
Computational Logic in the First Semester of
Computer Science: An Experience Report

David M. Cerna1, Martina Seidl2, Wolfgang Schreiner1, Wolfgang
Windsteiger2, and Armin Biere1

1Institute of Formal Methods and Verification, Johannes Kepler
University

2Research Institute for Symbolic Computation, Johannes Kepler
University

Abstract

Nowadays, logic plays an ever-increasing role in modern computer science, in
theory as well as in practice. Logic forms the foundation of the symbolic branch
of artificial intelligence and from an industrial perspective, logic-based verification
technologies are crucial for major hardware and software companies to ensure the
correctness of complex computing systems. The concepts of computational logic
that are needed for such purposes are often avoided in early stages of computer
science curricula. Instead, classical logic education mainly focuses on mathemati-
cal aspects of logic depriving students to see the practical relevance of this subject.
In this paper we present our experiences with a novel design of a first-semester
bachelor logic course attended by about 200 students. Our aim is to interlink both
foundations and applications of logic within computer science. We report on our
experiences and the feedback we got from the students through an extensive survey
we performed at the end of the semester.

1 Introduction
Recently, J. A. Makowsky and A. Zamansky (Makowsky and Zamansky, 2017)
reported on an undesirable, but ubiquitous fact: courses on logic are slowly dis-
appearing from the computer science curriculum at many universities. This has
nothing to do with logic being outdated. For example, at the very basic level of
computing, there is a close relationship between circuits and Boolean formulas and
at a higher abstraction level, Boolean formulas are core concepts in all modeling
and programming languages. Because of its rich inference mechanisms, logical
formalisms form the basis of the symbolic branch of artificial intelligence (Russell
and Norvig, 2010) and the core of modern verification technology relies on auto-
mated reasoners that evaluate logical formulas. For decades, the desire and neces-
sity for verified hardware and software has grown in major software and hardware
companies (Kaivola et al., 2009; Calcagno et al., 2015; Cook, 2018) driving in-
vestments in advancing logical reasoning tools.

While logic remains fundamental and pervasive, its importance is not directly
obvious in the way it is classically taught. The classical logic course covers syntax
and semantics of various logical languages, proof systems and their properties for

1



proving or refuting logical formulas, and maybe some encoding of combinatorial
problems like graph coloring. Exercises are often very abstract and solved with
pen and paper. We experienced that from such exercises it is unclear to students
what are the practical applications, and often logic is perceived as just another
math subject. This teaching approach is in strong contrast to our research, where
we develop efficient reasoning software for solving practical problems from AI
and verification and where we use the theoretical concepts for proving that our
approaches are indeed correct. Hence, it was a question for us to ask if we can in-
tegrate the practical, computational aspects of logic into our courses such that our
students not only learn the basics of logic but also understand how to apply logic
in application-oriented settings. Therefore, we completely redesigned our “Logic”
course, a mandatory course in the first semester of the computer science bachelor
of our university. For all kinds of logic we teach, we also give some software tools
to the students allowing them to quickly gain some hands-on experiences. We have
successfully applied this approach for the last five years. The informal feedback
has so far been extremely positive. To capture the feedback in a more structured
way, we developed a questionnaire which we distributed among the students par-
ticipating in the most recent iteration of our course. In this paper, we report on the
setup of our course, the questionnaire, and its outcome.

2 Related Work
As early computer systems became larger and more complex, awareness and costs
of failures such as the Pentium-FDIV-Bug (Chen et al., 1996; Reid et al., 2016)
raised. It is at this point, in the late 1980s and early 1990s when the necessity
of verification technology and other logic-based methods was realized and their
inclusion within computer science curricula was addressed. Also, during this pe-
riod we find our early references to literature discussing the addition of logic to
computer science curricula. An important work wrote around this time, “Logic
for Computer Science” by Steve Reeves and Michael Clarke (Reeves and Clarke,
1990) highlights some important topics which are considered in our course. In-
terestingly, as covered in the preface of the second edition, this book was of high
demand and a second edition was released 13 years later. However, this work still
takes a more classical approach to the subject. The book “Mathematical Logic
for Computer Science” by Mordechai Ben-Ari (Ben-Ari, 2012), first released in
1993, has gone through three editions, the last of which, released in 2012, dis-
cusses prevalent subjects such as SAT solving and verification techniques, topics
discussed in module 1 and 2 of our course. Such topics are discussed in (Huth
and Ryan, 2004) as well. The importance of fundamentally logical questions to
computer science is ubiquitously stated in Literature. Even earlier work by Jean
Gallier (Gallier, 1985) covers the relationship between the theorem-proving meth-
ods and topics associated with computer science. By far the most classical work
on this subject, to the best of our knowledge, is “the science of computer program-
ming” by David Gries (Gries, 1981) which approaches programming from a logical
perspective. For more modern works considering a similar approach to Gries con-
sider “Software Abstractions: Logic, Language, and Analysis” (Jackson, 2012).
There have also been a few influential works from this early period discussing
approaches to logic education at several universities, it’s relation to software engi-
neering, and adoption of logic within curricula (Barland et al., 2000; Vardi, 1998;
Lethbridge, 2000; Page, 2003; Wing, 2000). Furthermore, the following works
(Kaufmann et al., 2000a; Kaufmann et al., 2000b; Reinfelds, 1995; Goldson et al.,
1993) have provided interesting case studies concerning particular ways of inte-
grating logic within the computer science curriculum. Particularly related to our

