
Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Predicting Space Requirements for a Stream
Monitor Specification Language

David M. Cerna, Wolfgang Schreiner, and Temur Kutsia

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

September 28th, 2016

slide 1/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Introduction

− LogicGuard: A coordination language for runtime monitoring of network

traffic.

− Stream monitors are written in a fragment of predicate logic.

− Monitor instances are evaluated using an operational semantics.

− Violations, monitor instances evaluating to false, are flagged.

− Previous work focused on analysis of the stream history [Kutsia and

Schreiner 2014], and coarse space complexity results [Cerna et al. 2016].

− We present an algorithm which outperforms the previous results.

− In special cases is computes precisely the space complexity of the instance

set, and in general provides acceptable bounds.

slide 2/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Introduction

− LogicGuard: A coordination language for runtime monitoring of network

traffic.

− Stream monitors are written in a fragment of predicate logic.

− Monitor instances are evaluated using an operational semantics.

− Violations, monitor instances evaluating to false, are flagged.

− Previous work focused on analysis of the stream history [Kutsia and

Schreiner 2014], and coarse space complexity results [Cerna et al. 2016].

− We present an algorithm which outperforms the previous results.

− In special cases is computes precisely the space complexity of the instance

set, and in general provides acceptable bounds.

slide 2/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Introduction

− LogicGuard: A coordination language for runtime monitoring of network

traffic.

− Stream monitors are written in a fragment of predicate logic.

− Monitor instances are evaluated using an operational semantics.

− Violations, monitor instances evaluating to false, are flagged.

− Previous work focused on analysis of the stream history [Kutsia and

Schreiner 2014], and coarse space complexity results [Cerna et al. 2016].

− We present an algorithm which outperforms the previous results.

− In special cases is computes precisely the space complexity of the instance

set, and in general provides acceptable bounds.

slide 2/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

The LogicGuard Specification Language

− LogicGuard was developed to monitor boolean event streams from

external sources.

− The full language does not have a concept of absolute position and

messages can be assigned the same time unit depending on arrival time

and coarseness of the system clock.

− The core language [Kutsia and Schreiner 2014] on the other hand has

absolute positions allowing for easier analysis of a specification’s

behaviour.

− Also, LogicGuard allows both value computation and internal stream

construction.

− These feature were removed from the core language to limit the express

power.

− Though the core language is expressive enough to approximate the

behaviour of such concepts

slide 3/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

The LogicGuard Specification Language

− LogicGuard was developed to monitor boolean event streams from

external sources.

− The full language does not have a concept of absolute position and

messages can be assigned the same time unit depending on arrival time

and coarseness of the system clock.

− The core language [Kutsia and Schreiner 2014] on the other hand has

absolute positions allowing for easier analysis of a specification’s

behaviour.

− Also, LogicGuard allows both value computation and internal stream

construction.

− These feature were removed from the core language to limit the express

power.

− Though the core language is expressive enough to approximate the

behaviour of such concepts

slide 3/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

The LogicGuard Specification Language

− LogicGuard was developed to monitor boolean event streams from

external sources.

− The full language does not have a concept of absolute position and

messages can be assigned the same time unit depending on arrival time

and coarseness of the system clock.

− The core language [Kutsia and Schreiner 2014] on the other hand has

absolute positions allowing for easier analysis of a specification’s

behaviour.

− Also, LogicGuard allows both value computation and internal stream

construction.

− These feature were removed from the core language to limit the express

power.

− Though the core language is expressive enough to approximate the

behaviour of such concepts

slide 3/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Example LogicGuard Specification

type tcp; type message; ...

stream<tcp> IP;

stream<message> S = stream<IP> x satisfying start(@x) :

value[seq,@x,combine]<IP> y

with x < _ satisfying same(@x,@y) until end(@y) :

@y ;

monitor<S> M = monitor<S> x satisfying trigger(@x) :

exists<S> y with x < _ <=# x+5000:

match(@x,@y);

slide 4/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Core Language

M ::= ∀0≤V : F .
F ::= @V | ¬F | F ∧ F | F & F | ∀V∈[B,B] : F .
B ::= 0 | ∞ | V | B ± N.
V ::= x | y | z | . . .
N ::= 0 | 1 | 2 | . . .

