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Introduction
°

Background

@ In (Aravantinos et al. 2011) the ST procedure for STAB (Schemata TABleaux)
is provided deciding the satisfiability problem for an expressive class of

propositional schemata, the class of regular propositional schemata.

@ In (Aravantinos et al. 2013) a resolution calculus is provided deciding the
satisfiability problem for a class of schematic clause sets which can encode
regular schemata and to some extent propositional schemata with multiple

parameters.

@ In our work, we investigate which subclasses of the class of propositional
schemata with multiple parameters can be decided using a slight extension of

STAB.
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Introduction
.

Results

@ Our goal is to find subclasses of the class of propositional schemata with
multiple parameters which have a decision procedure for satisfiability while
avoiding the extra machinery of normalized clause sets, introduced in
(Aravantinos et al. 2013), as well as the transformation of propositional

schemata into CNF formulae.

@ We provide two classes of propositional schemata extending regular schemata
which both have a decision procedure based on the tableaux procedure of

(Aravantinos et al. 2011) and allow for restricted use of multiple parameters.
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Overview

@ First, we will provide a short description of the class of propositional schemata,

and in particular, the class of regular schemata.
@ We introduce the class of linked schemata and pure overlap schemata.

@ Finally, we show how the ST procedure (Aravantinos et al. 2011) can be

augmented to decide the satisfiability problem for these two classes of schema.
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Propositional Schemata Basics

@ All propositions have an index in the language of linear expressions, i.e. Ps(s(q))-

Can be non-monadic.

Linear expressions are essentially polynomials with exponents of either 0 or 1, built
using the alphabet ¥ = {0, S} and variables ranging over X*.

[n][n+S0O) [ n+m+k [ 4n+m+ 5(5(0)) ]

@ Given a,b which are linear expressions and f a linear expression containing i, an
iteration is of the form:

b b
Neriy or Ve
i=a i=a

@ We call i the variable bounded by the iteration and any variable not bounded by

an iteration is a free parameter.
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Propositional Schemata Basics

@ Linear orderings can be expressed as follows:

b
a<b=\/ T
i=a+1

n
(n>0)APyA J\ (=Pi—1V Pi) A =P,
i=1

@ A schema is satisfiable if given a substitution o for the free parameters the

resulting sentence is satisfiable.
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Results Propositional Schemata

Fact (Situati

! Most subclasses of the class of propositional schemata are undecidable for

satisfiability, even in the monadic case.

A\

Definition (Bounded-Linear Schemata)

Only allowed one free parameter and indices can only have one variable bounded by an

iteration. Propositions are monadic.

| \

Example (Bounded-Linear Schema)

n 2n+4

AV Panijra = Piyasn (2)
=0 j=i+2

The free parameter is n and i,j are the bound parameters. P;,; and P; 5; are not
allowed.

A\
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Results Propositional Schemata

Definition (Regular Schemata)

@ Only one parameter is allowed.
@ no nested iterations.

@ only one index which has either a free parameter, a bounded parameter or

neither. Coefficients on parameters are 0 or 1.

@ All iterations are the same size.

N

Theorem (Aravantinos et al. 2011)

The satisfiability problem for the class of bounded linear schemata is reducible to the

problem for the class of regular schemata.

A\

Theorem (Aravantinos et al. 2011)

The class of regular schemata is decidable using the ST.
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°

Concept Behind Linked Schemata

@ Allowing unrestricted use of multiple parameters is undecidable for satisfiability.

@ However certain restrictions are easily reduced to schemata which are regular

schemata like.

(/n\p,-)A \m/ -pi | =s </n\p;>/\ \n}ﬂq,» : 3)

i=1 j=n+1 i=1 Jj=1

@ If there is no overlap of the intervals than it is as if we are working with two

regular schema which are propositionally connected.
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Definitions needed defining Linked Schemata

Definition
Let p € P be a propositional symbol and ¢ a propositional schema, then

occ(p, p) = 1 iff p occurs in p, otherwise it is occ(p, p) = 0.