2



approach is (Kaufmann et al., 2000a) focusing on the use of the ACL2 theorem
prover within the classroom.

Other then these collections of essential topics from logic for computer science
there have also been studies of how certain didactic tools can be used for logic and
computer science education. While we do not directly discuss how particular tools
ought to be used in the classroom setting, we see further integration and develop-
ment of the discussed methodologies into future iterations of the course. For ex-
ample “Signs for logic teaching” (Eysink, 2001) which discusses representations
and visualizations for the transfer of knowledge with respect to logic. Metaphori-
cal games used in our course, especially in module 1, can be considered as visual
aids in the learning process. The use of “serious games” for computer science ed-
ucation has also been investigated as of recently (Edgington, 2010; Muratet et al.,
2009; Lee et al., 2014). Many of these investigations focus on programming or
are indirectly related to programming, however, serious games for logic education
have also been considered (Hooper, 2017).

Concerning the central topic of this paper, a discussion of our attempt to keep
logic in computer science, there is the influential paper by J. A. Makowsky and
A. Zamansky ”Keeping Logic in the Trivium of Computer Science: A Teaching
Perspective” (Makowsky and Zamansky, 2017) which we mentioned already in the
introduction. This is not the only work of these authors concerning the difficult task
of keeping logic in computer science (Makowsky, 2015; Zamansky and Farchi,
2015; Zamansky and Zohar, 2016). The problem addressed in these cases is how
to connect the problems faced by students to the underlying concepts of logic they
are presenting.

Also related to our course design is the adaption of proof assistants like COQ (de-
velopment team, 2019) to make them usable in a classroom setting (Böhne and
Kreitz, 2017; Knobelsdorf et al., 2017). While these works focused on introducing
and using one specific tool, we present a course setting where we integrate multiple
automated reasoning tools for teaching basic concepts of computational logic. Re-
lated in a broader sense, is computer-based logic tutoring software like (Huertas,
2011; Ehle et al., 2017; Leach-Krouse, 2017) that support the training of students.

3 Logic in Action
In the computer science curriculum of our university, the course “Logic” is sched-
uled in the first semester of the bachelor. As a consequence, we are confronted
with a very heterogeneous audience of about 200 students including students who
had only a one-year computing course at their high school as well as students who
attended a five-year technical high school with a special focus on digital engineer-
ing and design. By offering a mix of mandatory and optional exercises, we let the
students decide themselves how much they want to go into the depth of the topics
discussed in our course.

The course consists of 12 lectures and 12 exercise classes. Both lecture and
exercise classes are taught by professors of computer science or mathematics. Each
lecture is a 90 minutes presentation of new content. After a short break, there is
a mini-test, followed by an exercise class of 45 minutes. In the exercise class, the
practical exercises covering the content of the same day’s lecture are discussed for
putting the theory into practice. Only part of the exercise sheet is solved in class,
while the rest is left for practicing at home. The solutions of these exercises are not
graded and can be discussed in the online forum of the course that is moderated by
the professors.

