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Introduction

− LogicGuard: A coordination language for runtime monitoring of network

traffic.

− Stream monitors are written in a fragment of predicate logic.

− Monitor instances are evaluated using an operational semantics.

− Violations, monitor instances evaluating to false, are flagged.

− Previous work focused on analysis of the stream history [Kutsia and

Schreiner 2014]

− In this work, we focus on the space complexity of the instance set.
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evaluation.
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Outline

− Abstraction of the specification language.

− Background required to understand the results.

− Simplified operational semantics for the our abstraction.

− Results concerning our abstraction and evaluation method.

− Use the results to produce a bounding function for a much larger

fragment of the LogicGuard specification language.

− Conclusion and future work.
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Basic Idea

− Precise space analysis of the entire core language is quite difficult.

− Many individual cases to consider.

− Large formulas can allow for complex variable interaction.

M ::= ∀0≤V : F .

F ::= @V
∣∣∣¬F

∣∣∣F & F
∣∣∣F ∧ F

∣∣∣∀V∈[B,B] : F .

B ::= ∞|0|V |B + N|B − N .

V ::= x|y|z|. . . .

N ::= 0|1|2|. . . .

M ::= ∀0≤V : F .

F ::= @V
∣∣∣¬F

∣∣∣F & F
∣∣∣F ∧ F

∣∣∣∀V∈[B,B] : F .

B ::= V |B + N .

V ::= x|y|z|. . . .

N ::= 0|1|2|. . . .

− Removal of constants provides uniformity.

− Variable definition nesting can still result in complex structure.
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Basic Idea:1

− We focus on a very simple class of monitors.

− Deriving precise bounds for this simple class is easier.

− We can use the solutions for the simple cases as an invariant for a

recursive function.

− The function will be inductively defined over the formula structure.

− The following assumptions are made.
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The Problem Idea Evaluation Structure Results Bounding Function

Basic Idea:2

− We assume that the given formula is a sentence, i.e. no free variables.

− Propositional formulas evaluate instantly when the needed positions of

the stream are available.

− Quantifier bounds only contain the stream variable.

− The last assumption is easier to give by example.
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Basic Idea:3

− Consider the following:

∀0≤x :(∀y∈[x,x+5]:(@x & (∀z∈[x+1,x+2]:(@z & @y))))

− We also “drop” nested quantifiers using the following method.

∀0≤x :(@x & (∀z∈[x+1,x+2]:(@z & (∀w∈[x+5,x+5]:@w))))
∀0≤x :(@x & (∀z∈[x+1,x+2]:(@z & F ′[(∀w∈[x+5,x+5]:@w),x ,z])))
∀0≤x :F [(∀z∈[x+1,x+2]:@z & F ′[(∀w∈[x+5,x+5]:@w),x ,z]),x]

〈1, 2, 5〉N

− We refer to the last object as an N-triple.

− The formulas represented by N-triples are referred to as the restricted

fragment.
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Basic Idea:4

− N-triples essentially represent sets of formulas.

− Also, N-triples are independent of the variables used.

− This is a side effect of bounds containing the stream variable only

− The set of formulas an N-triple 〈a, b, c〉N represents can be written as
follows:

∀0≤x :F [(∀z∈[x+a,x+b]:@z & F ′[(∀w∈[x+c,x+c]:@w),x,z]),x]

− An instance of an N-triple given the position n for the stream variable is
〈a, b, c〉N (n) and the set can be written as follows:

F [(∀z∈[n+a,n+b]:@z & F ′[(∀w∈[n+c,n+c]:@w),n,z]),n]
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Basic Idea:5

Today we will address the following question: Given an
N-triple 〈a, b, c〉N and an external stream S starting at some
value α, how many instances do we need to keep in memory
when evaluating 〈a, b, c〉N on S starting at α?
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Core Language Evaluation

− N-triples are extremely simple compared to sentences of the core

language.

− Evaluation of N-triples only requires a fragment of the evaluation rules

used for sentences of the core language.

− Most of the reduction in the number of rules concerns the removal of

propositional structure from N-triples.

− Evaluation of monitors written using the core language is done by a small
step operational semantics.

∀IS
0≤x : f →p,MS,m,RS ∀IS′

0≤x : f

− The transition from IS to IS ′ is defined as a formula transition relation:

f →p,MS,m,c f ′

slide 15/33



The Problem Idea Evaluation Structure Results Bounding Function

Core Language Evaluation

− N-triples are extremely simple compared to sentences of the core

language.

