Introduction	Linked	Pure Overlap Schemata	Decision Procedure
000000	0000	0000	0000

A Tableaux-Based Decision Procedure for Multi-Parameter Propositional Schemata

David M. Cerna Theory and logic group Technical University of Vienna

CICM July 9, 2014

slide 1/20

Introduction	Linked	Pure Overlap Schemata	Decision Procedure
••••••	0000	0000	
Background			

- In (Aravantinos et al. 2011) the ST procedure for STAB (Schemata TABleaux) is provided deciding the satisfiability problem for an expressive class of propositional schemata, the class of regular propositional schemata.
- In (Aravantinos et al. 2013) a resolution calculus is provided deciding the satisfiability problem for a class of schematic clause sets which can encode regular schemata and to some extent propositional schemata with multiple parameters.
- In our work, we investigate which subclasses of the class of propositional schemata with multiple parameters can be decided using a slight extension of STAB.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 \circ

Introduction	Linked	Pure Overlap Schemata	Decision Procedure
000000			
Reculte			

- Our goal is to find subclasses of the class of propositional schemata with multiple parameters which have a decision procedure for satisfiability while avoiding the extra machinery of normalized clause sets, introduced in (Aravantinos et al. 2013), as well as the transformation of propositional schemata into CNF formulae.
- We provide two classes of propositional schemata extending regular schemata which both have a decision procedure based on the tableaux procedure of (Aravantinos et al. 2011) and allow for restricted use of multiple parameters.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Introduction	Linked 0000	Pure Overlap Schemata 0000	Decision Procedure
Overview			

- First, we will provide a short description of the class of propositional schemata, and in particular, the class of regular schemata.
- We introduce the class of linked schemata and pure overlap schemata.
- Finally, we show how the **ST** procedure (Aravantinos et al. 2011) can be augmented to decide the satisfiability problem for these two classes of schema.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

-	 		_		
0000000					
Introduction		inked		Pure Overlap Schemata	Decision Procedure

Propositional Schemata Basics

All propositions have an index in the language of *linear expressions*, i.e. P_{S(S(0))}.
 Can be non-monadic.

Example

Linear expressions are essentially polynomials with exponents of either 0 or 1, built using the alphabet $\Sigma = \{0, S\}$ and variables ranging over Σ^* .

$$n + S(0) + m + k + 4n + m + S(S(0))$$

• Given a,b which are linear expressions and f a linear expression containing *i*, an *iteration* is of the form:

$$\bigwedge_{i=a}^{b} \varphi_{f(i)} \quad \text{or} \quad \bigvee_{i=a}^{b} \varphi_{f(i)}$$

• We call *i* the *variable bounded by the iteration* and any variable not bounded by an iteration is a *free parameter*.

-		-		
0000000				
Introduction	Linked		Pure Overlap Schemata	Decision Procedure

Propositional Schemata Basics

• Linear orderings can be expressed as follows:

$$\mathsf{a} < \mathsf{b} \equiv \bigvee_{i=\mathsf{a}+1}^{\mathsf{b}} \top$$

Example

$$(n \ge 0) \land P_0 \land \bigwedge_{i=1}^n (\neg P_{i-1} \lor P_i) \land \neg P_n \tag{1}$$

 A schema is satisfiable if given a substitution σ for the free parameters the resulting sentence is satisfiable.

Introduction	Linked	Pure Overlap Schemata	Decision Procedure
0000000			

Results Propositional Schemata

Fact (Situation)

Most subclasses of the class of propositional schemata are undecidable for satisfiability, even in the monadic case.

Definition (Bounded-Linear Schemata)

Only allowed one free parameter and indices can only have one variable bounded by an iteration. Propositions are monadic.

Example (Bounded-Linear Schema)

$$\bigwedge_{i=0}^{n} \bigvee_{j=i+2}^{2n+4} P_{3n+j+2} \to P_{i+4-8n}$$
(2)

The free parameter is n and i,j are the bound parameters. P_{i+j} and P_{i+2j} are not allowed.

Introduction	Linked	Pure Overlap Schemata	Decision Procedure
000000			

Results Propositional Schemata

Definition (Regular Schemata)

- Only one parameter is allowed.
- no nested iterations.
- only one index which has either a free parameter, a bounded parameter or neither. Coefficients on parameters are 0 or 1.
- All iterations are the same size.

Theorem (Aravantinos et al. 2011)

The satisfiability problem for the class of bounded linear schemata is reducible to the problem for the class of regular schemata.

