iβ−x]

the following holds |I0| 6= |I1| = · · · = |Iβ−x |.

slide 23/33

The Problem Idea Evaluation Structure Results Bounding Function

Base Case

− The instance 〈0, b, b〉N (α) is the first instance and any sub-instance will

not be removed from memory till the position α + b. There are b+1

sub-instances of 〈0, b, b〉N (α) at α + b − 1 .

− We also need to count the instances 〈0, b, b〉N (α + 1), · · · ,
〈0, b, b〉N (α + b − 1) of which there are

b∑
i=2

i =
b · (b + 1)

2
− 1.

− At α+ b we remove b + 1 instances from memory, unroll b − 1 new ones,

and add two instances for 〈0, b, b〉N (α + b). Thus the used portion of

memory stays the same.

− It can be shown inductively that the same pattern holds for every position

α + b ≤, thus, x = α + b − 1.

slide 24/33

The Problem Idea Evaluation Structure Results Bounding Function

Base Case

− The instance 〈0, b, b〉N (α) is the first instance and any sub-instance will

not be removed from memory till the position α + b. There are b+1

sub-instances of 〈0, b, b〉N (α) at α + b − 1 .

− We also need to count the instances 〈0, b, b〉N (α + 1), · · · ,
〈0, b, b〉N (α + b − 1) of which there are

b∑
i=2

i =
b · (b + 1)

2
− 1.

− At α+ b we remove b + 1 instances from memory, unroll b − 1 new ones,

and add two instances for 〈0, b, b〉N (α + b). Thus the used portion of

memory stays the same.

− It can be shown inductively that the same pattern holds for every position

α + b ≤, thus, x = α + b − 1.

slide 24/33

The Problem Idea Evaluation Structure Results Bounding Function

Base Case

− The instance 〈0, b, b〉N (α) is the first instance and any sub-instance will

not be removed from memory till the position α + b. There are b+1

sub-instances of 〈0, b, b〉N (α) at α + b − 1 .

− We also need to count the instances 〈0, b, b〉N (α + 1), · · · ,
〈0, b, b〉N (α + b − 1) of which there are

b∑
i=2

i =
b · (b + 1)

2
− 1.

− At α+ b we remove b + 1 instances from memory, unroll b − 1 new ones,

and add two instances for 〈0, b, b〉N (α + b). Thus the used portion of

memory stays the same.

− It can be shown inductively that the same pattern holds for every position

α + b ≤, thus, x = α + b − 1.

slide 24/33

The Problem Idea Evaluation Structure Results Bounding Function

Base Case

− The instance 〈0, b, b〉N (α) is the first instance and any sub-instance will

not be removed from memory till the position α + b. There are b+1

sub-instances of 〈0, b, b〉N (α) at α + b − 1 .

− We also need to count the instances 〈0, b, b〉N (α + 1), · · · ,
〈0, b, b〉N (α + b − 1) of which there are

b∑
i=2

i =
b · (b + 1)

2
− 1.

− At α+ b we remove b + 1 instances from memory, unroll b − 1 new ones,

and add two instances for 〈0, b, b〉N (α + b). Thus the used portion of

memory stays the same.

− It can be shown inductively that the same pattern holds for every position

α + b ≤, thus, x = α + b − 1.

slide 24/33

The Problem Idea Evaluation Structure Results Bounding Function

Base Case

− The following two corollaries follow from the result:

Corollary
Given an N-triple t of the form 〈0, b, b〉N and an interval [α,∞], then there exists a
value x ∈ [α,∞] such that given the proper evaluation chain:

[B, t, ∅] [α,∞]−−−−→ · · · [x − 1, t, I0]
[α,∞]−−−−→ [x , t, I1]

[α,∞]−−−−→ · · ·

the following holds |I0| 6= |I1| = |I2| = · · · .

