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Abstract The class of regular propositional schemata, discovered by
Aravantinos et al. [4], is a major advancement towards more expressive
classes of inductive theorems with a decidable satisfiability problem.
Though more expressive than previously known decidable classes outlined
by Kapur & Giesl[I7], it still requires the burdensome restriction of
induction with only one free parameter. In general, unrestricted usage
of multiple free parameters in schematic formulae is undecidable for
satisfiability [2]. In later work, Aravantinos et al. [6] introduced normalized
clause sets which have a decision procedure for satisfiability and allow
for restricted usage of multiple parameters. In our work, we investigate
classes of propositional schemata which allow for multiple free parameters
and are more expressive than regular schemata. Specifically, the classes
we investigate have a decision procedure for satisfiability testing without
requiring the additional theoretical machinery of normalized clause sets.
Thus, allowing one to avoid conversion to CNF formulae. Both of the
classes we introduce, linked schemata and pure overlap schemata use the
machinery introduced in the earlier works of Aravantinos et al.[4] with
only a slight change to the decision procedure.

1 Introduction

The concept of schema has been pervasive throughout the history of logic [I4].
First-order Peano arithmetic’s usage of an induction schema is a well known
example of schema in mathematical logic [22]. There are many other less known
examples where schemata were used in both propositional and first-order logic
to attain proof theoretic results. For example, results pertaining to proof length,
unification, construction of ‘proof skeletons’, and first-order schematic Hilbert-
type systems [7[92TIT920]. Also, in the analysis of the Fiirstenberg’s proof of
the infinitude of primes [§], cut elimination resulted in a schema of proofs where
the free parameter indexed the number of prime numbers. Very recently, work
has been done on schematizing cut-elimination so that an arbitrary number of
cuts can be eliminated without instantiating the free parameter of the proof [15].

The usage of schemata that we will focus on for the majority of this paper is
schemata as an object level construction iterating propositional formulae. This
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work was pioneered by Aravantinos et al. [4] with application to the field of
repeated circuit verification. This construction has also resulted in discoveries
in the field of inductive theorem proving, namely, construction of classes of
inductively defined formulae which have a decidable satisfiability problem and
are more expressive than those currently known in the field [4JI7JI8]. Namely,
theses classes are bounded-linear schemata, regular schemata, nested regular
schemata, and a multiple free parameter generalization of regular schemata
through normalized clause set representation, [6]. Decidable classes of inductive
theorems discovered by Kapur et al. [T7JI8], the most prominent work in this
area, were mainly universally quantified. Propositional schemata can express
both bounded existential and universal quantification through A and V iterations.

Our main results are formalizations of the class of linked schemata and pure
overlap schemata, both being multiple free parameter extension of regular schema,
together with a decision procedure for both classes. This decision procedure is a
simple extension of the ST procedure for STAB[4]. Our decision procedure allows
one to avoid the conversion of propositional schemata to normalized clause sets
[6]. Our work is of a similar vein as Gentzen’s work [16] in which he provided a
method to fuse multiple inductions together in Peano arithmetic.

Though both classes of schemata we introduce are subclasses of the schemata
representable by normalized clause sets and benefit from the satisfiability pro-
cedure of normalized clauses sets [6], the existence of a tableaux-based decision
procedure for satisfiability testing for these classes remained an open problem.
The benefit of a tableaux-based decision procedure is that one does not need
to convert the propositional schemata into CNF form to test satisfiability. Note
that, if one wants to keep logical equivalence between the original formula and
the CNF form, the conversion can result in an exponential increase in formula
size.

In this paper, we consider multiple regular schemata (each with its own
parameter) such that the propositional symbols of one schema are not found in
the other regular schemata. When this property holds, we can use the parts (i.e.
the iterations and propositional variables not found in the iterations) to construct
a formula with multiple free parameters—we refer to this class as the class of
linked schemata. Essentially, we build formulae using the pieces of several regular
schemata. Although, this idea is quite simple, it provides a class of schemata
extending regular schemata which still has a tableaux-based decision procedure
for satisfiability.

Next we investigate when it is possible for the propositional symbols to
occur in two or more linked regular schemata, i.e. the same propositional symbol
has occurrences indexed by two different parameters. To answer this question,
we develop the concept of relative pure literals, literals which are pure when
considering occurrences indexed by another parameter. This concept is used to
construct the class of pure overlap schemata.