For organizational reasons, the course is split into three modules: (1) proposi-
tional logic, (2) first-order logic, and (3) satisfiability modulo theories (SMT). The

3



first module takes four weeks, the second module takes six weeks and the third
module takes two weeks. Each week the students have to take the aforementioned
mini-test of 15 minutes. The test is about the content that has been covered in
the lecture and exercise class of the previous week. It is closed-book and there
are multiple-choice questions as well as free-style assignments. The mini-tests are
manually graded by the professors—usually within a day. No mini-test can be re-
peated or taken at a later point in time. Each mini-test is worth up to 5 points. For
passing the course, at least two positive mini-tests (≥ 2.5 points) have to be in the
first module, three positive mini-tests have to be in the second module, and one
positive mini-test has to be from the third module. Up to four mini-tests can be
replaced by a so-called lab exercise. The lab exercises are a kind of homework in
which the students have to use logical software tools or solve some programming
tasks. In addition to these lab exercises, there are also the weekly challenges, small
bonus exercises, which allow the students to earn an extra point for the mini-test
of the current week. The weekly challenges typically involve some sort of logical
software as well.

One of the main distinguishing features of our course is the early adoption of
reasoning technology. With this, the students immediately get an impression of
the practical opportunities offered by logic. In the following, we report on three
showcases illustrating the tool-based reasoning tasks integrated into our course.

3.1 Playing with SAT & SMT
To get experience in applying solving technology on practical reasoning problems,
we ask the students to solve games with the aid of a SAT solver. A popular as-
signment is the encoding of Sudoku puzzles. The task is to translate the rules of
4×4-Sudoku into

3

2

4

1

propositional logic. The rules are as follows: Given a 4×4 grid, each of the small
fields must contain exactly one of the numbers (1,2,3,4) such that (1) no number
occurs twice in a row, (2) no number occurs twice in a column, and (3) no number
occurs twice in the four 2×2 grid (see figure). We also give the students a Sudoku
instance that is not completed yet. The challenge is now to decide if this given
Sudoku instance does have a solution. Even for these small sized Sudokus, the
question is hard to answer without tool support.

The straight-forward encoding of the Sudoko simply reuses the ideas of graph
coloring that was extensively discussed in the lecture before. The fields are repre-
sented by the nodes of the graph. The fields that may not contain the same numbers
are connected in the graph. Solving the Sudoku then boils down to the question
if there is a coloring of the graph using four colors such that no connected nodes
have the same color. The formula is of a size such that it still can be generated
by hand. However, some students prefer to implement a small script that outputs
the encoding. For solving the formula, we developed a front-end for recent SAT

4



solvers that uses an input format students find more natural than the standard input
format DIMACS, which is a list of numbers.

The language of propositional logic only provides Boolean variables and con-
nectives. Hence the propositional encoding reduces the Sudoku-solving problem
to a graph coloring problem. Later in the course we introduce SMT (Barrett et al.,
2009) (Satisfiability Modulo Theory) that extends propositional logic by data struc-
tures like arrays or other data types like integers. Now the students can reformulate
their Sudoku encoding by exploiting these advanced language features, learning
that with more expressive languages encodings often become easier. The reason-
ing itself becomes more involved at this stage or even infeasible (depending on
the concepts that are included in a language extension) and therefore we mostly
rely on tool support (SMT solvers) in this part, even though we do explain basic
algorithmic aspects of SMT solving.

3.2 Automatic Checking with RISCAL
RISCAL (RISC Algorithm Language) is a language and associated software sys-
tem for the formal modeling of mathematical theories and algorithms in first order
logic (Schreiner, 2019). In contrast to interactive proof assistants (such as the The-
orema system described below), RISCAL requires no assistance, but is able to fully
automatically check the validity of theorems and the correctness of algorithms.

RISCAL is an educational software (Schreiner, 2019) in contrast to other soft-
ware, such as TLA (Cousineau et al., 2012), of similar design, thus motivating our
use of the software. As an educational software, its intended use is to give insight
into the meaning and purpose of first order logic a more expressive but also more
difficult language than propositional logic (the domain of SAT & SMT); e.g., first
order logic is able to describe the complex relationships required in mathemati-
cal theories or in the formal specification of computer programs. In particular,
RISCAL can quickly demonstrate that an attempted first order logic formalization
is (due to errors and omissions) not adequate; this is actually the problem that stu-
dents (and experts) have to deal with most of the time but that is not well addressed
by proof-based tools (the construction of proofs is tedious and the inability to de-
rive such a construction does not necessarily demonstrate that the goal formula is
invalid).

RISCAL has already successfully supported courses on the formal specifica-
tion and verification of computer programs at our university (Schreiner, 2019).
In our course it was used as a learning aid during the first half of the module
2. In detail, students were issued three bonus assignments consisting of prepared
specification templates in which students had (as demonstrated by corresponding
examples) to fill in the missing parts of formalizations; after each step they could
apply the RISCAL checking mechanisms to determine whether their entries were
adequate. The correctness of submissions could thus be completely self-checked
before actually handing them in; teaching assistants mainly verified their plausi-
bility.