− Evaluation of N-triples only requires a fragment of the evaluation rules

used for sentences of the core language.

− Most of the reduction in the number of rules concerns the removal of

propositional structure from N-triples.

− Evaluation of monitors written using the core language is done by a small
step operational semantics.

∀IS
0≤x : f →p,MS,m,RS ∀IS′

0≤x : f

− The transition from IS to IS ′ is defined as a formula transition relation:

f →p,MS,m,c f ′

slide 15/33



The Problem Idea Evaluation Structure Results Bounding Function

Formula Transition Relation

Atomic Formulas
# Transition Constraints
A1 n(@y)→ d(c.2(y))) y ∈ dom(c.2)
A2 n(@y)→ d(⊥) y 6∈ dom(c.2)

Negation

N1 n(¬f )→ n(¬n(f ′)) f → n(f ′)
N2 n(¬f )→ d(⊥) f → d(>)
N3 n(¬f )→ d(>) f → d(⊥)

Sequential conjunction

C1 n(f1 & f2)→ n(n(f ′1 ) & f2) f1 → n(f ′1 )
C2 n(f1 & f2)→ d(⊥) f1 → d(⊥)

C3 n(f1 & f2)→ n(f ′2 ) f1 → d(>), f2 → n(f ′2 )
Quantification

Q1 ∀y∈[b1,b2] : f → d(>) p1 = b1(c) , p2 = b2(c) , p1 > p2 ∨ p1 =∞

Q2 ∀y∈[b1,b2] : f → F ′ p1 = b1(c) , p2 = b2(c), p1 6=∞ , p1 ≤ p2,
n(∀y∈[p1,p2] : f )→ F ′

Q3 n(∀y∈[p1,p2] : f )→ n(∀y∈[p1,p2] : f ) p < p1

Q4 n(∀y∈[p1,p2] : f )→ F ′ p1 ≤ p, n(∀ISf

y≤p2
: f )→ F ′

Q5 n(∀ISf

y≤p2
: f )→ d(⊥) DF

Q6 n(∀ISf

y≤p2
: f )→ d(>) ¬DF , IS f

1 = ∅, p2 < p

Q7 n(∀ISf

y≤p2
: f )→ n(∀

ISf
1

y≤p2
: f ) ¬DF , (IS f

1 6= ∅ ∨ p ≤ p2)
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Defining N-triple Evaluation

− For N-triple evaluation we only need to consider the quantifier
rules of core language formula evaluation.

Quantification
Q1 ∀y∈[b1,b2] : f → d(>) p1 = b1(c) , p2 = b2(c) , p1 > p2 ∨ p1 =∞

Q2 ∀y∈[b1,b2] : f → F ′ p1 = b1(c) , p2 = b2(c), p1 6=∞ , p1 ≤ p2,
n(∀y∈[p1,p2] : f )→ F ′
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Defining N-triple Evaluation

− Though, not all the quantifier rules are needed.

Quantification
Q1 ∀y∈[b1,b2] : f → d(>) p1 = b1(c) , p2 = b2(c) , p1 > p2 ∨ p1 =∞
Q3 n(∀y∈[p1,p2] : f )→ n(∀y∈[p1,p2] : f ) p < p1

Q5 n(∀ISf

y≤p2
: f )→ d(⊥) DF

Q6 n(∀ISf

y≤p2
: f )→ d(>) ¬DF , IS f

1 = ∅, p2 < p

Q7 n(∀ISf

y≤p2
: f )→ n(∀

ISf
1

y≤p2
: f ) ¬DF , (IS f

1 6= ∅ ∨ p ≤ p2)
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Evaluation of N-triples

− To apply the above transition rules to N-triples we need the notion of

atomic N-triples.

− Also, splitting of N-triples.

〈a, b, c〉N

〈a + 1, b, c〉N

〈a, a, c〉N

〈a, b, c〉N ≡ 〈a + 1, b, c〉N ∧ 〈a, a, c〉N

− Though, 〈a, a, c〉N (α) is “propositional”, it cannot be evaluated till α + c

is available.
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Evaluation of N-triples

− Essentially as soon as a needed stream position is available we split the

triple instances.

− Also as soon as the third component of a triple instance 〈a, a, c〉N (α) is

available we remove it from memory.

