Learning Higher-Order Logic Programs From
Failures

Stanistaw J. Purgat, David M. Cerna,and Cezary Kaliszyk

J z U (@ Czech Academ
July 23r9-29th 2022 WY of sciences

JOHANNES KEPLER

UNIVERSITY LINZ 1JCAI-22

.M.E, M universitat /
W innsbruck



Inductive Logic Programming (ILP)

e is a form of symbolic machine learning (Muggleton, 1991).
e Learning From Entailment: Find a logic program H s.t.

BK,H = ET BK,H £ E~
BK E* E-
mom(a, b). dad(e, b). | gp(a,d). gp(e,d). | gp(a,b). gp(b, c).
mom(a, ¢). dad(e, ). | gp(a, f). gplesf). | gp(c,f). gp(d, f).
mom(b, d). dad(c, f).

Solutions: Predicate Invention (Pl) Improves Generalization

gp(X, Y):-mom(X, C),mom(C, Y)
gp(X, Y):-mom(X, C),dad(C,Y)
gp(X, Y):-dad(X, C),mom(C, Y)

gp(X, Y)-p(X, C),p(C, Y)
p(X, Y):-mom(X, Y)
p(X, Y):-dad(X,Y)




Concise Solutions Through Higher-Order (HO) Definitions

First-Order Higher-Order
ASN(A, B):- zero(C),h(C, A, D), g(D, B).
(A, B):- empty(A), empty(B). ASN(A, B):- zero(C), ite(p, C, A, D),
g(A, B):- head(A, C), tail(A, F),zero(E),h(E, C, D), map(q, D, B).
g(F, G),tail(B, G)vhead(Bv D)' p(A, B):— SuC(A, B).
B(A, B, C):- zero(B), enpty(C). o(A. B)- zor0(C). 1te(p, C, A, B).
h(A, B, C):- pred(B, D), suc(A, E), 1less0(B),
h(E, D, F),tail(C, F),head(C, E).

e Improves generalization and
conciseness of solutions.

isti HO Hypothesis S
e Existing approaches use templates ypothesis Space

and limit usage of definitions. FO solution # of

Literals

e Hopper exploits Learning from
failures (Cropper & Morel, 2021) to
learn large and complex programs
using Higher-order definitions.

FO Hypothesis Space e

HO solution



Meta-Interpretive Learning (MiL): a Step Towards HO

e Integration of HO reasoning into ILP can be traced to the
early days (Feng and Muggleton, 1992).

e Effective use intimately connected to PI.

reverse(A, B):- empty(C), fold(???,C, A, B).



Meta-Interpretive Learning (MiL): a Step Towards HO

e Integration of HO reasoning into ILP can be traced to the
early days (Feng and Muggleton, 1992).

e Effective use intimately connected to PI.
reverse(A, B) :- empty(C), fold(p, C, A, B).

p(A, B, C):- head(C, B), tail(C, A).

e Then came MiL (Muggleton et al. 2014):
o Constraint the search space using second-order horn clauses.

o Instantiate predicate variables using BK or,

o Invented predicates defined using the Metarules:
P(X,Y) - Q(X,Z),R(Z,Y) (Chain Rule)
P(X,Y) - Q(X,Z),P(Z,Y) (Dyactic Recursion)



HO Definitions as Interpreted BK

map(P, X, Y):- empty(X), empty(Y).
map(P, [_1, LQ)Z— COnS(Ll, Hl, Tl), COnS(Lz, H2, TQ),
P(Hl7 H2)7 map(P, T1, T2)

e HO Definitions as a type of metarule (Cropper et al. 2020):
o partially-instantiated second-order variables.
o second-order arguments.

» Metagol, successfully finds HO programs.
e Problems arise with complex referencing of definitions:
half(A, B):- reverse(A, C), caselList(p,q,r, C, B).
p(A):- empty(A).
q(A, B):- empty(B).
r(A, B, C):- front(B, E), caselList(p,q, r, E, D),app(D, A, C).

e Implies instantiation of a variable by a metarule?!



Popper: Learning from Failures (LFF)

e LFF (Cropper & Morel, 2021) is an ILP paradigm which:

o Generates a plausible hypotheses H.

o Test H against E* and E—.

o Constrains the generator based on the tester’s results.
o Repeat till task is solved.

e Constraints are based on Subsumption:

o Generalization: eliminate all H’ that subsume H.
o Specialization: eliminate all H’ subsumed by H.

e Soundness follows from H < H' = H = H'.
o Does not necessarily hold when H contains HO definitions.