RISCAL was distributed in the form of a pre-configured virtual machine to
be executed on the students’ own computers; videos were prepared to describe
the installation of the use of this software. While we experienced few technical
problems, nevertheless some students may have shied away from the use of the
software, because of the technical requirements and/or the mode of interaction
with it (which required the manipulation of text files). Alternative solutions are
being considered for future iterations of the course, such as an (already developed)
web-based exercise interface.

5



3.3 The Theorema Proof Assistant
Theorema is a mathematical assistant system (Buchberger et al., 2016) based on
the well-known Software system Mathematica (Inc., ). Theorema is freely avail-
able (Buchberger et al., 2016) (GNU GPL), students need Mathematica installed,
which is affordable since many universities own a campus-license of Mathematica.
Theorema is a Mathematica package, i.e. it just consists of a folder to be copied to
the right location. By design, Theorema aims to support the mathematician during
all phases of mathematical activity. While this serves as a philosophical goal, the
current implementation of Theorema can compute expressions built-up by num-
bers, tuples, and finite sets and automatically prove statements expressed in The-
orema’s version of higher order predicate logic. Computation is a useful tool for
checking adequacy of definitions, because checking its behavior on several finite
cases can give certainty that the definition as written fits. This is similar in spirit to
what RISCAL (Section 3.2) does when checking specifications. However, Theo-
rema was used in our course mainly for its proving capabilities. We consider cor-
rect logical argumentation and doing (simple) mathematical proofs an important
competence being taught to computer science students. According to our philoso-
phy, a thorough understanding of “mathematical proving” as a (mainly) syntactical
process on sets of predicate logic formulas (hypotheses and the proof goal) deter-
mined by their syntactical structure helps students doing their own proofs. The
goal of using a theorem prover in this setting is not to convince students that cer-
tain statements are true. Rather, they should learn from the prover how it proved
some theorem. We consider the automated prover as a proof tutor, and students
can train as many examples as needed.

The key feature of Theorema is that it generates human-readable proofs using
inference rules inspired by natural deduction. It is though not a classical natural
deduction calculus as explained in literature and taught in our course because The-
orema aims at human-like proofs (in contrast to e.g. a minimal set of inference
rules). Theorema was used in the proving section of the “First Order Logic” mod-
ule. Students were offered three bonus exercises with increasing difficulty, where
in each exercise they received a Theorema notebook with a theorem already con-
tained in there. Exercise 1 was quantifier-free, Exercise 2 contained alternating
quantifiers, and Exercise 3 needed auxiliary definitions that were also part of the
notebook. In all three, it was possible to get an automated proof of the theorem
without further configuration of the system. (Note that, in general, a user can fine-
tune the prover by switching on/off certain rules and by setting rule priorities.)
The bonus exercises were meant as a preparation for the Theorema Lab Exercise,
where the task was to first use Theorema to prove a theorem and then prove the
theorem with pencil and paper, being of course allowed to use the Theorema-proof
as a model.

4 Evaluation and Results
In this section, we cover the design of our questionnaire, the evaluation, and the
results.

4.1 Questionnaire Design
A typical end-of-semester questionnaire (usually referred to as a course evaluation)
is used to evaluate the effectiveness of the lecturer, the overall presentation of the
course material, and the evaluation method (grading system) of the students. The
center for teaching and learning at UC Berkeley provides an outline of a typical

6



end-of-semester evaluation1. Such evaluation forms usually include generic ques-
tions such as “The course (or section) provided an appropriate balance between
instruction and practice?” which are to be answered by selecting from a discrete
scale.

There has been a large number of investigations into various aspects of such
evaluation forms, as covered by Nicole Eva (Eva, 2018) and even journals ded-
icated to the subject (Spooren and Christiaens, 2017) (an interesting paper from
such a venue). While design and execution does come into question (McClain
et al., 2018) much of the literature is concerned with effectiveness and bias. In our
case, the effectiveness of the questionnaire was not of the highest priority because
we were not using it for evaluation, rather we want the opinion of the students
as to how the overall presentation affected their understanding of the material. As
mentioned in (Lee et al., 2018) we wanted to gain an understanding of the student’s
conceptual gains and their relationship to the presentation. Thus, our foremost goal
was to make the questionnaire engaging enough to get the students to complete
it. Towards increasing student engagement we decided to make our questionnaire
mostly free-form. As documented in literature, this design choice increased the
difficulty of analysis. See Figure 1 for the first two questions of eight questions.