Definition

| A

Given a schema ¢ we can construct the set of principal objects P(y) using the

following inductive definition:
o P(P:) = (P} . PIVE, W) = {Viv} . PALw) = {ALv}
® P(dVvy) = Plp)UP) . P(dAY) = P(o) UP(Y) P(—¥) = P(h)

® We will abbreviate the set of propositional connectives used as O = {A,V, —}.
By ¢ € clo(®), we mean that ¢ can be constructed using the set of

propositional schema ® and the logical connective set O.
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°

Linked Schemata

Definition

Let us consider the class A of all finite sets ® of regular schemata such that for all
propositional symbols p, we have that (Z¢€¢ oce(p, d))) is either 1 or 0, we define
the class LS of linked schemata as

Ls=Jco | U P

dEN ped

If ¢ is a regular schema, then it is a linked schema.

The class of regular schemata is contained but not equal to the class of linked

schemata.
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Example of a Linked Schemata
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Concept Behind Pure Overlap Schemata

@ Linked schemata only allow propositional symbols to occur in the scope of at

most one free parameter.

@ Can we weaken this requirement?
n m
0<nA (/\p;) \% (/\ﬁp,-> ANO<m
i=0 i=0
@ If we consider the propositional tableaux extension rules, the two parameters will
be put into two different branches and are essentially in different scopes.

@ Note that changing either occurrence of p to another propositional symbol is

not logically equivalent to the above formula.
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Pure Overlap Schemata
°

Iteration Invariant DNF and Relatively Pure Literals

n
6 <nApsA \/_‘PIVPH-I AN=pr A=(6 < m)Apm |V
i=5

n

/\ —pi

i=0

@ If we do not consider iterations as unrollable, the above formula is in DNF.

@ The propositional symbol p with index m is relatively pure with respect to the

negative occurrences of p in the left most clause.

Given a set of regular schemata ®, for all ¢ € clo (U¢e® P(¢)) there exists an
IIDNF of 4.
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More on Relatively Pure Literals

@ The relatively pure literals of a schema remain relatively pure regardless of the

schema being in IIDNF or not.

@ Given a set of regular schemata ®, let clg’(cb) be the set of all schema which
can be constructed using the logical connectives O, such that they are relatively

pure.
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°

Pure Overlap Schemata

Definition (The class of Pure Overlap Schemata)

Let us consider the class A of all finite sets ® of regular schemata. We define the class
of pure overlap schemata as

Pos = | J cdZ | | P9

dEA HED

If p is a linked schema, then it is a pure overlap schema.

The class of linked schemata is contained but not equal to the class of pure overlap

schemata.
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Decision Procedure for Pure Overlap schemata

@ Being that linked schemata are a subset of pure overlap schemata we only need
to provide a decision procedure for pure overlap schemata.

@ We use the ST procedure as a sub-routine for the decision procedure of pure
overlap schemata.

@ Interpretations are constructed the same way as they are constructed for regular
schemata (Aravantinos et al. 2011), except the number of interpretations
increases.

@ We add a branching rule to the ST decision procedure which branches on

parameters.
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Decision Procedure for Pure Overlap schemata

Algorithm (STPOS Procedure)

Given a schema ¢ € POS in negation normal form. The following algorithm, called

the STPOS procedure, decides the satisfiability of ¢:

1) Apply STAB propositional extension rules with highest priority until no more can
be applied. This results in m sets of atoms and iterations referred to as
Bi,...,Bm.

2) For each B;, we separate B; into n (the number of parameters in B;)
sub-branches B; 1, - - B; ), where each B(; j contains iterations and atoms
indexed by a single parameter. Atoms without a free parameter in the indices
can be added to every B(; ;. We will mark such a sub-branching with ®, where

n is the number of parameters on the branch.

3) Run the ST procedure (Aravantinos et al. 2010) on the sub-branch Bj; ;).

4) For any branch B;, if one of its sub-branches B(,-yj) has a closed tableau after

following the ST procedure, then the branch B; is closed.
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Conclusion

@ The concept behind the procedure is if any of the sub-branches By, ;) is on
unsatisfiable, then the entire branch is unsatisfiable, because these branches are

essentially conjunctions modulo the iterations.

@ Being that the concept of relatively pure guarantees that the intervals are

independent the ®j, rule is sound.

@ As for future work, we would like to consider using the same methods outlined
here on other classes of propositional schemata not yet considered, i.e nested

regular schemata (Aravantinos et al. 2010).

@ Also, we are interested in investigating the relationship between the introduced

classes of schemata and temporal logics.
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Thank you for your time.
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