Unital Anti-unification: Type and Algorithms

David M. Cerna and Temur Kutsia

July 2nd, 2020

What is Anti-Unification (AU)?

- \blacktriangleright Let Σ be a term alphabet and $\mathcal V$ a set of variables.
- ▶ By $\mathcal{T}(\Sigma, \mathcal{V})$, we refer to the set of terms inductively constructable using symbols from Σ and variables from \mathcal{V} .
- **Substitution** maps variables of \mathcal{V} to terms of $\mathcal{T}(\Sigma, \mathcal{V})$.
- ▶ (Unification): Given $t_1, t_2 \in \mathcal{T}(\Sigma, \mathcal{V})$, does there exists σ such that $t_1\sigma = t_2\sigma$?
- (Anti-Unification): Does there exists a term $t_3 \in \mathcal{T}(\Sigma, \mathcal{V})$ and substitutions σ_1 and σ_2 s.t. $t_3\sigma_1 = t_1$ and $t_3\sigma_2 = t_2$?
- A generalization always exists between terms of $\mathcal{T}(\Sigma, \mathcal{V})$. • let $t_3 = x$, $\sigma_1 = \{x \mapsto t_1\}$, $\sigma_2 = \{x \mapsto t_2\}$
- ▶ We are interested in least general generalizations.

What is Anti-Unification (AU)?

- Let g_1 and g_2 be generalizations of $t_1, t_2 \in \mathcal{T}(\Sigma, \mathcal{V})$, then g_1 is less general than g_2 , $g_2 \prec g_1$ if there exists μ s.t. $g_2\mu = g_1$.
- ▶ g_1 is least general if for every comparable term g_2 , $g_2 \prec g_1$.
- Such anti-unifiers are called least general generalizations (Iggs)
- ► In 1970, Plotkin and Reynolds independently showed that syntactic first-order AU has a unique lgg.
- May not be the case for AU modulo an equational theory.
- ▶ E-generalization considers AU where symbols of $\Sigma_E \subseteq \Sigma$ are interpreted w.r.t an equational theory E.
- ▶ Note that $=_E$ replaces = and \prec_E replaces \prec .
 - ► That is equality and generality modulo *E*.

Complete Sets of Solutions

- ▶ $\mathbf{C}_E(t,s)$ is complete for $t \triangleq s$ if for any E-generalization g, either $g \in \mathbf{C}_E(t,s)$ or there exists $g' \in \mathbf{C}_E(t,s)$ s.t. $g \prec_E g'$.
- ▶ $\mathbf{C}_E^{\mu}(t,s)$ is minimal, if every member is \prec_E -incomparable.
- ▶ There are four types of minimal complete sets in literature:
 - ▶ UNITARY: $|\mathbf{C}_{E}^{\mu}(t,s)| = 1$ [Plotkin & Reynolds, 1970]
 - Syntactic First-order Anti-unification $(E = \emptyset)$.
 - ▶ FINITARY: $1 < |\mathbf{C}_{E}^{\mu}(t,s)| < \infty$ [Alpuente *et al.*, 2014]
 - First-order anti-unification modulo A, C, and AC theories .
 - ▶ INFINITARY: $|\mathbf{C}_{E}^{\mu}(t,s)| = \infty$ [Cerna & Kutsia, 2019]
 - First-order anti-unification modulo purely idempotent theories.
 - ▶ **NULLARY:** $\mathbf{C}_{E}^{\mu}(t,s)$ does not exists [Cerna & Kutsia, 2020]
 - First-order anti-unification modulo purely unital theories (multiple unit elements).

Motivation: Theories Behaving Badly

- ▶ Unit element theories were studied in [Alpuente *et al.*, 2014].
 - ► Known that $C_{II}^{\mu}(t,s)$ may be infinite.
- ▶ Similar was shown for Idempotent theories [Pottier, 1989].
 - ▶ Was not proven to be AU type infinitary in this work.
- This motivated investigating exhaustive construction of $C_E(t,s)$ through grammar transformations [Burghardt, 2005].
- ▶ In [Cerna & Kutsia, 2019], a grammars based algorithm is used to prove AU modulo I is of type infinitary.
- ▶ Unital theories are collapse theories [Siekmann, 1989] as well.
 - Can a similar approach work?
- ▶ Consider the following AU problem: $g(f(a, c), a) \triangleq g(c, b)$

$$E_{\mathsf{U}} = \{ f(\boldsymbol{\epsilon_f}, x) = x , f(x, \boldsymbol{\epsilon_f}) = x \}$$

LGG Derivation Using the Expand_U Inference

► In [Alpuente *et al.*, 2014], Expand_U extends the syntactic generalization algorithm.