∀0≤x : ∀y∈[x+1,x+5] : ((∀z∈[y ,x+3] : ¬@z & @z) & G (x , y))

G (x , y) = ∀w∈[x+2,y+2] : (¬@y & (∀m∈[y ,w ] : ¬@x & @m))

slide 5/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

The Operational Semantics

Atomic Formulas
# Transition Constraints
A1 n(@V )→ d(c.2(V ))) V ∈ dom(c.2)

. . .
Sequential conjunction

C1 n(f1 & f2)→ n(n(f ′1 ) & f2) f1 → n(f ′1 )
C2 n(f1 & f2)→ d(⊥) f1 → d(⊥)

C3 n(f1 & f2)→ n(f ′2 ) f1 → d(>), f2 → n(f ′2 )
Quantification

Q1 ∀V∈[b1,b2] : f → d(>) p1 = b1(c) , p2 = b2(c) , p1 =∞∨ p1 > p2

Q2 ∀V∈[b1,b2] : f → f ′ p1 = b1(c) , p2 = b2(c), p1 6=∞ , p1 ≤ p2,
n(∀V∈[p1,p2] : f )→ f ′

Q3 n(∀V∈[p1,p2] : f )→ n(∀V∈[p1,p2] : f ) p < p1

Q4 n(∀V∈[p1,p2] : f )→ f ′ p1 ≤ p, n(∀I0
V≤p2

: f )→ f ′

Q5 n(∀IV≤p2
: f )→ d(⊥) DF

Q6 n(∀IV≤p2
: f )→ d(>) ¬DF , I ′′ = ∅, p2 < p

Q7 n(∀IV≤p2
: f )→ n(∀I

′′
V≤p2

: f ) ¬DF , (I ′′ 6= ∅ ∨ p ≤ p2)

DF ≡ ∃t ∈ N, f ∈ F , c ∈ C : (t, f , c) ∈ I ′ ∧ ` f → d(⊥)

slide 6/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

The Problem

x =   0    1   2   3   .  .  .  

.  .  .

slide 7/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

The Problem

x =   0    1   2   3   .  .  .  

Instances

.  .  .

Monitor:

slide 8/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

The Problem

x =   0    1   2   3   .  .  .  

Instances

.  .  .

Monitor:

.  .  .

.  .  .

.  .  .

.  .  .

a   .  .  .

.  .  .

slide 9/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

The Problem

x =   0    1   2   3   .  .  .  

Instances

.  .  .

Monitor:

.  .  .

.  .  .

.  .  .

.  .  .

a   .  .  .

.  .  .

F(a)

slide 10/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

The Problem

x =   0    1   2   3   .  .  .  

Instances

.  .  .

Monitor:

. . .

. . .

. . .

. . .

a   .  .  .    b  .  .  . 

.  .  . .  .  .

  

F(a) , F(a+1), ..., F(b)

− How large does the instance set gets during evaluation.

slide 11/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

The Problem

x =   0    1   2   3   .  .  .  

Instances

.  .  .

Monitor:

. . .

. . .

. . .

. . .

a   .  .  .    b  .  .  . 

.  .  . .  .  .

  

F(a) , F(a+1), ..., F(b)

− How large does the instance set gets during evaluation.

slide 11/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Nested Variables

− Getting back to the example monitor, Notice the nested variables:

∀0≤x : ∀y∈[x+1,x+5] : ((∀z∈[y ,x+3] : ¬@z & @z) & G (x , y))

G (x , y) = ∀w∈[x+2,y+2] : (¬@y & (∀m∈[y ,w ] : ¬@x & @m))

− In [Cerna et al. 2016] we developed the concept of dominating monitor

tranformation to remove nested variables.

