Unital Anti-unification: Type and Algorithms

David M. Cerna and Temur Kutsia

July 279, 2020

J z U [) ®
JOHANNES KEPLER
UNIVERSITY LINZ

slide 1/26

What is Anti-Unification (AU)?

> Let X be a term alphabet and V a set of variables.

> By 7T(X,V), we refer to the set of terms inductively
constructable using symbols from ¥ and variables from V.

» Substitution maps variables of V to terms of 7(X,V).
» (Unification): Given t1, t € T(X,V), does there exists o such
that tjo = tyo?
» (Anti-Unification): Does there exists a term t3 € T(X,)) and
substitutions o1 and o5 s.t. t3o1 = t1 and t30p = 7
» A generalization always exists between terms of 7 (X, V).
> letts=x, 01 ={x— t1}, o0 ={x— B}

> We are interested in least general generalizations.

slide 2/26

What is Anti-Unification (AU)?

» Let gy and g» be generalizations of t1,t, € T(X,V), then gy is
less general than g», go < g1 if there exists u s.t. g = g1.

P g is least general if for every comparable term g», g2 < g3.
» Such anti-unifiers are called least general generalizations (Iggs)

» In 1970, Plotkin and Reynolds independently showed that
syntactic first-order AU has a unique Igg.
» May not be the case for AU modulo an equational theory.
» E-generalization considers AU where symbols of ¥ C ¥ are
interpreted w.r.t an equational theory E.
> Note that =g replaces = and < replaces <.
» That is equality and generality modulo E.

slide 3/26

Complete Sets of Solutions

» Cg(t,s) is complete for t = s if for any E-generalization g,
either g € Cg(t,s) or there exists g’ € Cg(t,s) s.t. g <g g’
» Ciz(t,s) is minimal, if every member is <g-incomparable.
» There are four types of minimal complete sets in literature:
> UNITARY: |CE(t,s)| =1 [Plotkin & Reynolds, 1970]
» Syntactic First-order Anti-unification (E = 0).
» FINITARY: 1 < |C(t,s)| < oo [Alpuente et al., 2014]
> First-order anti-unification modulo A, C, and AC theories .
> INFINITARY: |[CL(t,s)| = oo [Cerna & Kutsia, 2019]
> First-order anti-unification modulo purely idempotent theories.
» NULLARY: C(t,s) does not exists [Cerna & Kutsia, 2020]

P First-order anti-unification modulo purely unital theories
(multiple unit elements).

slide 4/26

Motivation: Theories Behaving Badly

| 2

>

>

Unit element theories were studied in [Alpuente et al., 2014].
» Known that C{j(t,s) may be infinite.
Similar was shown for Idempotent theories [Pottier, 1989].
» Was not proven to be AU type infinitary in this work.
This motivated investigating exhaustive construction of
Ck(t,s) through grammar transformations [Burghardt, 2005].
In [Cerna & Kutsia, 2019], a grammars based algorithm is used
to prove AU modulo | is of type infinitary.
Unital theories are collapse theories [Siekmann, 1989] as well.
» Can a similar approach work?

Consider the following AU problem: g(f(a,c),a) = g(c, b)

Ey = {f(er,x) = x, f(x,¢r) = x}

slide 5/26

LGG Derivation Using the Expandy; Inference

» In [Alpuente et al., 2014], Expandy, extends the syntactic
generalization algorithm.

{x:g(f(a,c),a) = g(c,b)}; 0 x =pec
{x1:f(ac)Ec, x2:a2 b}0;g(x1, %) =Expand,
{x1:f(a,c) 2 f(er, c) aZhb } 0; g(x1,x2) = Dec
{X3:aée,r,x4:céc,xQ:a:b};(Z) g(f(x3, 1), X2) =Dec
{x3:aZer,x:a2 b0 g(f(x3,), %) =Ssoive

{x:a2 b} {xz:a2 e} g(f(x3,¢), %) =solve
D:i{xx:a=b, x3:a=er}); g(f(x3,c),x2)

» Expandy; introduces f allowing further decomposition.
» Finitary and finds the minimal complete set for linear variant.