$$\{x: g(f(a,c),a) \triangleq g(c,b)\}; \emptyset; x \Rightarrow_{\mathsf{Dec}}$$

$$\{x_1: f(a,c) \triangleq c \ , \ x_2: a \triangleq b\}; \emptyset; g(x_1,x_2) \Rightarrow_{\mathsf{Expand}_{\mathsf{U}}}$$

$$\{x_1: f(a,c) \triangleq f(\epsilon_f,c), x_2: a \triangleq b\}; \emptyset; g(x_1,x_2) \Rightarrow_{\mathsf{Dec}}$$

$$\{x_3: a \triangleq \epsilon_f \ , \ x_4: c \triangleq c \ , \ x_2: a \triangleq b\}; \emptyset; g(f(x_3,x_4),x_2) \Rightarrow_{\mathsf{Dec}}$$

$$\{x_3: a \triangleq \epsilon_f, x_2: a \triangleq b\}; \emptyset; g(f(x_3,c),x_2) \Rightarrow_{\mathsf{Solve}}$$

$$\{x_2: a \triangleq b\}; \{x_3: a \triangleq \epsilon_f\}; g(f(x_3,c),x_2) \Rightarrow_{\mathsf{Solve}}$$

$$\emptyset; \{x_2: a \triangleq b \ , \ x_3: a \triangleq \epsilon_f\}; g(f(x_3,c),x_2)$$

- ► Expand_{II} introduces f allowing further decomposition.
- Finitary and finds the minimal complete set for linear variant.
- Result discussed in [Cerna & Kutsia, 2020 (MSCS)] over higher-order terms.

Motivation: Unexpected LGGs

- Expand requires f to occur as a head symbol in $s \triangleq t$.
- ► Reason? Infinite cycles.
- ▶ If we drop this restriction, what happens?

$$\{x:g(f(a,c),a)\triangleq g(c,b)\};\emptyset;x\Rightarrow_{\mathsf{Dec}}$$
 ...
$$\{x_2:a\triangleq b\};\{x_3:a\triangleq \epsilon_f\};g(f(x_3,c),x_2)\Rightarrow_{\mathsf{DH-U}}$$

$$\{x_5:a\triangleq \epsilon_f\ ,\ x_6:\epsilon_f\triangleq b\};\{x_3:a\triangleq \epsilon_f\};g(f(x_3,c),f(x_5,x_6))\Rightarrow_{\mathsf{Solve}}$$

$$\{x_5:a\triangleq \epsilon_f\};\{x_3:a\triangleq \epsilon_f\ ,\ x_6:\epsilon_f\triangleq b\};g(f(x_3,c),f(x_5,x_6))\Rightarrow_{\mathsf{Solve}}$$

$$\emptyset;\{x_3:a\triangleq \epsilon_f\ ,\ x_6:\epsilon_f\triangleq b\ ,\ x_5:a\triangleq \epsilon_f\};g(f(x_3,c),f(x_5,x_6))\Rightarrow_{\mathsf{Merge}}$$

$$\{x_3:a\triangleq \epsilon_f\ ,\ x_6:\epsilon_f\triangleq b\};g(f(x_3,c),f(x_3,x_6))$$

- $ightharpoonup g(f(x_3,c),x_2) \prec g(f(x_3,c),f(x_3,x_6))$
- ► Though, only one of infinitely many derivations.

New Rule and the consequences

▶ Discussed in [Cerna & Kutsia, 2020 (MSCS)] as:

$$\{x: t \triangleq s\} \uplus A ; S ; g \Longrightarrow_{DH-U}$$
$$\{x_1: t \triangleq \epsilon_f , x_2: \epsilon_f \triangleq s\} \uplus A ; S ; g\{x \mapsto f(x_1, x_2)\}$$

- Unnecessary for linear variant.
- ► Tree grammar based algorithms [Cerna & Kutsia, 2019] can capture the cyclic behavior of the DH-U inference.
- ► Remaining Questions:
 - 1) AU over $\{f(x, \epsilon_f) = x, f(\epsilon_f, x) = x\}$, finitary?
 - 2) Algorithm over $\{f(x, \epsilon_f) = x, f(\epsilon_f, x) = x\}$, complete?
 - 3) AU over $\bigcup_{i=0}^{n} \{f_i(x, \epsilon_{f_i}) = x, f_i(\epsilon_{f_i}, x) = x\}$, infinitary?
 - 4) Algorithm over $\bigcup_{i=0}^{n} \{f_i(x, \epsilon_{f_i}) = x, f_i(\epsilon_{f_i}, x) = x\}$, exists?