− The following relationship holds between monitors and there dominated

counterparts:

Theorem
Let M ∈M. Then for all p, n, S ,S ′ ∈ N and s ∈ {>,⊥}ω such that

T (M) (p,s,n S and T (D(M)) (p,s,n S ′, we have S ≤ S ′.

slide 12/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Nested Variables

− Getting back to the example monitor, Notice the nested variables:

∀0≤x : ∀y∈[x+1,x+5] : ((∀z∈[y ,x+3] : ¬@z & @z) & G (x , y))

G (x , y) = ∀w∈[x+2,y+2] : (¬@y & (∀m∈[y ,w ] : ¬@x & @m))

− In [Cerna et al. 2016] we developed the concept of dominating monitor

tranformation to remove nested variables.

− The following relationship holds between monitors and there dominated

counterparts:

Theorem
Let M ∈M. Then for all p, n, S ,S ′ ∈ N and s ∈ {>,⊥}ω such that

T (M) (p,s,n S and T (D(M)) (p,s,n S ′, we have S ≤ S ′.

slide 12/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Nested Variables

− Getting back to the example monitor, Notice the nested variables:

∀0≤x : ∀y∈[x+1,x+5] : ((∀z∈[y ,x+3] : ¬@z & @z) & G (x , y))

G (x , y) = ∀w∈[x+2,y+2] : (¬@y & (∀m∈[y ,w ] : ¬@x & @m))

− In [Cerna et al. 2016] we developed the concept of dominating monitor

tranformation to remove nested variables.

− The following relationship holds between monitors and there dominated

counterparts:

Theorem
Let M ∈M. Then for all p, n, S ,S ′ ∈ N and s ∈ {>,⊥}ω such that

T (M) (p,s,n S and T (D(M)) (p,s,n S ′, we have S ≤ S ′.

slide 12/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Nested Variables

− Getting back to the example monitor, Notice the nested variables:

∀0≤x : ∀y∈[x+1,x+5] : ((∀z∈[y ,x+3] : ¬@z & @z) & G (x , y))

G (x , y) = ∀w∈[x+2,y+2] : (¬@y & (∀m∈[y ,w ] : ¬@x & @m))

− In [Cerna et al. 2016] we developed the concept of dominating monitor

tranformation to remove nested variables.

− The following relationship holds between monitors and there dominated

counterparts:

Theorem
Let M ∈M. Then for all p, n, S ,S ′ ∈ N and s ∈ {>,⊥}ω such that

T (M) (p,s,n S and T (D(M)) (p,s,n S ′, we have S ≤ S ′.

slide 12/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Dominating Monitor Example

− The dominating monitor of

∀0≤x : ∀y∈[x+1,x+5] : ((∀z∈[y ,x+3] : ¬@z & @z) & G (x , y))

G (x , y) = ∀w∈[x+2,y+2] : (¬@y & (∀m∈[y ,w ] : ¬@x & @m))

is the following monitor

∀0≤x : ∀y∈[x+1,x+5] : ((∀z∈[x+1,x+3] : ¬@z & @z) & G (x , y))

G (x , y) = ∀w∈[x+2,x+7] : (¬@y & (∀m∈[x+1,x+7] : ¬@x & @m))

− We retrain from going into the details of the transformation and will only

use dominating monitors for the rest of this talk.

slide 13/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Dominating Monitor Example

− The dominating monitor of

∀0≤x : ∀y∈[x+1,x+5] : ((∀z∈[y ,x+3] : ¬@z & @z) & G (x , y))

G (x , y) = ∀w∈[x+2,y+2] : (¬@y & (∀m∈[y ,w ] : ¬@x & @m))

is the following monitor

∀0≤x : ∀y∈[x+1,x+5] : ((∀z∈[x+1,x+3] : ¬@z & @z) & G (x , y))

G (x , y) = ∀w∈[x+2,x+7] : (¬@y & (∀m∈[x+1,x+7] : ¬@x & @m))

− We retrain from going into the details of the transformation and will only

use dominating monitors for the rest of this talk.

slide 13/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Dealing with the Runtime Representation Size

− Runtime representation size equals instances kept in memory while

evaluating a monitor.