» Result discussed in [Cerna & Kutsia, 2020 (MSCS)] over

higher-order terms.
slide 6/26

Motivation: Unexpected LGGs

» Expand requires f to occur as a head symbol in s £ t.
» Reason? Infinite cycles.
> If we drop this restriction, what happens?

{x:g(f(a,c),a) = g(c, b)}; 0; x =pec

{x2:a=b};{x3:a=e};8(f(x3,¢),x2) =DH-U

{xs:a% e, x5 er = b}i{xs:a%= er};g(Ff(x3,¢), f(X5,%)) =sohe
{xs:a%ehi{xa:aser, xo:er 2 b} g(f(x3,¢), F(X5,%)) =Solve
0;{xs:a LSer X €r=b, x5:a= €} 8(f(x3,), f(X5,X6)) = Merge

)
{X3 . a £ €f , Xp . €f = b} ((X37) f(X3,X6))

> g(f(x3,¢),x2) < g(f(x3,¢), f(x3, %))
» Though, only one of infinitely many derivations.

slide 7/26

New Rule and the consequences

» Discussed in [Cerna & Kutsia, 2020 (MSCS)] as:
{x:t2£s}WA; S; g =pH-u

{x:t2e, x:er2stWA; S g{x— f(xi,x)}

» Unnecessary for linear variant.

» Tree grammar based algorithms [Cerna & Kutsia, 2019] can
capture the cyclic behavior of the DH-U inference.

» Remaining Questions:
1) AU over {f(x,er) = x, f(er,x) = x}, finitary?
2) Algorithm over {f(x,er) = x , f(ef,x) = x}, complete?
3) AU over U {fi(x.er)=x , fi(er,x)=x}, infinitary?
)

4) Algorithm over U j{fi(x,er)=x , fi(es,x)=x}, exists?

slide 8/26

New Rule and the consequences

» Discussed in [Cerna & Kutsia, 2020 (MSCS)] as:
{x:t2£s}WA; S; g =pH-u

{x:t2e, x:er2stWA; S g{x— f(xi,x)}

» Unnecessary for linear variant.

» Tree grammar based algorithms [Cerna & Kutsia, 2019] can
capture the cyclic behavior of the DH-U inference.

» Remaining Questions:
1) AU over {f(x,er) = x, f(er,x) = x}, finitary? Yes.
2) Algorithm over {f(x,er) = x , f(ef,x) = x}, complete? Yes.
3) AU over U {fi(x.er)=x , fi(er,x)=x}, infinitary? NO!
)

4) Algorithm over 7 {fi(x,er)=x , fi(es,x)=x}, exists? Maybe?

slide 8/26

New Rule and the consequences

» Discussed in [Cerna & Kutsia, 2020 (MSCS)] as:
{x:t2£s}WA; S; g =pH-u

{x:t2e, x:er2stWA; S g{x— f(xi,x)}

» Unnecessary for linear variant.
» Tree grammar based algorithms [Cerna & Kutsia, 2019] can
capture the cyclic behavior of the DH-U inference.

» Remaining Questions:
1) AU over {f(x,er) = x, f(ef,x) = x}, finitary? Yes.