Instead, we asked students to draw curves for understanding vs. time and in-
terest vs. time. Additionally, they were provided the opportunity to mark three
points on the curve which were significant to their experience. The macrostructure
of the course allows the students to have reference points, i.e. three mostly distinct
modules, thus allowing easier evaluation.

The rest of the questions included in the questionnaire concern the inclusion
of software within the course and how the software was included in the course.
For the past four years, each iteration of the course introduced software as either a
bonus exercise or as a part of a lab assignment. Questions 5, 6, and 7 were designed
to see if the software and its integration into the course is mature enough to make it
an explicit part of the grade, i.e. students may also lose points for not completing
assignments using the software. The final question concerns students’ thoughts
about an experimental game-based approach to teach propositional satisfiability.

4.2 Evaluating Student Illustrations
Rather than asking students to provide a written description of there experiences
we ask them to draw curves depicting their understanding and interest over the
course of the semester. Space was left (see Figure 1) for the students to provide
a short description of any particularly important parts of the course which influ-
enced their understanding or interest. Coordinate grid provided to the students was
divided into three sections, one for each module of the course. Out of the 134 ques-
tionnaires handed in, 131 of them had illustrations in the provided charts, roughly
∼ 98% of the questionnaires2.

We evaluated the curves drawn by students by first placing them into 5 catagories:
Constant, Linear, Parabolic, Saw Tooth, and Other. Furthermore per module,
we considered the Slope (either -1,0, or 1), the Maximum (either 0,.25,.5,.75, or
1), the Minimum (either 0,.25,.5,.75, or 1), Jump (either yes,no), and Drop (either
yes,no).

Using these measures we were able to define the Concavity of the curves, i.e.
slope between modules. Note Students where not provide with a discrete scale on
the y-axis thus, we had to apply the scale during evaluation. This scale spanned the
interval [0,1] in .25 increments. To denote significant changes in value, we added

1https://teaching.berkeley.edu/course-evaluations-question-bank
2For more details see the technical report: https://ww

w3.risc.jku.at/publications/download/risc 5885/Report.pdf.

7

https://www3.risc.jku.at/publications/download/risc_5885/Report.pdf
https://www3.risc.jku.at/publications/download/risc_5885/Report.pdf


Figure 1: The first two questions of our questionnaire. The left side provides space for
student illustrations. The right side provides space for highlighting important activities.

the Jump and Drop features which state whether a module contains a significant
positive change (Jump) or negative change (Drop)3.

4.3 Questionnaire Results
Understanding and interest in the course where highly correlated and thus we focus
on student illustrations of understanding. The majority of students drew parabolas
with a minimum within module 2, i.e. a majority were concave down. The sec-
ond most common curve type was saw-tooth with a minimum in module 2 with a
further drop occurring in module 3. Note module 3 is essentially first-order logic
without quantification, i.e. term manipulation rather than explicit proof construc-
tion. Overall, the majority of students understood less and were less interested as
the course progressed. The significant number of saw-tooth illustrations points to
issues with the computational aspect of formal reasoning being difficult for stu-
dents to grasp. This may be the first time many of the students have seen formal
reasoning. Our survey provides preliminary evidence that developing tools and
software for these topics would be a worthwhile endeavor. Concerning proof con-
struction, systems have been developed already, using COQ (Knobelsdorf et al.,
2017) and Z3 (Ehle et al., 2017). However, to the best of our knowledge, no one
has focused on educational tools for the computational aspects of first-order rea-
soning.

Together, these results account for ∼ 66% of the illustrations for understanding.
Many students had praise for the portion of module 2 focusing on the application
of first-order reasoning to software verification aided by RISCAL. The particularly
problematic topic was proof tree construction which invariably required sound ap-
plication of formal reasoning, i.e. logic without direct application. It is precisely
this approach to formal reasoning which resulted in a loss of student interest and
understanding.

Many students mentioned that lab sessions and the introduction of software
increased their interest in the course, but according to the illustrations this did not
necessarily mean they understood more. The software was mainly introduced as
part of the weekly challenges, When asked why they completed a weekly chal-
lenge, the most common answer was for credits (one of the problems with extra
credits (Norcross et al., 1993; Pynes, 2014)). Some students pointed out their de-
sire to increase their understanding. It is not clear if the software inadvertently had
some effect on student understanding. This not been investigated.