− Consider the following simple monitor:

∀0≤x : ∀y∈[x ,x+4] : ∀z∈[x ,x+4] : ∀r∈[x ,x+4] : @r

− We can simplify its representation:

[0, 4] [0, 4] [0, 4]

− Now let us consider its behaviour as it is evaluated.

slide 14/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Dealing with the Runtime Representation Size

− Runtime representation size equals instances kept in memory while

evaluating a monitor.

− Consider the following simple monitor:

∀0≤x : ∀y∈[x ,x+4] : ∀z∈[x ,x+4] : ∀r∈[x ,x+4] : @r

− We can simplify its representation:

[0, 4] [0, 4] [0, 4]

− Now let us consider its behaviour as it is evaluated.

slide 14/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Dealing with the Runtime Representation Size

− Runtime representation size equals instances kept in memory while

evaluating a monitor.

− Consider the following simple monitor:

∀0≤x : ∀y∈[x ,x+4] : ∀z∈[x ,x+4] : ∀r∈[x ,x+4] : @r

− We can simplify its representation:

[0, 4] [0, 4] [0, 4]

− Now let us consider its behaviour as it is evaluated.

slide 14/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Dealing with the Runtime Representation Size

− Runtime representation size equals instances kept in memory while

evaluating a monitor.

− Consider the following simple monitor:

∀0≤x : ∀y∈[x ,x+4] : ∀z∈[x ,x+4] : ∀r∈[x ,x+4] : @r

− We can simplify its representation:

[0, 4] [0, 4] [0, 4]

− Now let us consider its behaviour as it is evaluated.

slide 14/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Initial State

[0,4][0,4][0,4]:1

[0,4][0,4]:0

[0,4]:0

Initial state

slide 15/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Evaluation

[0,4][0,4][0,4]:1

[0,4][0,4]:0

[0,4]:0

Initial state

[1,4][0,4][0,4]:1

[1,4][0,4]:1

[1,4]:1

Step 0

[2,4][0,4][0,4]:1

[2,4][0,4]:2

[2,4]:4

Step 1

[3,4][0,4][0,4]:1

[3,4][0,4]:3

[3,4]:9

Step 2

[4,4][0,4][0,4]:1

[4,4][0,4]:4

[4,4]:16

Step 3

[4,4][0,4][0,4]:0 (1)

[3,4][0,4]:0 (5)

[3,4]:0 (25)

Step 4

− Notice that we did not add new instances.

− How does this relate to true evaluation?

slide 16/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Evaluation

[0,4][0,4][0,4]:1

[0,4][0,4]:0

[0,4]:0

Initial state

[1,4][0,4][0,4]:1

[1,4][0,4]:1

[1,4]:1

Step 0

[2,4][0,4][0,4]:1

[2,4][0,4]:2

[2,4]:4

Step 1

[3,4][0,4][0,4]:1

[3,4][0,4]:3

[3,4]:9

Step 2

[4,4][0,4][0,4]:1

[4,4][0,4]:4

[4,4]:16

Step 3

[4,4][0,4][0,4]:0 (1)

[3,4][0,4]:0 (5)

[3,4]:0 (25)

Step 4

− Notice that we did not add new instances.

− How does this relate to true evaluation?

slide 16/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Instance to Position Mapping

− It turns out that there is a mapping from the evaluation of a single

instance at various positions to the evaluation of multiple instances at a

single position.