2) Algorithm over {f(x,er) = x , f(ef,x) = x}, complete? Yes.
3) AU over U {fi(x.er)=x , fi(er,x)=x}, infinitary? NO! 4
4) Algorithm over Uy {fi(x,er)=x , fi(er,x)=x}, exists? Maybe?

slide 8/26

Purely Multi-Unital AU is Nullary

> We focus on the following theory:

Uy = {f(xaff) =X, f(€f>x) =X, g(X76g) =X, g(€g,X) :X}>

» and consider the anti-unification problem ef £ €.
» Obviously, x is a solution x{x > €r} = €, x{x > €5} = ¢,
» What about other solutions?

slide 9/26

Purely Multi-Unital AU is Nullary

> We focus on the following theory:

Uy = {f(xaff) =X, f(6f>x) =X, g(X7€g) =X, g(€g,X) :X}>

» and consider the anti-unification problem ef £ €.
» Obviously, x is a solution x{x > €r} = €, x{x > €5} = ¢,
» What about other solutions? Let's apply the DH-U rule.

slide 9/26

Purely Multi-Unital AU is Nullary

> We focus on the following theory:
Us = {f(x,er) = x, fler,x) = x, g(x,€g) = x, g(eg, x) = x},

» and consider the anti-unification problem ef £ €.
» Obviously, x is a solution x{x > €r} = €, x{x > €5} = ¢,
» What about other solutions? Let's apply the DH-U rule.
{x:er 2 €} 0: x =ph-u
{x1:er S €g, x0:€g = €g}i 0 g(xa, %) =pH-U
{X1 L Ef £ €g , X3:€g £ €f , X2 1 €f £ Gg};@;g(xl, f(X3,X4)) =>Solve
S Merge - -

{x1: €f £ €g , X3 €g £ er}ig(x1, f(x3,x1))

» Notice, x <y, g(x1,(x3,x1)). Process is repeatable on x; and x3.

slide 9/26

Purely Multi-Unital AU is Nullary

» Can generate an infinite sequence of less generality.
» Does not guarantee Nullarity, need more general properties.

slide 10/26

Purely Multi-Unital AU is Nullary

» Can generate an infinite sequence of less generality.
» Does not guarantee Nullarity, need more general properties.

Theorem
Any reduced generalization of e £ €g Is either a variable or
contains two distinct variables.

Theorem
For every generalization g of ef = €g there exists a substitution v
such that gV is a reduced generalization of ef £ €g-

slide 10/26

Purely Multi-Unital AU is Nullary

» Can generate an infinite sequence of less generality.
» Does not guarantee Nullarity, need more general properties.

Theorem
Any reduced generalization of e £ €g Is either a variable or
contains two distinct variables.

Theorem

For every generalization g of ef = €g there exists a substitution v
such that gV is a reduced generalization of ef £ €g-
Reduced:

> x € var(g), xo1 #u, X02.

> x,y € var(g) either x =y, or for some 0 € {o1,02}, x0 #y, y6.

slide 10/26

Purely Multi-Unital AU is Nullary

> Let g generalize er £ ¢,.
> We use g(x, f(y,x)) to construct a less general generalization.

Theorem
Let g be a reduced generalization of ef = €g. Then there exists a
reduced generalization g’ of e = €g such that g <y, g'.

Proof (Sketch).

Let g’ = g{x — g(x,f(x,y))}. If g = x then obviously g <y, g’
Thus, Var(g) = {x,y}. Be reducibility, we can assume

occ(x,g) = n and occ(y,g) = m, for n,m > 0. That is

occ(x,g’) = 2n and occ(y,g') = n+ m. Assuming g’ <y g
contradicts that n,m > 0. O

slide 11/26

Purely Multi-Unital AU is Nullary

Theorem

Let C be a complete set of generalizations of ef = €g. ThenC
contains g and g’ such that g <y, g'.

Proof (Sketch).

Let g € C = gv is reduced = there exists ¢ s.t. g <y, gly
— By completeness, Ju such that gdpu € C = g’ = gdpu. [

Beyond Purely Multi-Unital Theories:

» Seems to hold adding associativity and commutativity.
» Breaks when idempotency is added (for both symbols).