− We encapsulate these ideas in the following structure:

. . .
[α,∞]−−−→

[
n, 〈a, b, c〉N , I

] [α,∞]−−−→
[
n + 1, 〈a, b, c〉N , I

′] [α,∞]−−−→ . . .

− n is the initial stream variable position and I is the initial memory.

− n + 1 is the new stream variable position and I′ is the new memory state.
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Evaluation structure

− An evaluation structure is an object:[
n, 〈a, b, c〉N , I

]
− We will start from an initial evaluation structure:[

B, 〈a, b, c〉N , ∅
]

where B is the position to left of the interval we are evaluating over.
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Evaluation example

− Let us consider the evaluation of t = 〈0, 2, 2〉N over the
interval [0,∞) starting at 0.

[B, t, ∅] [0,∞)−−−→
[

0, t,

{
〈1, 2, 2〉N (0)
〈0, 0, 2〉N (0)

}]
[α,∞)−−−→

1, t,


〈2, 2, 2〉N (0)
〈1, 1, 2〉N (0)
〈0, 0, 2〉N (0)
〈1, 2, 2〉N (1)
〈0, 0, 2〉N (1)



 [α,∞)−−−→

2, t,


〈2, 2, 2〉N (1)
〈1, 1, 2〉N (1)
〈0, 0, 2〉N (1)
〈1, 2, 2〉N (2)
〈0, 0, 2〉N (2)



 [α,∞)−−−→

3, t,


〈2, 2, 2〉N (2)
〈1, 1, 2〉N (2)
〈0, 0, 2〉N (2)
〈1, 2, 2〉N (3)
〈0, 0, 2〉N (3)



 [α,∞)−−−→ · · ·
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Base Case

− We start by considering N-triples of the form 〈0, b, b〉N.

− These are the simplest because all atomic instances are removed at the

same time.

− Also, there is no shift in position

− The following theorem concerns bounding of the instance set:

Theorem
Given an N-triple t of the form 〈0, b, b〉N and an interval [α, β] such that
α ≤ b < β, then there exists a value x ∈ [α, β] such that given the complete
proper evaluation chain:

[B, t, ∅] [α,β]−−−→ · · · [α,β]−−−→ [x − 1, t, I0]
[α,β]−−−→ [x , t, I1]

[α,β]−−−→ · · · [α,β]−−−→ [β, t, Iβ−x ]

the following holds |I0| 6= |I1| = · · · = |Iβ−x |.
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Base Case

− The instance 〈0, b, b〉N (α) is the first instance and any sub-instance will

not be removed from memory till the position α + b. There are b+1

sub-instances of 〈0, b, b〉N (α) at α + b − 1 .

− We also need to count the instances 〈0, b, b〉N (α + 1), · · · ,
〈0, b, b〉N (α + b − 1) of which there are

b∑
i=2

i =
b · (b + 1)

2
− 1.

− At α+ b we remove b + 1 instances from memory, unroll b − 1 new ones,

and add two instances for 〈0, b, b〉N (α + b). Thus the used portion of

memory stays the same.

− It can be shown inductively that the same pattern holds for every position

α + b ≤, thus, x = α + b − 1.
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Base Case

− The following two corollaries follow from the result:

Corollary
Given an N-triple t of the form 〈0, b, b〉N and an interval [α,∞], then there exists a
value x ∈ [α,∞] such that given the proper evaluation chain:

[B, t, ∅] [α,∞]−−−−→ · · · [x − 1, t, I0]
[α,∞]−−−−→ [x , t, I1]

[α,∞]−−−−→ · · ·

the following holds |I0| 6= |I1| = |I2| = · · · .

Corollary
Given an N-triple t of the form 〈0, b, b〉N, an interval [α,∞], and the proper
evaluation chain:

[B, t, ∅] [α,∞]−−−−→ [α, t, Iα]
[α,∞]−−−−→ [α+ 1, t, Iα+1]

[α,∞]−−−−→ · · ·

then,

|In| ≤
(b + 1) ∗ (b + 2)

2
− 1

for all n ∈ [α,∞].
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All N-Triples

− The space complexity of any N-triple 〈a, b, c〉N is as follows:

Theorem
Given an N-triple t of the form 〈a, b, c〉N ,where 0 ≤ a ≤ b, 0 ≤ c, an interval [α,∞],
and the proper evaluation chain:

[B, t, ∅] [α,∞]−−−−→ [α, t, Iα]
[α,∞]−−−−→ [α+ 1, t, Iα+1]

[α,∞]−−−−→ · · ·

then,
|In| ≤ BT (a, b, c)

for all n ∈ [α,∞],where

BT (a, b, c) =



a + (I − 1)

a +
(I − d)(I − d + 1)

2
+ (d − 1)

a +
I ∗ (I + 1)

2
+ d ∗ I − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

c ≤ a

=̧b − d & a ≤ c < b

c = b + d

We define I = (b − a) + 1.
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Bounding Function

− Now we move from bounding N-triples to bounding the reduced core

language, i.e. without infinity, constants, and subtraction.

− Formulas of the reduced core language can still have variable nesting.

− Before introducing our transformation removing variable nesting we add

one more assumption.

− We assume that each quantifier in a given formula has a unique variable

name.
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Dominating Formula

Definition (Dominating Formula Transformation)
Given a sentence f ∈ Mvb we construct the dominating formula fD of f using
the following transformation

D(∀0≤x : fD , ∅, ∅) =⇒ D(∀0≤x : D(f , {x ← x} , {x ← x}))

D(f1 & f2, σl , σh) =⇒ D(f1, σl , σh) & D(f2, σl , σh)

D(¬f , σl , σh) =⇒ ¬D(f , σl , σh)

D(∀y∈[b1,b2] : f , σl , σh) =⇒ ∀y∈[hL(b1),hH (b2)] : D(f , σl {y ← hL(b1)} , σh {y ← hH (b2)})
D(@x , σl , σh) =⇒ @x

where hL(b1) = min {b1σl , b1σh} and hH (b2) = max {b2σl , b2σh}.
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Example Dominating Formula

Definition (Quantifier Tree of a Monitor (Formula))

Given m ∈ M, and f ∈ F , we define the quantifier tree QT (m) of
m, respectively QT (f ) of f , recursively as follows:

QT (∀0≤V : F ) = (V , 0, 0,QT (F ))

QT (F&G ) = QT (F ) ∪ QT (G )

QT (F ∧ G ) = QT (F ) ∪ QT (G )

QT (¬F ) = QT (F )

QT (∀V∈[B1,B2] : F ) = (V ,B1,B2,QT (F ))

QT (@V ) = ∅
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The Bounding Function

− Now we introduce the bounding function:

Definition (Bounding Function)
Given a sentence f ∈ Mvb, let fD be its dominating formula. We construct the
bounding function b(fD ) as follows:

b(∀0≤x : f ) =⇒ b(f , {x ← 0})
b(@f & @g , σ) =⇒ b(f , σ) + b(g , σ)

b(¬f , σ) =⇒ b(f , σ)
b(∀y∈[x+a,x+b] : f , σ) =⇒ BT (a, b,w(f , σ {y ← (x + b)σ})) ∗ b(f , σ {y ← (x + b)σ})

b(@y , σ) =⇒ 1
w(@f & @g , σ) =⇒ max {w(f , σ),w(G , σ)}

w(¬f , σ) =⇒ w(f , σ)
w(∀y∈[x+a,x+b] : f , σ) =⇒ w(f , σ {y ← (x + b)σ})

w(@y , σ) =⇒ yσ
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Bounding Function Example

− We can compute the upper bound of the previous example using this bounding

function:

∀0≤x : ∀y∈[x+1,x+5] :(
∀z∈[x+1,x+3] : ¬@z & @y

)
&
(
∀w∈[x,x+7] : ¬@y & ∀m∈[x+1,x+7] : ¬@z & @m

)

BT (1, 5, 7) ∗ (BT (1, 3, 5) + BT (−1, 7, 7) ∗ BT (1, 7, 7)) =

25 ∗ (12 + 34 ∗ 28) = 24100

− This is the resulting bound for the naive method

− With a few simple optimization we are able to get a more accurate result,

≈ 1000.

− Though the true value for the dominating formula is 240 and non-dominating

formula 18
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Conclusions and Future Work

− We have developed the method completely for the entire core language.

− Though, as one can see the method is quite coarse.

− Our future work will focus on extending the method to more general structures.

For example, quantifier chains.

− Also, we would like to investigate the dominating formula transformation.

− For example, how coarse is the transformation.

− Still open is finding a precise bound for the entire core language.
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Thank you for your time.
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