[5,8][4,8][4,8]:1

[5,8][4,8]:1

[5,8]:1

Instance 4 at position 4

[1,4][0,4][0,4]:1

[1,4][0,4]:1

[1,4]:1

Instance 0 at position 0

slide 17/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Instance to Position Mapping

[4,4][0,4][0,4]:0 (1)

[4,4][0,4]:0 (5)

[4,4]:0 (25)

[5,9][5,9][5,9]:1

[5,9][5,9]:0

[5,9]:0

Instance 5 at position 4

[5,8][4,8][4,8]:1

[5,8][4,8]:1

[5,8]:1

Instance 4 at position 4

[5,7][3,7][3,7]:1

[5,7][3,7]:2

[5,7]:4

Instance 3 at position 4

[5,6][2,6][2,6]:1

[5,6][2,6]:3

[5,6]:9

Instance 2 at position 4

[5,5][1,5][1,5]:1

[5,5][1,5]:4

[5,5]:16

Instance 1 at position 4 Instance 0 at position 4

− Notice that going to the next position does not change anything

slide 18/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Instance to Position Mapping

[4,4][0,4][0,4]:0 (1)

[4,4][0,4]:0 (5)

[4,4]:0 (25)

[5,9][5,9][5,9]:1

[5,9][5,9]:0

[5,9]:0

Instance 5 at position 4

[5,8][4,8][4,8]:1

[5,8][4,8]:1

[5,8]:1

Instance 4 at position 4

[5,7][3,7][3,7]:1

[5,7][3,7]:2

[5,7]:4

Instance 3 at position 4

[5,6][2,6][2,6]:1

[5,6][2,6]:3

[5,6]:9

Instance 2 at position 4

[5,5][1,5][1,5]:1

[5,5][1,5]:4

[5,5]:16

Instance 1 at position 4 Instance 0 at position 4

− Notice that going to the next position does not change anything

slide 18/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Instance to Position Mapping, Next Position

[5,5][1,5][1,5]:0 (1)

[5,5][1,5]:0 (5)

[5,5]:0 (25)

[6,10][6,10][6,10]:1

[6,10][6,10]:0

[6,10]:0

Instance 6 at position 5

[6,9][5,9][5,9]:1

[6,9][5,9]:1

[6,9]:1

Instance 5 at position 5

[6,8][4,8][4,8]:1

[6,8][4,8]:2

[6,8]:4

Instance 4 at position 5

[6,7][3,7][3,7]:1

[6,7][3,7]:3

[6,7]:9

Instance 3 at position 5

[6,6][2,6][2,6]:1

[6,6][2,6]:4

[6,6]:16

Instance 2 at position 5 Instance 1 at position 5

− Essentially, we only need to look at the behaviour of one instance up to

the largest upper bound. This is the key to the algorithm.

slide 19/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Instance to Position Mapping, Next Position

[5,5][1,5][1,5]:0 (1)

[5,5][1,5]:0 (5)

[5,5]:0 (25)

[6,10][6,10][6,10]:1

[6,10][6,10]:0

[6,10]:0

Instance 6 at position 5

[6,9][5,9][5,9]:1

[6,9][5,9]:1

[6,9]:1

Instance 5 at position 5

[6,8][4,8][4,8]:1

[6,8][4,8]:2

[6,8]:4

Instance 4 at position 5

[6,7][3,7][3,7]:1

[6,7][3,7]:3

[6,7]:9

Instance 3 at position 5

[6,6][2,6][2,6]:1

[6,6][2,6]:4

[6,6]:16

Instance 2 at position 5 Instance 1 at position 5

− Essentially, we only need to look at the behaviour of one instance up to

the largest upper bound. This is the key to the algorithm.

slide 19/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

First step towards Algorithmic Space Complexity

− The above concept translates to the following algorithm (assuming no

variable nesting).

function SR(〈A, a, b,Q〉)
if A =∞ then

return ∞
else

return
∑A−1

i=0 SR(〈A, a, b,Q〉 , i)
end if

end function

slide 20/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

First step towards Algorithmic Space Complexity

− The highlighted object is a representation of a monitor specification.

function SR( 〈A, a, b,Q〉)
if A =∞ then

return ∞
else

return
∑A−1

i=0 SR(〈A, a, b,Q〉 , i)
end if

end function

slide 21/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

First step towards Algorithmic Space Complexity

− The highlighted object is the largest upper bound.