> g(x, f(x,y){y = x} =u, g(x, f(x,x)) =u1, &(x,x) =ui, x
» Maybe g(x, f(x,y)) is the wrong seed term for idempotency.
> Motivated investigation into fragments and variants.

slide 12/26

Algorithms: Linear Variant

» Algorithm is tree grammar based a la [Cerna & Kutsia, 2019].
» Term version discussed in [Cerna & Kutsia, 2020 (MSCS)].
» Uses Expandy [Alpuente et al., 2014].
» Our algorithm consist of a set of transformation rules which are
applied to configurations A;S; L; B.

A - A set of anti-unification triples (AUT) x: t £ s.

S - A set of solved AUTs x: t £ s.

L - A set of cycles (x : t £ 5, {er,- - }).

B - A set of Bindings {x — t}.
» The initial configuration is {x : t £ s};0; 0; {X;00t — X}.
» Rules applied exhaustively following the strategy Step.

slide 13/26

Algorithms: Example rules

Dec: Decomposition

{x:f(sl,...,s,,)éf(tl,...,t,,)}UA; S: L; B:>{y1:51é
tl,...,y,,:s,,ét,,}UA; S; L B{x—f(y1,...,¥n)}

Exp-U-Both: Expansion for Unit, Both

{x:t£2s}UA S, L B= {x1:g(t,eg) =5, x2: g€z, t) =
s, y1:t=f(s,er),y2:t = f(er,s)}UA; S; L;BU
{xxtU{x—x}U{x—=n}tU{x— y},

where head(t) = f # g = head(s), U € Ax(f) N Ax(g)

slide 14/26

Algorithms: Strategy

Solve: Solve

{x:s2t}UA S; L, B= A, {x:s=t}US;L; B,
where head(s) # head(t) and U ¢ Ax(head(t)) U Ax((head(s))).

Step strategy:
» Select an AUT a arbitrarily from A .

> Apply a rule applicable to a.
» There is only one such rule for each a.

» If the rule is Exp-U-Both, apply Dec to all four new AUTs.
» If the rule is Exp-U-L or Exp-U-R, apply Dec to both AUTs.

slide 15/26

Algorithm: Pseudocode of Step

Require: A configuration C=A;S;L;Bandan AUT a=x:t Ls5cA.
1. if head(t) = head(s) then
2: Apply Dec to a, resulting in C’. Update C «+ C’
3: else if 3f,g € F: (U € (AX(f) N Ax(g)) A head(s) = f # g = head(t))
then
Apply Exp-U-Both to a resulting in C' = {aj,az,a3,a4} UA; S; L; B’
Apply Dec to a1, ap,as, as resulting in C”. Update C < C”
: else if head(t) # head(s) A3f € F : (U € Ax(f) A head(s) = f) then
Apply Exp-U-L to a resulting in C = {aj,a2} UA; S; L; B
Apply Dec to ag,a resulting in C”. Update C + C”
. else if head(t) # head(s) A3f € F: (U € Ax(f) A head(t) = f) then
10: Apply Exp-U-R to a resulting in {a1,a,} UA; S; L; B
11: Apply Dec to aj, a; resulting in C”. Update C + C”
12: else
13: Apply Solve to a resulting in C’. Update C + C’
14: end if
15: return C

© ® N oo

slide 16/26

Algorithm: Pseudocode of &_j,

Require: A configuration C = A;S; L; B
while A # () do
a<x t2scA
C « Step(C,a)
end while
return C

Theorem (Soundness)

If {x:t=5s};0;0; {xoot = x} =>*0;S; L; B is a transformation
sequence of &y, then for every r € L(G(B)), r <y t and r <y s.