・ロト ・ 理 ・ ・ ヨ ・ ・

Theorem (Aravantinos et al. 2011)

The class of regular schemata is decidable using the ST.

-			
0000000		OUCO	0000
	1 Sector at		Desister Deservations

Concept Behind Linked Schemata

- Allowing unrestricted use of multiple parameters is undecidable for satisfiability.
- However certain restrictions are easily reduced to schemata which are regular schemata like.

$$\left(\bigwedge_{i=1}^{n} p_{i}\right) \wedge \left(\bigvee_{j=n+1}^{m} \neg p_{i}\right) \equiv_{S} \left(\bigwedge_{i=1}^{n} p_{i}\right) \wedge \left(\bigvee_{j=1}^{m} \neg q_{i}\right).$$
(3)

• If there is no overlap of the intervals than it is as if we are working with two regular schema which are propositionally connected.

Introduction	Linked	Pure Overlap Schemata	Decision Procedure
0000000	o●oo	0000	

Definitions needed defining Linked Schemata

Definition

Let $p \in \mathcal{P}$ be a propositional symbol and φ a propositional schema, then

 $occ(p, \varphi) = 1$ iff p occurs in φ , otherwise it is $occ(p, \varphi) = 0$.

Definition

Given a schema φ we can construct the set of *principal objects* $\mathcal{P}(\varphi)$ using the following inductive definition:

•
$$\mathcal{P}(P_a) \Rightarrow \{P_a\}$$
, $\mathcal{P}(\bigvee_{i=a}^b \psi) \Rightarrow \left\{\bigvee_{i=a}^b \psi\right\}$, $\mathcal{P}(\bigwedge_{i=a}^b \psi) \Rightarrow \left\{\bigwedge_{i=a}^b \psi\right\}$

- $\mathcal{P}(\phi \lor \psi) \Rightarrow \mathcal{P}(\phi) \cup \mathcal{P}(\psi)$, $\mathcal{P}(\phi \land \psi) \Rightarrow \mathcal{P}(\phi) \cup \mathcal{P}(\psi) \ \mathcal{P}(\neg \psi) \Rightarrow \mathcal{P}(\psi)$
- We will abbreviate the set of propositional connectives used as *O* = {∧, ∨, ¬}. By ψ ∈ cl_O(Φ), we mean that ψ can be constructed using the set of propositional schema Φ and the logical connective set *O*.

Introduction	Linked	Pure Overlap Schemata	Decision Procedure
0000000	0000	0000	
Linked Sche	emata		

Definition

Let us consider the class Λ of all finite sets Φ of regular schemata such that for all propositional symbols p, we have that $\left(\sum_{\phi \in \Phi} occ(p, \phi)\right)$ is either 1 or 0, we define the class **LS** of *linked schemata* as

$$\mathsf{LS} = \bigcup_{\Phi \in \Lambda} cl_{\mathcal{O}} \left(\bigcup_{\phi \in \Phi} \mathcal{P}(\phi) \right)$$

Lemma

If φ is a regular schema, then it is a linked schema.

Theorem

The class of regular schemata is contained but not equal to the class of linked

イロト 不得 トイヨト イヨト

э

schemata.

Introduction Linked Pure Overlap Schemata Decision Procedure

Example of a Linked Schemata

$$\begin{pmatrix} \left(\bigvee_{i=1}^{k} \neg P_{i} \rightarrow \bigvee_{i=1}^{m} Q_{i} \right) \land \left(\bigvee_{i=1}^{m} R_{i} \rightarrow \bigwedge_{i=1}^{n} M_{i} \right) \land \bigwedge_{i=1}^{m} (Q_{i} \leftrightarrow R_{i}) \end{pmatrix} \rightarrow \\ \begin{pmatrix} \bigvee_{i=1}^{k} \neg P_{i} \rightarrow \bigwedge_{i=1}^{n} M_{i} \end{pmatrix}.$$

Introduction	Linked	Pure Overlap Schemata	Decision Procedure
0000000	0000	●○○○	
-			

Concept Behind Pure Overlap Schemata

- Linked schemata only allow propositional symbols to occur in the scope of at most one free parameter.
- Can we weaken this requirement?

$$0 \leq n \wedge \left(\bigwedge_{i=0}^{n} p_i\right) \vee \left(\bigwedge_{i=0}^{m} \neg p_i\right) \wedge 0 \leq m$$

• If we consider the propositional tableaux extension rules, the two parameters will be put into two different branches and are essentially in different scopes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

• Note that changing either occurrence of *p* to another propositional symbol is not logically equivalent to the above formula.