{h(X,Y)map(?72, Y, Z), -+ } < {h(X,Y):-map(??7, X, 2),---}

e Comparision requires knowing something about 777.



Generate Principal Programs Instead!

e Every Instance of a HO Definition is associated with a
Unique invented predicate.

e No HO arguments needed.

fold,(C, A, B).

reverse(A, B):- empty(C),
B), tail(C,A).

fold, 4(A, B, C):- head(C

)



Generate Principal Programs Instead!

e Every Instance of a HO Definition is associated with a
Unique invented predicate.

e No HO arguments needed.
reverse(A, B):- empty(C), fold,(C, A, B).

fold, 4(A, B, C):- head(C, B), tail(C, A).
fold,(A, B, C):- fold(fold, 4, A, B, C).



Generate Principal Programs Instead!

e Every Instance of a HO Definition is associated with a
Unique invented predicate.

e No HO arguments needed.

reverse(A, B):- empty(C), fold,(C, A, B).

fold, 4(A, B, C):- head(C, B), tail(C, A).

fold,(A, B, C):- fold(fold, 4, A, B, C).

fold(P, A, B, C):- empty(B),A= C.

fold(P, A, B, C):- head(B, H), P(H, D),
tail(B, T),fold(P,D, T, C).

e The generator produces first-order programs that may
encode instances of HO definitions.

e Introduces many incomparable programs which are equivalent.

e But, it is effectivel



Experimental Results

Task [ Popper (Opt) | #Literals [ PI? | Hopper | Hopper (Opt) | #Literals [ HO-Predicates | Metagolo | Metatypes?
Learning Programs by learning from Failures (Cropper et al., 2021)
dropK 1.1s 7 no 0.5s 0.1s 4 iterate no no
allEven 0.2s 7 no 0.2s 0.1s 4 all yes no
findDup 0.25s 7 no —— 0.5s 10 caselist no yes
length 0.1s 7 no 0.2s 0.1s 5 fold yes no
member 0.1s 5 no 0.2s 0.1s 4 any yes no
sorted 65.0s 9 no 46.3s 0.4s 6 fold yes no
reverse 11.2s 8 no 7.7s 0.5s 6 fold yes no
Learning Higher-Order Logic Programs (Cropper et al., 2020)
dropLast 300.0s 10 no 300s 2.9s 6 map yes no
encryption 300.0s ‘ 12 no 300s ‘ 1.2s 7 ‘ map ‘ yes ‘ no
Additional Tasks
repeatN 5.0s 7 no 0.6s 0.1s 5 iterate yes no
rotateN 300.0s 10 no 300s 2.6s 6 iterate yes no
allSeqN 300.0s 25 yes 300s 5.0s 9 iterate, map yes no
droplLastK 300.0s 17 yes 300s 37.7s 11 map no no
firstHalf 300.0s 14 yes 300s 0.2s 9 iterateStep yes no
lastHalf 300.0s 12 no 300s 155.2s 12 caseList no yes
of1And2 300.0s 13 no 300s 6.9s 13 try no no
isPalindrome 300.0s 11 no 157s 2.4s 9 condlist no yes
depth 300.0s 14 yes 300s 10.1s 8 fold yes yes
isBranch 300.0s 17 yes 300s 25.9s 12 caseTree, any no yes
isSubTree 2.9s 11 yes 1.0s 0.9s 7 any yes yes
addN 300.0s 15 yes 300s 1.4s 9 map, caselnt yes no
mulFromSuc 300.0s 19 yes 300s 1.2s 7 iterate yes no

e Hopper is significantly faster than Popper, and
e solves more task than both Popper and Metagol 0.



Acknowledgements

Supported by the ERC starting grant no. 714034 SMART, the MathLP
project (LIT- 2019-7-YOU-213) of the Linz Institute of Technology and
the state of Upper Austria, Cost action CA20111 EuroProofNet, and
project CZ.02.2.69/0.0/0.0/18 053/0017594 of the Ministry of
Education, Youth and Sports of the Czech Republic.

** EUROPEAN UNION -
5 % European Structural and Investment Funds
*

* Operational Programme Research,
Development and Education

JXU

LINZ INSTITUTE
OF TECHNOLOGY

=|=|- Q

* 4k