New Rule and the consequences

▶ Discussed in [Cerna & Kutsia, 2020 (MSCS)] as:

$$\{x : t \triangleq s\} \uplus A ; S ; g \Longrightarrow_{DH-U}$$
$$\{x_1 : t \triangleq \epsilon_f , x_2 : \epsilon_f \triangleq s\} \uplus A ; S ; g\{x \mapsto f(x_1, x_2)\}$$

- Unnecessary for linear variant.
- ► Tree grammar based algorithms [Cerna & Kutsia, 2019] can capture the cyclic behavior of the DH-U inference.
- ► Remaining Questions:
 - 1) AU over $\{f(x, \epsilon_f) = x, f(\epsilon_f, x) = x\}$, finitary? Yes.
 - 2) Algorithm over $\{f(x, \epsilon_f) = x, f(\epsilon_f, x) = x\}$, complete? Yes.
 - 3) AU over $\bigcup_{i=0}^{n} \{f_i(x, \epsilon_{f_i}) = x, f_i(\epsilon_{f_i}, x) = x\}$, infinitary? NO!
 - 4) Algorithm over $\bigcup_{i=0}^{n} \{f_i(x, \epsilon_{f_i}) = x, f_i(\epsilon_{f_i}, x) = x\}$, exists? Maybe?

New Rule and the consequences

▶ Discussed in [Cerna & Kutsia, 2020 (MSCS)] as:

$$\{x: t \triangleq s\} \uplus A ; S ; g \Longrightarrow_{\mathsf{DH-U}}$$
$$\{x_1: t \triangleq \epsilon_f , x_2: \epsilon_f \triangleq s\} \uplus A ; S ; g\{x \mapsto f(x_1, x_2)\}$$

- Unnecessary for linear variant.
- ► Tree grammar based algorithms [Cerna & Kutsia, 2019] can capture the cyclic behavior of the DH-U inference.
- Remaining Questions:
 - 1) AU over $\{f(x, \epsilon_f) = x, f(\epsilon_f, x) = x\}$, finitary? Yes.
 - 2) Algorithm over $\{f(x, \epsilon_f) = x, f(\epsilon_f, x) = x\}$, complete? Yes.
 - 3) AU over $\bigcup_{i=0}^{n} \{f_i(x, \epsilon_{f_i}) = x, f_i(\epsilon_{f_i}, x) = x\}$, infinitary? NO!
 - 4) Algorithm over $\bigcup_{i=0}^{n} \{f_i(x, \epsilon_{f_i}) = x, f_i(\epsilon_{f_i}, x) = x\}$, exists? Maybe?

▶ We focus on the following theory:

$$U_2 = \{f(x, \epsilon_f) = x , f(\epsilon_f, x) = x , g(x, \epsilon_g) = x , g(\epsilon_g, x) = x\},$$

- ▶ and consider the anti-unification problem $\epsilon_f \triangleq \epsilon_g$.
- lackbox Obviously, f x is a solution $f x\{x\mapsto \epsilon_f\}=\epsilon_f$, $f x\{x\mapsto \epsilon_g\}=\epsilon_g$
- ▶ What about other solutions?

▶ We focus on the following theory:

$$U_2 = \{f(x, \epsilon_f) = x, f(\epsilon_f, x) = x, g(x, \epsilon_g) = x, g(\epsilon_g, x) = x\},\$$

- ▶ and consider the anti-unification problem $\epsilon_f \triangleq \epsilon_g$.
- lacktriangle Obviously, f x is a solution $f x\{x\mapsto\epsilon_f\}=\epsilon_f$, $f x\{x\mapsto\epsilon_g\}=\epsilon_g$
- What about other solutions? Let's apply the DH-U rule.

▶ We focus on the following theory:

$$U_2 = \{ f(x, \epsilon_f) = x , \ f(\epsilon_f, x) = x , \ g(x, \epsilon_g) = x , \ g(\epsilon_g, x) = x \},$$

- ▶ and consider the anti-unification problem $\epsilon_f \triangleq \epsilon_g$.
- lackbox Obviously, f x is a solution $f x\{x\mapsto \epsilon_f\}=\epsilon_f$, $f x\{x\mapsto \epsilon_g\}=\epsilon_g$
- ▶ What about other solutions? Let's apply the DH-U rule.

$$\{x : \epsilon_f \triangleq \epsilon_g\}; \emptyset; x \Rightarrow_{\mathsf{DH-U}}$$

$$\{x_1 : \epsilon_f \triangleq \epsilon_g \ , \ x_2 : \epsilon_g \triangleq \epsilon_g\}; \emptyset; g(x_1, x_2) \Rightarrow_{\mathsf{DH-U}}$$

$$\{x_1 : \epsilon_f \triangleq \epsilon_g \ , \ x_3 : \epsilon_g \triangleq \epsilon_f \ , \ x_2 : \epsilon_f \triangleq \epsilon_g\}; \emptyset; g(x_1, f(x_3, x_4)) \Rightarrow_{\mathsf{Solve}}$$

$$\cdots \Rightarrow_{\mathsf{Merge}} \cdots$$

$$\{x_1 : \epsilon_f \triangleq \epsilon_\sigma \ , \ x_3 : \epsilon_\sigma \triangleq \epsilon_f\}; \mathbf{g}(\mathbf{x}_1, \mathbf{f}(\mathbf{x}_3, \mathbf{x}_1))$$

Notice, $x \prec_{U_2} g(x_1, f(x_3, x_1))$. Process is repeatable on x_1 and x_3 .