 Introduction
 Linked
 Pure Overlap Schemata
 Decision Procedure

 0000000
 0000
 0000
 0000

Iteration Invariant DNF and Relatively Pure Literals

$$egin{aligned} &\left(6 \leq n \wedge p_6 \wedge \left(igvee_{i=5}^n \neg p_i \lor p_{i+1}
ight) \wedge \neg p_7 \wedge \neg (6 \leq m) \wedge p_m
ight) \lor \ &\left(igwedge _{i=0}^n \neg p_i
ight) \end{aligned}$$

- If we do not consider iterations as unrollable, the above formula is in DNF.
- The propositional symbol *p* with index *m* is relatively pure with respect to the negative occurrences of *p* in the left most clause.

Lemma

Given a set of regular schemata Φ , for all $\psi \in cl_{\mathcal{O}}\left(\bigcup_{\phi \in \Phi} \mathcal{P}(\phi)\right)$ there exists an IIDNF of ψ .

slide 14/20

Introduction	Linked	Pure Overlap Schemata	Decision Procedure
		0000	

More on Relatively Pure Literals

- The relatively pure literals of a schema remain relatively pure regardless of the schema being in IIDNF or not.
- Given a set of regular schemata Φ, let cl^{rp}_O(Φ) be the set of all schema which can be constructed using the logical connectives O, such that they are relatively pure.

◆□ → ◆圖 → ◆ 圖 → ◆ 圖 → □ 圖 □

Introduction	Linked	Pure Overlap Schemata	Decision Procedure
0000000	0000	○○○●	
Pure Overlap S	Schemata		

Definition (The class of Pure Overlap Schemata)

Let us consider the class Λ of all finite sets Φ of regular schemata. We define the class of *pure overlap schemata* as

$$\mathsf{POS} = igcup_{\Phi \in \Lambda} c l_{\mathcal{O}}^{rp} \left(igcup_{\phi \in \Phi} \mathcal{P}(\phi)
ight)$$

Lemma

If φ is a linked schema, then it is a pure overlap schema.

Theorem

The class of linked schemata is contained but not equal to the class of pure overlap schemata.

Decision Procedure for Pure Overlap schemata

- Being that linked schemata are a subset of pure overlap schemata we only need to provide a decision procedure for pure overlap schemata.
- We use the **ST** procedure as a sub-routine for the decision procedure of pure overlap schemata.
- Interpretations are constructed the same way as they are constructed for regular schemata (Aravantinos et al. 2011), except the number of interpretations increases.

• We add a branching rule to the **ST** decision procedure which branches on parameters.

Decision Procedure for Pure Overlap schemata

Algorithm (ST^{POS} Procedure)

Given a schema $\varphi \in \text{POS}$ in negation normal form. The following algorithm, called the ST^{POS} procedure, decides the satisfiability of φ :

- Apply STAB propositional extension rules with highest priority until no more can be applied. This results in m sets of atoms and iterations referred to as B₁,..., B_m.
- 2) For each B_i , we separate B_i into n (the number of parameters in B_i) sub-branches $B_{(i,1)}, \dots B_{(i,n)}$, where each $B_{(i,j)}$ contains iterations and atoms indexed by a single parameter. Atoms without a free parameter in the indices can be added to every $B_{(i,j)}$. We will mark such a sub-branching with \otimes_n where n is the number of parameters on the branch.
- 3) Run the ST procedure (Aravantinos et al. 2010) on the sub-branch $B_{(i,j)}$.
- 4) For any branch B_i, if one of its sub-branches B_(i,j) has a closed tableau after following the ST procedure, then the branch B_i is closed.

Introduction 0000000	Linked 0000	Pure Overlap Schemata	Decision Procedure
Conclusion			

- The concept behind the procedure is if any of the sub-branches $B_{(i,j)}$ is on unsatisfiable, then the entire branch is unsatisfiable, because these branches are essentially conjunctions modulo the iterations.
- Being that the concept of relatively pure guarantees that the intervals are independent the ⊗_n rule is sound.
- As for future work, we would like to consider using the same methods outlined here on other classes of propositional schemata not yet considered, i.e nested regular schemata (Aravantinos et al. 2010).
- Also, we are interested in investigating the relationship between the introduced classes of schemata and temporal logics.

(日) (同) (目) (日) (日) (0) (0)

Introduction	Linked	Pure Overlap Schemata	Decision Procedure
			0000

Thank you for your time.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