Both linked and pure overlap schemata are extensions of regular schemata,
but after applying several tableaux extension rules to the constructed tableau,
It is possible to reduce the branches of the constructed tableau to tableaux



branches which are decidable using the decision procedure for regular schemata.
Essentially, they are both propositional extensions of the class. It is not completely
clear if these classes of schemata are the most expressive classes such that their
satisfiability problem can be reduced to the satisfiability problem for regular
schemata. An open problem regarding this point is whether the purity constraint
can be relaxed and retain the reduction— results of Aravantinos et al. [4] (Thm.
6.2) suggests that this is not going to be the case.

Overall, our paper provides a simpler and more natural alternative to nor-
malized clause set representation when deciding satisfiability for certain classes
of multiple-parameter schemata.

The rest of this paper is structured as follows, Sec. [2] will be necessary
background material from Aravantinos et al. [4], in Sec. [3| we formalize the
construction of linked schemata, in Sec. [ we formalize the construction of pure
overlap schemata , in Sec. [5| we provide a decision procedure for the satisfiability
problem of pure overlap schemata. Finally, in Sec. [6] we conclude the paper and
shortly discuss the open problems.

2 Background

2.1 Propositional Schemata

The indexing language for standard schematic propositional logic as considered
in Aravantinos et al. [4] is the set of linear arithmetic terms (denoted by Z)
built using the language {0, s(-),+, —} and a countably infinite set of variables V.
Multiplication is considered as a shorthand for terms of the form x+x+z+z = 4-x
and is not a real operator in the language, nor is it a necessary one. To stick to
the framework of Aravantinos et al. [4] Z is considered as the standard model of
the terms in Z.

Definition 1 (Indexed Proposition[d]). Let P be a fized and countably infi-
nite set of propositional symbols. An indexed proposition is an expression of the
form pa where p € P and a € Z. An indexed proposition py s.t. a € Z is called a
propositional variable.

Definition 2 (Formula Schemata[d]). The set of formula schemata is the
smallest set satisfying the following properties.

— 1, T are formula schemata.

— Ifa,b € Z then a < b is a formula schema.

— Fach indezxed proposition is a formula schema.

— If ¢1,09 are formula schemata then ¢1 N\ @2, &1 V P2, —@1 are formula
schemata.

— If ¢ is a formula schema not containing <, and if a,b € Z | where i is an
arithmetic variable, then /\:’:a o, \/?:agb are formula schemata.



Ezample 1. Consider the formula:

n 2n+1
p=q N /\ Diton N\ \/ TGn—j V @j+1 ANO<n

@ is a formula schema.

Formula schemata are inherently finite. We will label the indexed propositions,
T, L and statements of the form a < b, as atoms. Formula schemata of the form
/\zb:a ¢ and \/ib:a ¢ will be called iterations. A formula schema whose constituents
are any of the following: T, L, and a < b, is an arithmetic formula. Also, it is
taken as a standard that arithmetic formulae of the form a < b can only occur
outside of iterations. This constraint is necessary being that a < b is interpreted
as an iteration, i.e.

b
a<b= \/ T (1)

i=a+1

Also, we use a = b as an abbreviation for =(b < a) A ~(a < b) and a < b as an
abbreviation for —(b < a). Iterations have both free and bound variables, where
free variable and parameter are synonymous. A bound variable ¢ is a variable in
the scope of an iteration IT2_,¢; where IT = {\/, \}. A substitution is a function
mapping all the free variables to linear expressions. If a substitution o is applied
to a schema ¢, i.e po such that the domain of o is every free variable in ¢, then
the linear expressions of ¢ are integer terms, i.e. all indices in ¢ are variable free.

Definition 3 (Interpretation [4]). An interpretation of the schematic lan-
guage is a function mapping every parameter to an integer and every proposi-
tional variable to a truth value T or F. The substitution and interpretation will
be denoted as o and L, respectively.