- Can generate an infinite sequence of less generality.
 - Does not guarantee Nullarity, need more general properties.

- Can generate an infinite sequence of less generality.
 - ▶ Does not guarantee Nullarity, need more general properties.

Theorem

Any reduced generalization of $\epsilon_f \triangleq \epsilon_g$ is either a variable or contains two distinct variables.

Theorem

For every generalization \mathbf{g} of $\epsilon_f \triangleq \epsilon_g$ there exists a substitution ϑ such that $\mathbf{g}\vartheta$ is a reduced generalization of $\epsilon_f \triangleq \epsilon_g$.

- Can generate an infinite sequence of less generality.
 - ▶ Does not guarantee Nullarity, need more general properties.

Theorem

Any reduced generalization of $\epsilon_f \triangleq \epsilon_g$ is either a variable or contains two distinct variables.

Theorem

For every generalization \mathbf{g} of $\epsilon_f \triangleq \epsilon_g$ there exists a substitution ϑ such that $\mathbf{g}\vartheta$ is a reduced generalization of $\epsilon_f \triangleq \epsilon_g$.

Reduced:

- \triangleright $x \in var(\mathbf{g}), x\sigma_1 \neq_{\mathsf{U}_2} x\sigma_2.$
- $ightharpoonup x, y \in var(\mathbf{g})$ either x = y, or for some $\theta \in \{\sigma_1, \sigma_2\}$, $x\theta \neq_{\mathsf{U}_2} y\theta$.

- ▶ Let **g** generalize $\epsilon_f \triangleq \epsilon_g$.
- \blacktriangleright We use g(x, f(y, x)) to construct a less general generalization.

Theorem

Let **g** be a reduced generalization of $\epsilon_f \triangleq \epsilon_g$. Then there exists a reduced generalization \mathbf{g}' of $\epsilon_f \triangleq \epsilon_g$ such that $\mathbf{g} \prec_{\mathsf{U}_2} \mathbf{g}'$.

Proof (Sketch).

```
Let \mathbf{g}' = \mathbf{g}\{x \mapsto g(x, f(x, y))\}. If g = x then obviously \mathbf{g} \prec_{U_2} \mathbf{g}'. Thus, Var(\mathbf{g}) = \{x, y\}. Be reducibility, we can assume occ(x, \mathbf{g}) = n and occ(y, \mathbf{g}) = m, for n, m > 0. That is occ(x, \mathbf{g}') = 2n and occ(y, \mathbf{g}') = n + m. Assuming \mathbf{g}' \prec_{U} \mathbf{g} contradicts that n, m > 0.
```

Theorem

Let $\mathcal C$ be a complete set of generalizations of $\epsilon_f \triangleq \epsilon_g$. Then $\mathcal C$ contains $\mathbf g$ and $\mathbf g'$ such that $\mathbf g \prec_{\mathsf{U}_2} \mathbf g'$.

Proof (Sketch).

Let $\mathbf{g} \in \mathcal{C} \Longrightarrow \mathbf{g} \vartheta$ is reduced \Longrightarrow there exists φ s.t. $\mathbf{g} \vartheta \prec_{\mathsf{U}_2} \mathbf{g} \vartheta \varphi$ \Longrightarrow By completeness, $\exists \mu$ such that $\mathbf{g} \vartheta \varphi \mu \in \mathcal{C} \Longrightarrow \mathbf{g}' = \mathbf{g} \vartheta \varphi \mu$. \square

Beyond Purely Multi-Unital Theories:

- Seems to hold adding associativity and commutativity.
- Breaks when idempotency is added (for both symbols).
- $g(x, f(x, y))\{y \mapsto x\} =_{\mathsf{UI}_2} g(x, f(x, x)) =_{\mathsf{UI}_2} g(x, x) =_{\mathsf{UI}_2} x$
- ▶ Maybe g(x, f(x, y)) is the wrong seed term for idempotency.
- Motivated investigation into fragments and variants.

Algorithms: Linear Variant

- Algorithm is tree grammar based à la [Cerna & Kutsia, 2019].
- ► Term version discussed in [Cerna & Kutsia, 2020 (MSCS)].
 - ► Uses Expand_U [Alpuente *et al.*, 2014].
- Our algorithm consist of a set of transformation rules which are applied to configurations A; S; L; B.
 - **A** A set of anti-unification triples (AUT) $x : t \triangleq s$.
 - **S** A set of solved AUTs $x : t \stackrel{\triangle}{=} s$.
 - **L** A set of cycles $(x : t \triangleq s, \{\epsilon_f, \dots\})$.
 - **B** A set of Bindings $\{x \mapsto t\}$.
- ▶ The initial configuration is $\{x: t \triangleq s\}$; \emptyset ; \emptyset ; $\{x_{root} \rightarrow x\}$.
- ▶ Rules applied exhaustively following the strategy Step.