Theorem (Completeness of Gy_ji,)

Let s be a linear generalization of two terms t; and t,. Then there exists a
transformation sequence {x : t; = t>}; 0; 0; {Xcoot ++ x} == 0; S; L; B in
&y-iin such that for some term r € L(G(B)), s Zu r.

slide 17/26

Example: Using &y,

{x:g(f(a,c).a) £ g(c. b)}; 0;
{x1:f(a,c) & c,x2:a2 b},
{3 a2 e, :c2c,x:a2c,x:c2er,x0:a2b); 0;0;
{Xeoot > g(x1,%2), X1+ f(x3,x4), x1 = f(X5,X6)} ==Dec
{x3:a2er,x5:a2c,x:C2er,x0:a2b); 0; 0
{Xtoot = &(x1,%2),x1 > f(x3,¢),x1 > f(x5, %)} ==Solvexs
0 {x3:aZer,x5:a2¢C,x6:C2er,x0: a2 b} 0

{Xroot = g(X13X2)7 X1 = f(X37C)7 X1 f(X57X6)}

Thus, £(G(B)) ~u {g(f(x3,¢), x2), 8(f(xs, X6), x2) }-
> Note that g(f(xs, x6), x2) <u &(f(x3,¢), x2).

@; {Xroot — X} = Dec
0; {

Xroot F7 g(XL X2)} :>Exp»U-L, Decx?2

slide 18/26

Algorithms: One-unital fragment

Start-Cycle-U: Cycle introduction for Unit

{x:t2s}UA S, L, B=

{y1: f(t,ef) = fler,s), yo: fler,t) 2 f(s,ef),y3 : t = s}U
A S {({x:tEsh{er)IUL BU{x = y1}U{x— y},
where U € Ax(f), ({y : t £ s},Un) & L, head(t) # €7 or
head(s) # er, U & Ax(head(t)) U Ax(head(s)).

Sat-Cycle-U: Cycle Saturation for Unit

{x:t2stUA S {({y:t=s},Un}uL, B= {x:t=&
SJUA; S, ({y:t=s},Un)UlL; B{x— y}U{yw— x},
where x # y and {y — x} € B.

slide 19/26

Algorithms: The Cycle Procedure

Merge: Merge

P {x1:512t1, 0=t} US;, L, B=10; {x3:5 2
tl}US; L; B{ng—>X1},

where s1 &~ s> and 1) =~y b.

Require: A configuration C = A;S;L;B,an AUTa = x:t L5
Lif3fe F:(UeAx(f)A({y:t=s},Un) ¢ L) then
2. Apply Start-Cycle-U to a resulting in C' = {aj,a2,x’ : t £ s} UA; S; L'; B’
3: Apply Dec to aj,a resulting in C”. Update C+ C" anda+ x':t£s
4: end if
5. Exhaustively apply Sat-Cycle-U to C resulting in C*. Update C < C*
6: return (C,a)

slide 20/26

Algorithm: Pseudocode of &y

Require: A configuration C = A;S; L; B
while A £ () do
a<x:t2scA
(C,a) « Cycle(C,a)
C « Step(C,a)
Exhaustively apply Sat-Cycle-U to C
resulting in C*. Update C + C*
end while
Exhaustively apply Merge to C result-
ing in C*. Update C « C*
return C

> &y(r) is terminating, sound, and complete and surprisingly:

Theorem
The set L(G(B)) computed by sy contains only finitely many

incomparable generalizations.
slide 21/26

Example: Applying &y

» Let us reconsider g(f(a,c),a) = g(c, b):

» The resulting grammar is

f’g7€f’a7b7
= <{X}>{ X }7{ C,y,z,y',z’ },B),

where B is the set

x> g(f(f(y,2),y).2) x> g(f(y.2),f(y,) x> g(F(F(z,y).y), f(2,2)
x> g(F(F(z,y).y). f(z.2)) x> g(f(y,y)).2) x > g(f(f(y.2).y'), (2, 2))
x> g(f(y. f(z.y)). 2) x> g(f(z,f(y,y)), 2) x> g(f(z,f(y,y)),7)

x = g(f(F(z.y),y') f(Z,2)) x> g(F(F(z.y"),y).f(2.2)) x+ f(y.2)