3A spreadsheet containing all results may be found here:
https://www3.risc.jku.at/publications/download/risc 5885/
FINALRESULTS.xlsx

8

https://www3.risc.jku.at/publications/download/risc_5885/FINALRESULTS.xlsx
https://www3.risc.jku.at/publications/download/risc_5885/FINALRESULTS.xlsx


5 Lessons Learned
Clearly computational logic is an essential part of computational thinking. There is
an increased need to equip students of computer science and related fields with the
important skill of applying logic to formalize system properties and reason about
software and hardware systems. The introduction of our Logic course as a manda-
tory course in the Bachelor curriculum is the reaction to a request by the applied
faculty in our department. The goal was to educate students in such computational
aspects of logic. Our own experience in applying formal technology in Industry
confirms this view. A fundamental understanding of the algorithms of logical rea-
soning is also important to efficiently apply logical reasoning tools in practice. It
turned out that the main challenge is how to teach these skills, focusing on the
practical aspects of logic, ignoring classical more abstract concepts, less important
from the computational point of view.

We addressed this challenge by (1) emphasizing concepts most relevant in
practical applications of logic, (2) letting the students gain hands-on experience
in using automatic and computer-assisted logical reasoning tools, and (3) provid-
ing immediate feed-back through weekly mini-tests, weekly challenges, and lab
exercises. To assess the effect of our measures we presented students with a ques-
tionnaire at the end of the semester. The results show that the last two measures are
very effective. Students appreciate the way we teach logic on concrete problems
too.

As expected the more classical part of the lecture was considered the most dif-
ficult one. We are trying to make it more accessible in the future. In particular, we
already decided to completely remove the discussion of complexity and decidabil-
ity and rely on later courses in the curriculum to cover these (important) concepts.
We are further investigating how to use games or puzzles to introduce quantifiers.
Another big concern of the students was the usability of the software. To address
this issue we will expand the use of web technology and will work on an app-based
approach too. But in general, we got the impression that the course was very well
received by the students. It produced low-drop rates compared to other courses
without compromising on quality.

For us as teachers, the most striking lessons are as follows. First, even though
evident in hindsight, you can teach advanced modern logical reasoning techniques
such as SAT and SMT in the first semester. Students seem to like the hands-on
experience they get with these topics. Second, automatically checking first-order
logic properties on simple programs makes first-order logic much more accessible.
Third in an introductory course on Logic, one should remove all the more abstract
and philosophical topics of logic and post-pone it to later more specialized courses.
Fourth, and most unexpected, we learned about the importance of presentation to
usability of the introduced tools. What seems simple to us in terms of usability may
be a barrier for students, for example, the difficulty of installation, the complexity
of the interface, etc.

Finally, we concluded that computational logic is much simpler to understand
and teach than programming. In our experience, this applies not only to first-year
students of computer science but also to other fields and on all levels of educa-
tion. As a consequence, we suggest that attempts to spread computational thinking
throughout society should not focus on teaching programming skills only. Logic
is essential too and at least with the focus on computational logic we propose it is
easy to integrate successfully into a technical curriculum.

9



Acknowledgements
Suported by the LIT LOGTECHEDU project and the LIT AI Lab both funded by
the state of upper Austria.

References
Barland, I., Felleisen, M., Fisler, K., Kolaitis, P., and Vardi, M. Y. (2000). Integrat-

ing logic into the computer science curriculum. In Annual Joint Conference
on Integrating Technology into Computer Science Education.

Barrett, C. W., Sebastiani, R., Seshia, S. A., and Tinelli, C. (2009). Satisfiability
modulo theories. In Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications, pages 825–885. IOS Press, Amster-
dam, The Netherlands.

Ben-Ari, M. (2012). Mathematical Logic for Computer Science. Springer, London,
3rd edition.

Böhne, S. and Kreitz, C. (2017). Learning how to prove: From the coq proof
assistant to textbook style. In Proceedings of ThEdu@CADE’17, pages 1–
18.

Buchberger, B., Jebelean, T., Kutsia, T., Maletzky, A., and Windsteiger, W.
(2016). Theorema 2.0: Computer-Assisted Natural-Style Mathematics. JFR,
9(1):149–185.

Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M.,
O’Hearn, P., Papakonstantinou, I., Purbrick, J., and Rodriguez, D. (2015).
Moving fast with software verification. In Proceedings of NFM’15, volume
9058 of LNCS, pages 3–11. Springer.

Chen, Y.-A., Clarke, E. M., Ho, P.-H., Hoskote, Y. V., Kam, T., Khaira, M.,
O’Leary, J. W., and Zhao, X. (1996). Verification of all circuits in a floating-
point unit using word-level model checking. In Proceedings of the 1st Int.
Conference on Formal Methods in Computer-Aided Design, FMCAD’96,
volume 1166 of LNCS, pages 19–33, Cham, Switzerland. Springer.

Cook, B. (2018). Formal reasoning about the security of amazon web services.
In Proceedings of CAV’18, volume 10981 of LNCS, pages 38–47, Cham,
Switzerland. Springer.

Cousineau, D., Doligez, D., Lamport, L., Merz, S., Ricketts, D., and Vanzetto,
H. (2012). TLA+ proofs. In Proceedings of FM’12, Paris, volume 7436 of
LNCS, pages 147–154, Berlin, Germany. Springer.

development team, T. C. (2019). The coq proof assistant reference manual. Version
8.10.

Edgington, J. M. (2010). Toward Using Games to Teach Fundamental Computer
Science Concepts. Doctoral dissertation, University of Denver, USA.

Ehle, A., Hundeshagen, N., and Lange, M. (2017). The sequent calculus trainer
with automated reasoning - helping students to find proofs. In Proceedings
of ThEdu@CADE’17, pages 19–37.

Eva, N. (2018). Annotated literature review: student evaluations of teaching (set).
Technical report, University of Lethbridge Faculty Association, Canada.

Eysink, T. (2001). Signs for logic teaching. PhD thesis, University of Twente, The
Netherlands.

10



Gallier, J. H. (1985). Logic for Computer Science: Foundations of Automatic
Theorem Proving. Harper & Row Publishers, Inc., New York, NY, USA.

Goldson, D., Reeves, S., and Bornat, R. (1993). A review of several programs for
the teaching of logic. Computer Journal, 36(4):373–386.

Gries, D., editor (1981). The Science of Programming. Springer, New York, USA.

Hooper, A. (2017). A serious game for teaching first order logic to secondary
school students. Tr, Department of Computer Science, University of Bath.

Huertas, A. (2011). Ten years of computer-based tutors for teaching logic 2000-
2010: Lessons learned. In Proceedings of the 3rd Int. Congress Conference
on Tools for Teaching Logic, TICTTL’11, pages 131–140, Berlin, Heidelberg.
Springer.

Huth, M. and Ryan, M. (2004). Logic in Computer Science: Modelling and Rea-
soning About Systems. Cambridge University Press, Cambridge, UK.

Inc., W. R. Mathematica, Version 11. Champaign, IL, 2018.

Jackson, D. (2012). Software Abstractions: Logic, Language, and Analysis. The
MIT Press, Cambridge, MA, USA.

Kaivola, R., Ghughal, R., Narasimhan, N., Telfer, A., Whittemore, J., Pandav, S.,
Slobodová, A., Taylor, C., Frolov, V. A., Reeber, E., and Naik, A. (2009).
Replacing testing with formal verification in intel coretm i7 processor exe-
cution engine validation. In Proceedings of CAV ’09, volume 5643 of LNCS,
pages 414–429. Springer.

Kaufmann, M., Manolios, P., and Moore, J. (2000a). Computer-Aided Reasoning:
ACL2 Case Studies, volume 4 of Advances in Formal Methods. Springer,
New York, NY, USA.

Kaufmann, M., Manolios, P., and Moore, J. (2000b). Computer-Aided Reasoning:
An Approach, volume 3 of Advances in Formal Methods. Springer, New
York, NY, USA.

Knobelsdorf, M., Frede, C., Böhne, S., and Kreitz, C. (2017). Theorem provers as
a learning tool in theory of computation. In Proceedings of the ICER 2017,
pages 83–92, Tacoma, WA, USA.

Leach-Krouse, G. (2017). Carnap: An open framework for formal reasoning in
the browser. In Proceedings of ThEdu@CADE 2017, Gothenburg, Sweden,
6 Aug 2017., pages 70–88.

Lee, E., Shan, V., Beth, B., and Lin, C. (2014). A structured approach to teaching
recursion using cargo-bot. In Tenth Annual Conference on Int. Computing
Education Research, ICER ’14, Glasgow, Scotland, UK, April 11–13, pages
59–66. ACM.