Algorithms: Example rules

Dec: **Decomposition**

$$\{x: f(s_1,\ldots,s_n) \triangleq f(t_1,\ldots,t_n)\} \cup A; S; L; B \Longrightarrow \{y_1: s_1 \triangleq t_1,\ldots,y_n: s_n \triangleq t_n\} \cup A; S; L; B\{x \mapsto f(y_1,\ldots,y_n)\}$$

Exp-U-Both: Expansion for Unit, Both

$$\{x: t \triangleq s\} \cup A; \ S; \ L; \ B \Longrightarrow \{x_1: g(t, \epsilon_g) \triangleq s, \ x_2: g(\epsilon_g, t) \triangleq s, \ y_1: t \triangleq f(s, \epsilon_f), y_2: t \triangleq f(\epsilon_f, s)\} \cup A; \ S; \ L; B \cup \{x \mapsto x_1\} \cup \{x \mapsto x_2\} \cup \{x \mapsto y_1\} \cup \{x \mapsto y_2\},$$
 where $head(t) = f \neq g = head(s), \ U \in Ax(f) \cap Ax(g)$

Algorithms: Strategy

Solve: Solve

```
\{x:s\triangleq t\}\cup A;\ S;\ L;\ B\Longrightarrow A;\ \{x:s\triangleq t\}\cup S;L;\ B, where head(s)\neq head(t) and U\notin Ax(head(t))\cup Ax((head(s))).
```

Step strategy:

- ► Select an AUT **a** arbitrarily from **A** .
- Apply a rule applicable to a.
 - There is only one such rule for each **a**.
- ▶ If the rule is Exp-U-Both, apply Dec to all four new AUTs.
- ▶ If the rule is Exp-U-L or Exp-U-R, apply Dec to both AUTs.

Algorithm: Pseudocode of Step

```
Require: A configuration C = A; S; L; B and an AUT a = x: t \triangleq s \in A.
 1: if head(t) = head(s) then
        Apply Dec to a, resulting in C'. Update C \leftarrow C'
 3: else if \exists f, g \in \mathcal{F} : (U \in (Ax(f) \cap Ax(g)) \land head(s) = f \neq g = head(t))
     then
        Apply Exp-U-Both to a resulting in \mathbf{C}' = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4\} \cup A; S; L; B'
        Apply Dec to a_1, a_2, a_1, a_2 resulting in C". Update C \leftarrow C''
 6: else if head(t) \neq head(s) \land \exists f \in \mathcal{F} : (U \in Ax(f) \land head(s) = f) then
        Apply Exp-U-L to a resulting in C = \{a_1, a_2\} \cup A; S; L; B'
        Apply Dec to \mathbf{a}_1, \mathbf{a}_2 resulting in \mathbf{C}''. Update \mathbf{C} \leftarrow \mathbf{C}''
 9: else if head(t) \neq head(s) \land \exists f \in \mathcal{F} : (U \in Ax(f) \land head(t) = f) then
        Apply Exp-U-R to a resulting in \{a_1, a_2\} \cup A; S; L; B'
10:
        Apply Dec to a_1, a_2 resulting in C". Update C \leftarrow C"
11.
12: else
        Apply Solve to a resulting in C'. Update C \leftarrow C'
14: end if
15: return C
```

Algorithm: Pseudocode of $\mathfrak{G}_{U\text{-lin}}$

```
Require: A configuration \mathbf{C} = A; S; L; B
while A \neq \emptyset do
\mathbf{a} \leftarrow x : t \triangleq s \in A
\mathbf{C} \leftarrow \text{Step}(\mathbf{C}, \mathbf{a})
end while
return \mathbf{C}
```

Theorem (Soundness)

If $\{x: t \triangleq s\}$; \emptyset ; $\{x_{\text{root}} \mapsto x\} \Longrightarrow^* \emptyset$; S; L; B is a transformation sequence of $\mathfrak{G}_{U-\text{lin}}$, then for every $r \in \mathcal{L}(\mathcal{G}(B))$, $r \leq_U t$ and $r \leq_U s$.

Theorem (Completeness of \mathfrak{G}_{U-lin})

Let s be a linear generalization of two terms t_1 and t_2 . Then there exists a transformation sequence $\{x: t_1 \triangleq t_2\}; \emptyset; \emptyset; \{x_{\mathrm{root}} \mapsto x\} \Longrightarrow^* \emptyset; S; L; B$ in $\mathfrak{G}_{\text{U-lin}}$ such that for some term $r \in \mathcal{L}(\mathcal{G}(B))$, $s \preceq_U r$.