function SR( 〈A, a, b,Q〉)
if A =∞ then

return ∞
else

return
∑A−1

i=0 SR(〈A, a, b,Q〉 , i)
end if

end function

slide 22/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Constructing a Quantifier Tree

− Consider the following monitor specification:

M = ∀0≤x : ∀y∈[x+1,x+5] : ((∀z∈[x+1,x+3] : ¬@z & @z) & G (x , y))

G (x , y) = ∀w∈[x+2,x+7] : (¬@y & (∀m∈[x+1,x+7] : ¬@x & @m))

− A quantifier tree of M is constructed as follows:

slide 23/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Constructing a Quantifier Tree

QT (∀0≤x : M ′) = (0, 0,QT (M ′)) where M ′ =
∀y∈[x+1,x+5] : ((∀z∈[x+1,x+3] : ¬@z & @z) & G (x , y))

<0,0,QT(M')>

slide 24/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Constructing a Quantifier Tree

QT (M ′) = (1, 5,QT (M1)) where M1=(∀z∈[x+1,x+3]:¬@z & @z) & G(x ,y)

<0,0,QT(M')>

<1,5,QT(M )>1

slide 25/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Constructing a Quantifier Tree

QT (M1) = QT (Ml) ∪ QT (Mr ) where Ml=(∀z∈[x+1,x+3]:¬@z & @z) and
Mr=G(x ,y)

<0,0,QT(M')>

<1,5,QT(M )>1

slide 26/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Constructing a Quantifier Tree

QT (Ml) = (1, 5, ∅)

<0,0,QT(M')>

<1,5,QT(M )>1

<1,5,  >

slide 27/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Constructing a Quantifier Tree

QT (Mr ) = (2, 7,QT (M ′r )) where
M ′r = ¬@y & (∀m∈[x+1,x+7] : ¬@x & @m)

<0,0,QT(M')>

<1,5,QT(M )>1

<1,5,  >

<2,7,QT(M' )>r

slide 28/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Constructing a Quantifier Tree

QT (M ′r ) = (1, 7, ∅)

<0,0,QT(M')>

<1,5,QT(M )>1

<1,5,  >

<2,7,QT(M' )>r

<1,7,  >

− This is the quantifier tree of monitor M.

slide 29/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Annotating the Trees

<0,0,QT(M')>

<1,5,QT(M )>1

<5,1,5,  >

<2,7,QT(M' )>r

<7,1,7,  >

slide 30/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Annotating the Trees

<0,0,QT(M')>

<1,5,QT(M )>1

<5,1,5,  >

<7,2,7,QT(M' )>r

<7,1,7,  >

slide 31/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Annotating the Trees

<0,0,QT(M')>

<7,1,5,QT(M )>1

<5,1,5,  >

<7,2,7,QT(M' )>r

<7,1,7,  >

slide 32/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Annotating the Trees

<7,0,0,QT(M')>

<7,1,5,QT(M )>1

<5,1,5,  >

<7,2,7,QT(M' )>r

<7,1,7,  >

− We will refer to this quantifier tree as QT (M). Now we
compute

6∑
i=0

SR(QT (M), i).

slide 33/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Computing SR(QT (M), i)

− Rather then computing the entire sum

6∑
i=0

SR(QT (M), i).

We will look into a specific example.

− SR(QT (M), 5)
We will also ignore the first node 〈7, 0, 0,QT (M ′)〉

slide 34/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Computing SR(〈7, 1, 5,QT (M1)〉 , 5)

− At position 5 the whole interval will unroll.

〈7, 1, 5,QT (M1)〉 =


〈7, 1, 1,QT (M1)〉
〈7, 2, 2,QT (M1)〉
〈7, 3, 3,QT (M1)〉
〈7, 4, 4,QT (M1)〉
〈7, 5, 5,QT (M1)〉

− The number of generated instances is computed using the
following formula:

1 + min {i , b} − a

which in our case is 1 + min {5, 5} − 1 = 5.

slide 35/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Dealing with instances

− The specific instances don’t really matter.

