Anti-unification and Generalization: A Survey

David M. Cerna and Temur Kutsia

August 19th-25th 2022 IJCAI-23

slide 1/10

IJCAI-23

A Survey on Anti-unification

WHY?

slide 2/10

An Unfamiliar Concept

For some (possibly many) members of the audience

Anti-unification is a **new** concept.

- Some may have heard of θ -subsumption.
 - Applications within Inductive Logic Programming
- ▶ We expect few are aware of the following:
 - Anti-unification is the dual operation to unification.
 - There exists anti-unification algorithms modulo various equational theories, over Higher-order languages, and within a variety of other settings.
 - Anti-unification has applications within Formal Reasoning, Inductive Synthesis, Theory exploration, Program Analysis, and Program Repair.

IJCAI-23

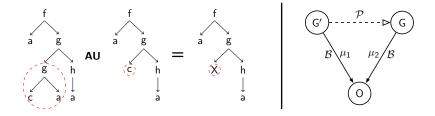
The Need For a Comprehensive Source

- Anti-unification remains obscure even though it is a useful and inexpensive technique for generalization and abstraction.
- Consider the recent work:

Babble: Learning Better Abstractions with E-Graphs and Anti-Unification (2023), POPL, Cao et al.

- The authors provide a novel program compression mechanism using equational anti-unification.
- Their system is competitive with statistical learning based approaches, i.e. Dreamcoder [Ellis et al., 2021].
- However the authors only address Plotkin's foundational work. This is likely due to the fractured nature of the literature and how time-intensive act of processing.

What is Anti-unification (AU)? (General Perspective)



- Goal: from O₁, O₂ ∈ O (symbolic expressions) derive G ∈ O possessing certain commonalities shared by O₁ and O₂.
- Specification: define (a) a class of mappings *M* from *O* → *O*, (b) a base relation *B* consistent with *M*, and (c) a preference relation *P* consistent with *B*.
- ► Result: G is a *B*-generalization of O₁ and O₂ and most *P*-preferred ("better" than G').

Complete Sets and Types (A General Perspective)

- A set G ⊂ O is called P-complete set of B-generalizations of O₁, O₂ ∈ O if:
 - **Soundness:** Every $G \in \mathcal{G}$ is a \mathcal{B} -generalization of O_1 and O_2 .
 - Completeness: For each B-generalization G' of O₁ and O₂, there exists G ∈ G such that P(G, G') (G is more preferred).
- Furthermore, G is minimal if:
 - **Minimality:** No distinct elements of \mathcal{G} are \mathcal{P} -comparable: if $G_1, G_2 \in \mathcal{G}$ and $\mathcal{P}(G_1, G_2)$, then $G_1 = G_2$.
- Minimal Complete sets come in four Types:
 - Unitary (1): G is a singleton,
 - Finitary (ω): \mathcal{G} is finite and contains at least two elements,
 - ► Infinitary (∞): G is infinite,
 - Nullary (0): G does not exist (minimality and completeness contradict each other).
- Types are extendable to generalization problems.

First-order Syntactic Generalization

Generic	Concrete
\mathcal{O}	The set of first-order terms
\mathcal{M}	First-order substitutions
B	\doteq (syntactic equality)
\mathcal{P}	\succeq (more specific, less general): $s \succeq t$ iff $s \doteq t\sigma$
	for some $\sigma \in \mathcal{M}$
$\equiv_{\mathcal{P}}$	Equi-generality: \succeq and \preceq
Туре	Unitary
Alg.	[Huet, 1976; Plotkin, 1970: Reynolds, 1970]

- Extendable to first-order clausal generalization and relative θ-subsumption.
- Clausal generalization is a special case of equational generalization (ACUI).

Least-Common Subsumer (Description Logics)

Generic	Concrete
\mathcal{O}	Concept descriptions
\mathcal{M}	Contains only the identity mapping
B	\sqsupseteq - for $\mathcal{C}, \mathcal{D} \in \mathcal{O}, \ \mathcal{C}^{\mathcal{I}} \supseteq \mathcal{D}^{\mathcal{I}}$ for all interpretations \mathcal{I}
\mathcal{P}	\sqsubseteq - for $\mathcal{C},\mathcal{D}\in\mathcal{O}$, $\mathcal{C}^\mathcal{I}\subseteq\mathcal{D}^\mathcal{I}$ for all interpretations $\mathcal I$
$\equiv_{\mathcal{P}}$	$\equiv: \sqsubseteq and \sqsupseteq$
Туре	Unitary for all four DLs
Alg.	[Baader et al., 1999] for \mathcal{EL} , \mathcal{FLE} , \mathcal{ALE} ,
	[Küsters and Molitor, 2001] for \mathcal{ALEN}

 Generalization (least common subsumer) in Description logics *EL*, *FLE*, *ALE*, and *ALEN*.

Open Problems and Conclusions

- We present a general framework for discussing and characterising anti-unification and generalization problems.
- Read this survey if you want to know:
 - What it means to generalize in various logic-based languages.
 - What are the techniques to compute such generalizations.
 - What are the applications of these methods and algorithms.
- There are many open problems including:
 - Combining anti-unification algorithms for disjoint (equational) theories.
 - Studying the influence of the preference relation on the type and solution set of generalization problems.
 - Studying computational complexity and optimizations of existing generalization problems.

Acknowledgements

Supported by Czech Science Foundation Grant **No. 22-06414L**, Austrian Science Fund project **P 35530**, and European Research Network on Formal Proofs COST action **CA20111** (EuroProofNet).