Example: Using $\mathfrak{G}_{U\text{-lin}}$

$$\{x: g(f(a,c),a) \triangleq g(c,b)\}; \ \emptyset; \ \{x_{\text{root}} \mapsto x\} \Longrightarrow_{\text{Dec}}$$

$$\{x_1: f(a,c) \triangleq c, x_2: a \triangleq b\}; \ \emptyset; \ \emptyset; \ \{x_{\text{root}} \mapsto g(x_1,x_2)\} \Longrightarrow_{\text{Exp-U-L}, \text{Dec} \times 2}$$

$$\{x_3: a \triangleq \epsilon_f, x_4: c \triangleq c, x_5: a \triangleq c, x_6: c \triangleq \epsilon_f, x_2: a \triangleq b\}; \ \emptyset; \ \emptyset;$$

$$\{x_{\text{root}} \mapsto g(x_1,x_2), x_1 \mapsto f(x_3,x_4), x_1 \mapsto f(x_5,x_6)\} \Longrightarrow_{\text{Dec}}$$

$$\{x_3: a \triangleq \epsilon_f, x_5: a \triangleq c, x_6: c \triangleq \epsilon_f, x_2: a \triangleq b\}; \ \emptyset; \$$

$$\{x_{\text{root}} \mapsto g(x_1,x_2), x_1 \mapsto f(x_3,c), x_1 \mapsto f(x_5,x_6)\} \Longrightarrow_{\text{Solve} \times 4}$$

$$\emptyset; \ \{x_3: a \triangleq \epsilon_f, x_5: a \triangleq c, x_6: c \triangleq \epsilon_f, x_2: a \triangleq b\}; \ \emptyset;$$

$$\{x_{\text{root}} \mapsto g(x_1,x_2), x_1 \mapsto f(x_3,c), x_1 \mapsto f(x_5,x_6)\}$$

Thus, $\mathcal{L}(\mathcal{G}(B)) \approx_U \{g(f(x_3, c), x_2), g(f(x_5, x_6), x_2)\}.$

► Note that $g(f(x_5, x_6), x_2) \prec_U g(f(x_3, c), x_2)$.

Algorithms: One-unital fragment

Start-Cycle-U: Cycle introduction for Unit

Sat-Cycle-U: Cycle Saturation for Unit

```
\{x: t \triangleq s\} \cup A; \ S; \ \{(\{y: t \triangleq s\}, Un)\} \cup L; \ B \Longrightarrow \{x: t \triangleq s\} \cup A; \ S; \ (\{y: t \triangleq s\}, Un) \cup L; \ B\{x \mapsto y\} \cup \{y \mapsto x\}, where x \neq y and \{y \mapsto x\} \notin B.
```

Algorithms: The Cycle Procedure

Merge: Merge

```
\emptyset; \{x_1: s_1 \triangleq t_1, x_2: s_2 \triangleq t_2\} \cup S; L; B \Longrightarrow \emptyset; \{x_1: s_1 \triangleq t_1\} \cup S; L; B\{x_2 \mapsto x_1\}, where s_1 \approx_U s_2 and t_1 \approx_U t_2.
```

```
Require: A configuration \mathbf{C} = A; S; L; B, an AUT \mathbf{a} = x : t \triangleq s

1: if \exists f \in \mathcal{F} : (U \in Ax(f) \land (\{y : t \triangleq s\}, Un) \not\in L) then

2: Apply Start-Cycle-U to \mathbf{a} resulting in \mathbf{C}' = \{\mathbf{a}_1, \mathbf{a}_2, x' : t \triangleq s\} \cup A; S; L'; B'

3: Apply Dec to \mathbf{a}_1, \mathbf{a}_2 resulting in \mathbf{C}''. Update \mathbf{C} \leftarrow \mathbf{C}'' and \mathbf{a} \leftarrow x' : t \triangleq s

4: end if

5: Exhaustively apply Sat-Cycle-U to \mathbf{C} resulting in \mathbf{C}^*. Update \mathbf{C} \leftarrow \mathbf{C}^*

6: return (\mathbf{C}, \mathbf{a})
```

Algorithm: Pseudocode of $\mathfrak{G}_{U(f)}$

```
Require: A configuration \mathbf{C} = A; S; L; B while A \neq \emptyset do \mathbf{a} \leftarrow x : t \triangleq s \in A (\mathbf{C}, \mathbf{a}) \leftarrow \mathsf{Cycle}(\mathbf{C}, \mathbf{a}) \mathbf{C} \leftarrow \mathsf{Step}(\mathbf{C}, \mathbf{a}) Exhaustively apply Sat-Cycle-U to \mathbf{C} resulting in \mathbf{C}^*. Update \mathbf{C} \leftarrow \mathbf{C}^* end while Exhaustively apply Merge to \mathbf{C} resulting in \mathbf{C}^*. Update \mathbf{C} \leftarrow \mathbf{C}^* return \mathbf{C}
```

▶ 𝔥_{U(f)} is terminating, sound, and complete and surprisingly:

Theorem

The set $\mathcal{L}(\mathcal{G}(B))$ computed by $\mathfrak{G}_{\mathsf{U}(\mathsf{f})}$ contains only finitely many incomparable generalizations.