Corollary
Given an N-triple t of the form 〈0, b, b〉N, an interval [α,∞], and the proper
evaluation chain:

[B, t, ∅] [α,∞]−−−−→ [α, t, Iα]
[α,∞]−−−−→ [α+ 1, t, Iα+1]

[α,∞]−−−−→ · · ·

then,

|In| ≤
(b + 1) ∗ (b + 2)

2
− 1

for all n ∈ [α,∞].

slide 25/33

The Problem Idea Evaluation Structure Results Bounding Function

All N-Triples

− The space complexity of any N-triple 〈a, b, c〉N is as follows:

Theorem
Given an N-triple t of the form 〈a, b, c〉N ,where 0 ≤ a ≤ b, 0 ≤ c, an interval [α,∞],
and the proper evaluation chain:

[B, t, ∅] [α,∞]−−−−→ [α, t, Iα]
[α,∞]−−−−→ [α+ 1, t, Iα+1]

[α,∞]−−−−→ · · ·

then,
|In| ≤ BT (a, b, c)

for all n ∈ [α,∞],where

BT (a, b, c) =



a + (I − 1)

a +
(I − d)(I − d + 1)

2
+ (d − 1)

a +
I ∗ (I + 1)

2
+ d ∗ I − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

c ≤ a

=̧b − d & a ≤ c < b

c = b + d

We define I = (b − a) + 1.
slide 26/33

The Problem Idea Evaluation Structure Results Bounding Function

Bounding Function

− Now we move from bounding N-triples to bounding the reduced core

language, i.e. without infinity, constants, and subtraction.

− Formulas of the reduced core language can still have variable nesting.

− Before introducing our transformation removing variable nesting we add

one more assumption.

− We assume that each quantifier in a given formula has a unique variable

name.

slide 27/33

The Problem Idea Evaluation Structure Results Bounding Function

Dominating Formula

Definition (Dominating Formula Transformation)
Given a sentence f ∈ Mvb we construct the dominating formula fD of f using
the following transformation

D(∀0≤x : fD , ∅, ∅) =⇒ D(∀0≤x : D(f , {x ← x} , {x ← x}))

D(f1 & f2, σl , σh) =⇒ D(f1, σl , σh) & D(f2, σl , σh)

D(¬f , σl , σh) =⇒ ¬D(f , σl , σh)

D(∀y∈[b1,b2] : f , σl , σh) =⇒ ∀y∈[hL(b1),hH (b2)] : D(f , σl {y ← hL(b1)} , σh {y ← hH (b2)})
D(@x , σl , σh) =⇒ @x

where hL(b1) = min {b1σl , b1σh} and hH (b2) = max {b2σl , b2σh}.

slide 28/33

The Problem Idea Evaluation Structure Results Bounding Function

Example Dominating Formula

Definition (Quantifier Tree of a Monitor (Formula))

Given m ∈ M, and f ∈ F , we define the quantifier tree QT (m) of
m, respectively QT (f) of f , recursively as follows:

QT (∀0≤V : F) = (V , 0, 0,QT (F))

QT (F&G) = QT (F) ∪ QT (G)

QT (F ∧ G) = QT (F) ∪ QT (G)

QT (¬F) = QT (F)

QT (∀V∈[B1,B2] : F) = (V ,B1,B2,QT (F))

QT (@V) = ∅

slide 29/33

The Problem Idea Evaluation Structure Results Bounding Function

The Bounding Function

− Now we introduce the bounding function:

Definition (Bounding Function)
Given a sentence f ∈ Mvb, let fD be its dominating formula. We construct the
bounding function b(fD) as follows:

b(∀0≤x : f) =⇒ b(f , {x ← 0})
b(@f & @g , σ) =⇒ b(f , σ) + b(g , σ)

b(¬f , σ) =⇒ b(f , σ)
b(∀y∈[x+a,x+b] : f , σ) =⇒ BT (a, b,w(f , σ {y ← (x + b)σ})) ∗ b(f , σ {y ← (x + b)σ})

b(@y , σ) =⇒ 1
w(@f & @g , σ) =⇒ max {w(f , σ),w(G , σ)}

w(¬f , σ) =⇒ w(f , σ)
w(∀y∈[x+a,x+b] : f , σ) =⇒ w(f , σ {y ← (x + b)σ})

w(@y , σ) =⇒ yσ

slide 30/33

The Problem Idea Evaluation Structure Results Bounding Function

Bounding Function Example

− We can compute the upper bound of the previous example using this bounding

function:

∀0≤x : ∀y∈[x+1,x+5] :(
∀z∈[x+1,x+3] : ¬@z & @y

)
&
(
∀w∈[x,x+7] : ¬@y & ∀m∈[x+1,x+7] : ¬@z & @m

)

BT (1, 5, 7) ∗ (BT (1, 3, 5) + BT (−1, 7, 7) ∗ BT (1, 7, 7)) =

25 ∗ (12 + 34 ∗ 28) = 24100

− This is the resulting bound for the naive method

− With a few simple optimization we are able to get a more accurate result,

≈ 1000.