− We can just write the following

5 · SR(QT (M1), 5)

− But notice that QT (M1) branches.

<7,0,0,QT(M')>

<7,1,5,QT(M )>1

<5,1,5,  >

<7,2,7,QT(M' )>r

<7,1,7,  >

slide 36/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

The Optimization and Branching

− Normally 5 · SR(QT (M1), 5) =
5 · (SR(QT (Ml), 5) + SR(QT (Mr ), 5)).

− However QT (Ml) = 〈5, 1, 5, ∅〉, the upper bound is equal to
the position.

− This means SR(QT (Ml), 5) = 0, and we optimize the
computation by ignoring it. Thus,

5 ·SR(QT (M1), 5) = 5 ·(SR(QT (Ml), 5) + SR(QT (Mr ), 5)) =

5 · SR(QT (Mr ), 5)

slide 37/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Computing the Right Branch

− Moving on to 〈7, 2, 7,QT (M ′r )〉 we compute the interval size
as

1 + min {5, 7} − 2 = 4

− Thus, we get

5 · SR(QT (Mr ), 5) = 20 · SR(QT (M ′r ), 5)

− As the last step we get

SR(QT (M), 5) = 20 · SR(QT (M ′r ), 5) = 20 · 5 = 100

<7,0,0,QT(M')>

<7,1,5,QT(M )>1

<5,1,5,  >

<7,2,7,QT(M' )>r

<7,1,7,  >

slide 38/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Algorithm

− The algorithm is as follows:

function SR((A, a, b,Q),i)
cil ← 1 + min {i, b} − a
if cil ≤ 0 & b ≥ a then

return 1
else

return 0
end if
if i ≥ b then

inst ← 0
else

inst ← 1
end if
for all aqt′ = (A′, a′, b′,Q′) ∈ Q do

if i < A′ then
inst ← inst + cil · SR(aqt′, i)

end if
end for
return inst

end function

− It has a running time of O(n) in terms of formula size.

slide 39/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Experimental Results: Artificial

− We ran the algorithm on the following monitor specifications:

∀0≤x : ∀y∈[x,x+80] : ∀z∈[x,x+80] : @z (1a)
∀0≤x : ∀y∈[x,x+80] : ∀z∈[x,y ] : @z (1b)
∀0≤x : ∀y∈[x,x+40] : ∀z∈[x,x+80] : @z (2a)
∀0≤x : ∀y∈[x,x+40] : ∀z∈[x,y+40] : @z (2b)

slide 40/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Experimental Results: Realistic

− We ran the algorithm on the following monitor written in the
full specification language:

type int; type message; stream<int> IP;

stream<int> S = stream<IP> x satisfying @x>=0 :

value[seq,@x,plus]<IP> y with x < _ <=# x+10000: @y;

monitor<S> M = monitor<S> x :

forall<S> y with x < _ <=# x+15000:

exists<S> z with y < _ <=# y+4000: IsEven(#z);

slide 41/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

What is Next?

− The Run time representation size for general monitor
specifications is bounded by our algorithm.

− Dealing with nested variables would provide precise results for
all monitor specifications

− Currently we are investigating the implications of these results
for writing monitor specifications.

− Looking for more optimal ways of writing monitor
specifications.

− The next measure we are going to tackle concerning logical
guard is the number of stream accesses per message.

slide 42/43



Intro The Problem Nesting Inst & Pos Q Trees Algor Conclusion

Thank you for your time.

slide 43/43


	Intro
	I1
	I2
	I3
	I4
	I5

	The Problem
	P1
	P2
	P3

	Nesting
	N1
	N2

	Inst & Pos
	IP1
	IP2
	IP3
	IP4
	IP5
	IP6

	Q Trees
	Q1
	Q2
	Q3

	Algor
	A1
	A2
	A3
	A4
	A5
	A6

	Conclusion
	C1
	C2
	C3
	C4