Example: Applying $\mathfrak{G}_{\mathsf{U}(\mathsf{f})}$

- ▶ Let us reconsider $g(f(a, c), a) \triangleq g(c, b)$:
- ► The resulting grammar is

$$\mathcal{G} = \left(\left\{ \mathbf{x} \right\}, \left\{ \begin{array}{c} \mathbf{x} \end{array} \right\}, \left\{ \begin{array}{c} f, g, \epsilon_f, \mathbf{a}, \mathbf{b}, \\ c, y, z, y', z' \end{array} \right\}, B \right),$$

where B is the set

$$\left\{ \begin{array}{ll} \mathbf{x} \mapsto g(f(f(y,z),y'),z') & \mathbf{x} \mapsto g(f(y,z),f(y',z')) & \mathbf{x} \mapsto g(f(f(z,y'),y),f(z,z')) \\ \mathbf{x} \mapsto g(f(f(z,y),y'),f(z,z')) & \mathbf{x} \mapsto g(f(y,y'),z') & \mathbf{x} \mapsto g(f(y,z),y'),f(z',z)) \\ \mathbf{x} \mapsto g(f(y,f(z,y')),z') & \mathbf{x} \mapsto g(f(z,f(y,y')),z') & \mathbf{x} \mapsto g(f(z,f(y',y)),z') \\ \mathbf{x} \mapsto g(f(f(z,y),y'),f(z',z)) & \mathbf{x} \mapsto g(f(z,y'),y),f(z',z)) & \mathbf{x} \mapsto f(y,z) \\ \hline \left[\mathbf{x} \mapsto g(f(z,y),y'),f(z',z)) & \mathbf{x} \mapsto g(f(y,y'),f(z',z)) & \mathbf{x} \mapsto g(f(z,f(y,y')),f(z,z')) \\ \mathbf{x} \mapsto g(f(y,f(z,y')),f(z,z')) & \mathbf{x} \mapsto g(f(y,y'),f(z,z')) & \mathbf{x} \mapsto g(f(z,z),z') \\ \mathbf{x} \mapsto g(f(f(z,y'),y),z') & \mathbf{x} \mapsto g(f(z,f(y,y')),f(z',z)) & \mathbf{x} \mapsto g(f(y,f(z,y')),f(z',z)) \\ \mathbf{x} \mapsto g(f(f(y,z),y'),f(z,z')) & \mathbf{x} \mapsto g(f(z,y,y'),f(z',z)) \\ \mathbf{x} \mapsto g(f(y,z),y'),f(z,z')) & \mathbf{x} \mapsto g(f(z,y,y'),f(z',z)) \\ \mathbf{x} \mapsto g(f(y,y,z)) & \mathbf{x} \mapsto g(f(y,y,y'),f(z',z)) \\ \mathbf{x} \mapsto g(f(y,y,z)) & \mathbf{x} \mapsto g(f(z,y,y'),f(z',z)) \\ \mathbf{x} \mapsto g(f(z,y,y'),f(z,z')) & \mathbf{x} \mapsto g(f(z,y,y'),f(z',z)) \\ \end{array} \right.$$

Note that $g(f(x_3,c),x_2) \prec_{\coprod} g(f(z,c),f(z,y)).$

Algorithms: Rule for Purely Multi-unital Theories

Branch-Cycle-U: Branching Cycle for Unit

```
 \{x: t \triangleq s\} \cup A; \ S; \ \{(\{y: t \triangleq s\}, Un)\} \cup L; \ B \Longrightarrow 
 \{y_1: f(t, \epsilon_f) \triangleq f(\epsilon_f, s), y_2: f(\epsilon_f, t) \triangleq f(s, \epsilon_f), y_3: t \triangleq s\} \cup 
 A; \ S; \ \{(\{y: t \triangleq s\}, \{\epsilon_f\} \cup Un)\} \cup L; \ B\{x \mapsto y\} \cup 
 \{y \mapsto y_1\} \cup \{y \mapsto y_2\}, 
 \text{where } U \in Ax(f), \ \epsilon_f \not\in Un, \ head(t) \neq \epsilon_f \text{ or } head(s) \neq \epsilon_f, 
 U \not\in Ax(head(t)) \cup Ax(head(s)).
```

► The general algorithm uses all previously defined rules together with Branch-Cycle-U.