− Though the true value for the dominating formula is 240 and non-dominating

formula 18

slide 31/33

The Problem Idea Evaluation Structure Results Bounding Function

Bounding Function Example

− We can compute the upper bound of the previous example using this bounding

function:

∀0≤x : ∀y∈[x+1,x+5] :(
∀z∈[x+1,x+3] : ¬@z & @y

)
&
(
∀w∈[x,x+7] : ¬@y & ∀m∈[x+1,x+7] : ¬@z & @m

)
BT (1, 5, 7) ∗ (BT (1, 3, 5) + BT (−1, 7, 7) ∗ BT (1, 7, 7)) =

25 ∗ (12 + 34 ∗ 28) = 24100

− This is the resulting bound for the naive method

− With a few simple optimization we are able to get a more accurate result,

≈ 1000.

− Though the true value for the dominating formula is 240 and non-dominating

formula 18

slide 31/33

The Problem Idea Evaluation Structure Results Bounding Function

Bounding Function Example

− We can compute the upper bound of the previous example using this bounding

function:

∀0≤x : ∀y∈[x+1,x+5] :(
∀z∈[x+1,x+3] : ¬@z & @y

)
&
(
∀w∈[x,x+7] : ¬@y & ∀m∈[x+1,x+7] : ¬@z & @m

)
BT (1, 5, 7) ∗ (BT (1, 3, 5) + BT (−1, 7, 7) ∗ BT (1, 7, 7)) =

25 ∗ (12 + 34 ∗ 28) = 24100

− This is the resulting bound for the naive method

− With a few simple optimization we are able to get a more accurate result,

≈ 1000.

− Though the true value for the dominating formula is 240 and non-dominating

formula 18

slide 31/33

The Problem Idea Evaluation Structure Results Bounding Function

Conclusions and Future Work

− We have developed the method completely for the entire core language.

− Though, as one can see the method is quite coarse.

− Our future work will focus on extending the method to more general structures.

For example, quantifier chains.

− Also, we would like to investigate the dominating formula transformation.

− For example, how coarse is the transformation.

− Still open is finding a precise bound for the entire core language.

slide 32/33

The Problem Idea Evaluation Structure Results Bounding Function

Conclusions and Future Work

− We have developed the method completely for the entire core language.

− Though, as one can see the method is quite coarse.

− Our future work will focus on extending the method to more general structures.

For example, quantifier chains.

− Also, we would like to investigate the dominating formula transformation.

− For example, how coarse is the transformation.

− Still open is finding a precise bound for the entire core language.

slide 32/33

The Problem Idea Evaluation Structure Results Bounding Function

Conclusions and Future Work

− We have developed the method completely for the entire core language.

− Though, as one can see the method is quite coarse.

− Our future work will focus on extending the method to more general structures.

For example, quantifier chains.

− Also, we would like to investigate the dominating formula transformation.

− For example, how coarse is the transformation.

− Still open is finding a precise bound for the entire core language.

slide 32/33

The Problem Idea Evaluation Structure Results Bounding Function

Conclusions and Future Work

− We have developed the method completely for the entire core language.

− Though, as one can see the method is quite coarse.

− Our future work will focus on extending the method to more general structures.

For example, quantifier chains.

− Also, we would like to investigate the dominating formula transformation.

− For example, how coarse is the transformation.

− Still open is finding a precise bound for the entire core language.

slide 32/33

The Problem Idea Evaluation Structure Results Bounding Function

Thank you for your time.

slide 33/33

	The Problem
	TP1
	TP1
	TP1

	Idea
	TP2
	TP3
	TP4
	TP5
	TP6
	TP7

	Evaluation Structure
	ES1
	ES2
	ES3
	ES4
	ES5
	ES6

	Results
	R1
	R2
	R3
	R4

	Bounding Function
	BF1
	BF2
	BF3
	BF4
	BF5
	BF6
	Con2