Ezample 2. An Interpretation Z such that ¢ from Ex.[I]is modelled by Z would
beo={n+0}tand g1 =T,pp=T,q0=T,¢g-1=T,q1 =F,¢o =T

Definition 4 (Semantics of Schematic Formulae [4]). The semantics of a
schematic formula ¢ in a given interpretation I, denoted by [¢]z, is defined as
follows:

- [[T]]I =T and [[LHI =F

— [[a < b]]I =T« [[aﬂz <z [[b]]z

— [[Pa]]z = I(P[[a]]z) fOT’ PeP

—[9lz =T« [¢]lz=F

—leVvilz=T e [plz=T or ]z =T

= [end]z =T« [¢lz =T and [¢]z =T

[[\/?:a @ilz = T < Ja € Z such that [a]z <z a <z [b]z and [¢i]zja,q =T

[[/\?:a pilz =T & VacZ, [a]r <z a <z [b]z implies [¢i]zja, i =T



In the above definition, by [[%‘]]I[a i) We mean every occurrence of i in ¢; is
replaced by a. A propositional schema ¢ is valid (respectively satisfiable) iff for
all (exists an interpretation) interpretations Z s.t. [¢]z = T. Z is called a model
of ¢, written as Z = . Two schemata ¢, ¥ are equivalent (written ¢ = ) iff
ITEp<IE1vY. pandy are sat-equivalent (written ¢ =g 9) iff ¢ and ¢ are
both satisfiable or both unsatisfiable (not necessarily by the same model).

Definition 5 (Unrolling Iterations [4]). The following set S of rewrite rules
is used to unroll the iterations of a given schematic formula p:

Vv — L abeZandb<ya
Ao — T abeZandb<ya
S=0V. v — (Vle) vy iabeZanda<zb (2)

i=a

A?:aq//—) /\b;lﬁf ANY[b/ia,beZ and a<zb

i=a
By <z we are referring to the standard ordering over the integers.

Definition 6 (Regular Schemata (as written in [4])). A propositional
schema ¢ is regular if it has a unique parameter n and if it is flat, of bounded
propagation and aligned on [, n — f]:

1) A schema is flat if every IIP_ v occurring in the schema v does not contain
an iteration, , where IT € {\/, \}.

2) A schema is of bounded propagation if every atom that occurs in an iteration
IIY_ 1 is of the form Pii., for some v € Z, where IT € {\/, \} .

3) A schema is aligned on [c,d] if all iterations occurring in the schema are of
the form ITE 1), where IT € {\/, \}.

Ezxample 3. Consider the following schema:
@Po/\</\—'pi\/pi+1>/\—'pn/\0§n (3)
i=0

@ is a regular schemata.

2.2 Basics of STAB and the ST procedure

We now overview the main ingredients of the ST decision procedure of the STAB
framework introduced in Aravantinos et al. [4]. In this paper, we only rely on the
existence of the ST procedure and the propositional tableaux extension rules to
define an extended decision procedure for our newly defined classes of schemata.

Definition 7 (Tableau). A tableau is a tree T s.t. each node N occurring in
T is labelled by a set of schemata written @7 (N).



Definition 8 (Extension Rules). The extension rules of the STAB procedure
are as follows:

Propositional Rules

Tteration Rules

e N o= a<bob/ AN ‘ b<a
e Viap= a<bob/ivVige

Closure Rule
® Da, Db = Da, Db, @ # b

The way the STAB extension rules work is by extending currently constructed
tableau with new leaves containing all the formulae of the prior node minus the
formula ¢ on which the extension rule was applied. The parts of ¢ will be added
to the leaves in accordance with the extension rule definitions. The symbol | in
the extension rules means that the constructed tableau branches when this rule
is applied. The closure rule, rather than extending the constructed tableau, tells
us that there is no need to extend the considered branch because it contains an
unsatisfiable sub-branch.

Theorem 1. There is a decision procedure for satisfiability testing of reqular
schemata (ST procedure) based on the STAB extension rules (Def.[8) and an
additional rule to deal with looping, which terminates on every regular schema.
The procedure is sound and complete for regular schemata.

Ezxample 4. We provide an example of the ST procedure producing a closed
tableau for the regular schema of example 3| Note that not every available
formula is passed down the constructed tableau in the diagram.

(1)
Do N (/\Z:o1 —pi Vpit1) A—pp, A0 <n
\
Po, (/\?:_01 “pi V Pit1), P, 0 < n
n 7‘5 0
n>1

(/\;:02 i V Dit1)

X
“Pn—1V Pn

O1 X




The symbol O at the bottom of the left-most branch represents the looping
rule. Essentially it means that the branch at the denoted point is the same as
the branch at (1) (the top of the tableau), but for n — 1 instead of n. We will
not delve deeper into the theory behind the looping rule as we only rely on the
existence of such a rule for our procedure to work— for more details on the looping
we refer to [4].