Algorithms: \mathfrak{G}_U Strategy

```
Require: A configuration C = A; S; L; B
 1: while A \neq \emptyset do
 2: \mathbf{a} \leftarrow \mathbf{x} : t \triangleq \mathbf{s} \in A
     (C, a) \leftarrow Cvcle(C, a)
       if \exists f \in \mathcal{A} : (U \in Ax(f) \land (\{y : t \triangleq s\}, Un) \in L \land \epsilon_f \notin Un) then
 4:
            repeat
 5:
                Apply Branch-Cycle-U to a resulting in \mathbf{C}' = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{x}' : \mathbf{t} \triangleq \mathbf{s}\} \cup A; S; L'; B'
 6:
 7.
                Apply Dec to a_1, a_2 resulting in C". Update C \leftarrow C'' and a \leftarrow x' : t \triangleq s
 8:
                Exhaustively apply Sat-Cycle-U to C resulting in C^*. Update C \leftarrow C^*
            until \forall f \in \mathcal{A} : (U \in Ax(f) \land (\{y : t \triangleq s\}, Un) \in L) \Rightarrow \epsilon_f \in Un)
 g.
        end if
10:
       C \leftarrow Step(C, a)
11.
        Exhaustively apply Sat-Cycle-U to C resulting in C^*. Update C \leftarrow C^*
12:
13: end while
14: Exhaustively apply Merge to C resulting in C^*. Update C \leftarrow C^*
15: return C
```

Example: Applying $\mathfrak{G}_{U(f)}$

Let us reconsider $\epsilon_f \triangleq \epsilon_g$:

$$\mathcal{G}' = \left\{ \left\{ \mathbf{x} \right\}, \left\{ \begin{array}{l} \mathbf{x}, \\ \mathbf{y} \end{array} \right\}, \left\{ \begin{array}{l} f, g, \\ \epsilon_f, \epsilon_g, \\ y, z \end{array} \right\}, \left\{ \begin{array}{l} \mathbf{x} \mapsto g(\mathbf{x}, f(\mathbf{x}, \mathbf{y})), \quad \mathbf{x} \mapsto f(\mathbf{x}, g(\mathbf{x}, \mathbf{y})) \\ \mathbf{x} \mapsto f(g(\mathbf{y}, \mathbf{x}), \mathbf{x}), \quad \mathbf{x} \mapsto x \\ \mathbf{x} \mapsto g(\mathbf{x}, f(\mathbf{y}, \mathbf{x})), \quad \mathbf{x} \mapsto f(\mathbf{x}, g(\mathbf{y}, \mathbf{x})) \\ \mathbf{x} \mapsto f(g(\mathbf{x}, \mathbf{y}), \mathbf{x}), \quad \mathbf{x} \mapsto g(f(\mathbf{y}, \mathbf{x}), \mathbf{x}) \\ \mathbf{x} \mapsto g(f(\mathbf{x}, \mathbf{y}), \mathbf{x}), \quad \mathbf{y} \mapsto f(g(\mathbf{y}, \mathbf{x}), \mathbf{y}) \\ \mathbf{y} \mapsto g(\mathbf{y}, f(\mathbf{y}, \mathbf{x})), \quad \mathbf{y} \mapsto f(\mathbf{y}, g(\mathbf{y}, \mathbf{x})) \\ \mathbf{y} \mapsto g(\mathbf{y}, f(\mathbf{y}, \mathbf{x}), \mathbf{y}), \quad \mathbf{y} \mapsto g(\mathbf{y}, f(\mathbf{x}, \mathbf{y})) \\ \mathbf{y} \mapsto f(\mathbf{y}, g(\mathbf{x}, \mathbf{y})), \quad \mathbf{y} \mapsto g(\mathbf{y}, f(\mathbf{x}, \mathbf{y}), \mathbf{y}) \end{array} \right\}.$$

Generalizations contained in the language of this grammar are

$$x$$
, $f(x,g(x,y))$, $f(g(y,x),x)$, $f(g(y,x),f(x,g(x,y)))$, $f(g(y,f(x,g(x,y))),f(x,g(x,y)))$, $f(f(x,g(x,y)),g(f(x,g(x,y)),y))$.

Notice, $f(x,g(x,y)) \prec_{U_2} f(f(x,g(x,y)),g(f(x,g(x,y)),y))$.

Future Work

- Many Open Questions and future research directions:
 - ▶ Is the procedure \mathfrak{G}_U complete for arbitrary unital theories?
 - ▶ Simplification of the one-unital procedure $\mathfrak{G}_{U(f)}$.
 - Combining rules outlined in [Alpuente et al., 2014] with our rules to produce procedures for restrictions of CU, AU, ACU.
 - Are unrestricted ACUI and UI infinitary or nullary?
 - ► Can the techniques used here and [Cerna and Kutsia, 2019] be generalized to AU for any collapse theory?
 - Are there non-trivial collapse theories of type unitary or finitary?
 - Investigating AU over algebraic structures such as Semirings.
 - Nullary in most cases [Cerna, 2020 (RISC Report)].
 - Open cases are most important.