[x— g(f(z.0). f(y,2))] x> g(f(y.y).f(2.,2)) x = g(f(z,f(y,y)), f(2,2))
x> g(fly. f(z.y). (2, 2) x> g(f(z.f(y',y)).f(z.2) x> g(F(z,¢),2)

x> g(f(f(z.y),y).2) x = g(f(z,f(y,y), f(Z,2) x> g(f(y,F(z.y). (2, 2))
x> g(f((y,2),y). F(2,2)) x> g(F(z,¢). F(z,y))] x> g(f(z.f(y',y)). (2, 2))
x> f(y,2) x> g(F(f(z.y).y).7)

> Note that g(f(X37 C)7X2) =u g(f(z, C)a f(Z,y))

slide 22/26

Algorithms: Rule for Purely Multi-unital Theories

Branch-Cycle-U: Branching Cycle for Unit

{x:t&s}UA S; {({y:t=s},Un)}ulL; B=
{y1:f(tier) = Fler,8),yo: Fler, t) = F(s,e6),y3 1 £ = shU
A S {{y:t&sh{efuUn)}UlL; B{x— y}U

{y =y} U{y = y2},

where U € Ax(f), er € Un, head(t) # €f or head(s) # ef,
U & Ax(head(t)) U Ax(head(s)).

» The general algorithm uses all previously defined rules together
with Branch-Cycle-U.

slide 23/26

Algorithms: & Strategy

Require: A configuration C = A;S; L; B
1: while A # () do
22 a+x:t2scA

3: (C,a) « Cycle(C,a)

4 f3IFc A (UcAx(f)A({y:t=s},Un)€LNer ¢ Un) then

5: repeat

6: Apply Branch-Cycle-U to a resulting in C' = {aj,a,x' : t £ s} UA; S; L'; B’
7: Apply Dec to a3, a resulting in C”. Update C <+~ C" anda+ x' :t£ s

8 Exhaustively apply Sat-Cycle-U to C resulting in C*. Update C + C*

9 until Vi€ A: (Ue AX(F)A({y : t £ 5},Un) € L) = ¢ € Un)

10: end if

11: €+« Step(C,a)

12: Exhaustively apply Sat-Cycle-U to C resulting in C*. Update C + C*
13: end while

14: Exhaustively apply Merge to C resulting in C*. Update C + C*

15: return_C

slide 24/26

Example: Applying &y

. A
» Let us reconsider € = €g:

x = g(x f(x,y)), x> f(x,g(xy))
x— f(g(y,x),x), x> x

x> g(x, f(y,x)), x> f(x,g(y,x))
« f.g, x = f(g(x,y),x), x> g(f(y,x),x)
¢ |00 { T b e (0 xmelilon .y fel0.y)
y v,z y = gy, f(y;x)), y+~ f(y,g(y,x))
y— g(f(y,x),y), y—=y

y = f(y,g(x,y)), y— gy, f(xy))
y— f(g(x,y),y), y=— g(f(x,y),y)

» Generalizations contained in the language of this grammar are

x, f(x,g(x,y)), f(gly,x),x). f(gly,x),f(x,g(x,y)))
flg(y, f(x,g(x,¥)), f(x,g(x,y))). f(f(x.g(x,y)) &(f(x,8(x,¥)),y))-

> Notice, f(x,g(x,y)) <u, f(f(x,&(x,y)),8(f(x,8(x,y)),y))-

slide 25/26

Future Work

» Many Open Questions and future research directions:

slide 26/26

>
>
>

Is the procedure &y complete for arbitrary unital theories?
Simplification of the one-unital procedure &ys).

Combining rules outlined in [Alpuente et al., 2014] with our
rules to produce procedures for restrictions of CU, AU, ACU.

Are unrestricted ACUI and Ul infinitary or nullary?

Can the techniques used here and [Cerna and Kutsia, 2019] be
generalized to AU for any collapse theory?

Are there non-trivial collapse theories of type unitary or finitary?

Investigating AU over algebraic structures such as Semirings.

» Nullary in most cases [Cerna, 2020 (RISC Report)].
» Open cases are most important.