Lee, L. J., Connolly, M. E., Dancy, M. H., Henderson, C. R., and Christensen,
W. M. (2018). A comparison of student evaluations of instruction vs. stu-
dents’ conceptual learning gains. American Journal of Physics, 86(7):531–
535.

Lethbridge, T. C. (2000). What knowledge is important to a software professional?
Computer, 33(5):44–50.

Makowsky, J. (2015). Teaching logic for computer science: Are we teaching the
wrong narrative? In Proceedings of the 4th Int. Conference on Tools for
Teaching Logic, TTL 2015, Leibniz Int. Proceedings in Informatics, pages
101–110, Dagstuhl, Germany. Dagstuhl Publishing.

Makowsky, J. A. and Zamansky, A. (2017). Keeping logic in the trivium of com-
puter science: A teaching perspective. Formal Methods in Systems Design,
51(2):419–430.

11



McClain, L., Gulbis, A., and Hays, D. (2018). Honesty on student evaluations of
teaching: effectiveness, purpose, and timing matter! Assessment & Evalua-
tion in Higher Education, 43(3):369–385.

Muratet, M., Torguet, P., Jessel, J.-P., and Viallet, F. (2009). Towards a serious
game to help students learn computer programming. Int. Journal of Com-
puter Games Technology, 2009.

Norcross, J. C., Dooley, H. S., and Stevenson, J. F. (1993). Faculty use and
justification of extra credit: No middle ground? Teaching of Psychology,
20(4):240–242.

Page, R. L. (2003). Software is discrete mathematics. SIGPLAN Not., 38(9):79–86.

Pynes, C. A. (2014). Seven arguments against extra credit. Teaching Philosophy,
37(2):191–214.

Reeves, S. and Clarke, M. (1990). Logic for Computer Science. Addison-Wesley,
Boston, MA, USA.

Reid, A., Chen, R., Deligiannis, A., Gilday, D., Hoyes, D., Keen, W., Pathirane,
A., Shepherd, O., Vrabel, P., and Zaidi, A. (2016). End-to-end verifica-
tion of processors with isa-formal. In Proceedings of the Int. Conference
on Computer Aided Verification, CAV’16, pages 42–58, Cham, Switzerland.
Springer.

Reinfelds, J. (1995). Logic in first courses for computing science majors. In
Proceedings of WCCE’95, pages 467–477, Boston, MA. Springer.

Russell, S. J. and Norvig, P. (2010). Artificial Intelligence - A Modern Approach,
Third Int. Edition. Pearson Education, Upper Saddle River, NJ, USA.

Schreiner, W. (2019). Theorem and Algorithm Checking for Courses on Logic and
Formal Methods. In Quaresma, P. and Neuper, W., editors, Post-Proceedings
ThEdu’18, volume 290 of EPTCS, pages 56–75.

Spooren, P. and Christiaens, W. (2017). I liked your course because i believe in
(the power of) student evaluations of teaching (set). students’ perceptions of
a teaching evaluation process and their relationships with set scores. Studies
in Educational Evaluation, 54:43–49.

Vardi, M. Y. (1998). Sigcse’98 panel on logic in the cs curriculum.
https://www.cs.rice.edu/ vardi/sigcse/.

Wing, J. M. (2000). Invited talk: Weaving formal methods into the undergradu-
ate computer science curriculum. In Algebraic Methodology and Software
Technology, pages 2–7, Berlin, Germany. Springer.

Zamansky, A. and Farchi, E. (2015). Teaching logic to information systems stu-
dents: Challenges and opportunities. In Proceedings of the 4th Int. Con-
ference on Tools for Teaching Logic, TTL’15, Rennes, France, June 9-12,
Leibniz Int. Proceedings in Informatics, pages 273–280, Dagstuhl, Germany.
Dagstuhl Publishing.

Zamansky, A. and Zohar, Y. (2016). ‘mathematical’ does not mean ‘boring’: In-
tegrating software assignments to enhance learning of logico-mathematical
concepts. In Advanced Information Systems Engineering Workshops, pages
103–108, Cham, Switzerland. Springer.

12


	Introduction
	Related Work
	Logic in Action
	Playing with SAT & SMT
	Automatic Checking with RISCAL
	The Theorema Proof Assistant

	Evaluation and Results
	Questionnaire Design
	Evaluating Student Illustrations
	Questionnaire Results

	Lessons Learned