Finally, we recall the following two concepts over a set @ of schemata: the
interval constraints (IC(®)) and the conjunction of arithmetic formulae in ¢
(@z). The formula IC(®) is the conjunction of the arithmetic formulae ming (i) <
i A1 < maxy(i) for each ¢ € & and for each bound variable in ¢. We assume that
all bound variables are distinct in @ and ming(:) is defined as the minimal value
that can be assigned to the bound variable i, whereas maz(i) is the maximum
value that can be assigned to the bound variable i.

Definition 9 (Pure Literal). A literal p, (respectively —p,) is pure in a set
of schemata @ iff for every occurrence of a literal —p, (respectively py) in @, the
arithmetic formula @z N IC(P) A a = b is unsatisfiable.

This definition will be modified to formalize the class of pure overlap schemata.

3 Linked Schemata

The class of linked schemata is an extension of regular schemata based on the
following observation:

(/n\pz)A \m/ i | =5 (/n\pz)A \7ﬁq,» . (4)

i=1 j=n+1 i=1 j=1

Simply, we choose the interpretations such that [p,+x]z = [gx]z for k& € [1,m]. By
the finiteness of the language, we can separate the integers into two distinct parts,
those greater than n and those less than n. Thus, the propositional variable p in
the interval [1,n] is invariant to the labelling of the propositional variable in the
interval [n 4 1, m]. They can share the same name or not, the assignment will not
influence the interpretations which model the schema. This observation is similar
to the reduction from monadic predicate logic with monadic function symbols to
monadic predicate logic without monadic function symbols, as outlined in Sec.
6.2 of “The Classical Decision Problem” [10)].

3.1 Construction

The simplest way to understand the construction of the class of linked schemata
is that any regular schema consists of atoms (specifically, ones not contained in
iterations) and iterations. We will refer to these “parts” as the principal objects,
denoted by P(¢) of a schema ¢. We consider sets @ of regular schemata, such that
the propositional symbols are distinct with regards to the regular schemata in



the set, i.e. if ¢,9 € @ and ¢ contains a propositional variable using the symbol p
then 1 cannot contain propositional variables using this symbol. We can compute
U¢€45 P(¢) without any propositional symbols occuring in two iterations indexed
by different free parameters. Using this set of “parts” and the propositional
connectives -, V , and A we can construct new formulae. The rest of this section
will be focused on the formalization of this concept.

Definition 10. Let p € P be a propositional symbol and ¢ a formula schema,
then occ(p, ) = 1 iff p occurs in @, otherwise it is occ(p, p) = 0

Definition 11 (principal Objects). Given a schema ¢ we can construct the
set of principal objects P(p) using the following inductive definition:

[ )
By
S
b
&

One can consider P(p) as a specially constructed set of formula schema.

Ezample 5. Let use compute the set of principal objects of the following regular
schema;

n
@E(OSR)/\P@/\/\(" i—l\/Pi)/\_‘Pn (5)
i=1
We get ,P((P) = {(0 < n)7P07 /\?:1 (_‘ i—1 V Pz) 7Pn}
We will abbreviate the set of propositional connectives used as O = {A,V, —}.

By ¥ € clo(®), we mean that ¢ can be constructed using the set of formula
schema @ and the logical connective set O.

Ezxample 6. Using the principal object set from Ex. [5| and the set of operators
O = {A,V,~}, some of the formulae we can construct are:

P = (O < n) APy A /\ (ﬁPi,1 V Pz) NP, (6)
i=1
ha = ((0SP)APOANT_ (= Pi—1VP)A=P, )V ((0<n)A=PoAAT_, (nPi_1VP)AP,)  (T)

It is not necessary that the constructed formulae are valid, satisfiable, or unsatis-
fiable. One can check that both 11,9 € clo(P(p)).



Lemma 1. If ¢ is a regular schema, then all ¢ € clo(P(p)) have the same
aligned interval as .

Proof. Assuming that ¢ has an aligned interval [o,n — 5], then any, of its parts
must have an aligned interval of at most [a,n — 8] and are themselves regular
schema. Thus, ¢ is a boolean combination with the same aligned interval, implying
that its aligned interval must be the same. [J

Using this simple result we will define the class of linked schemata, as follows.

Definition 12 (The class of Linked Schemata). Let us consider the class
A of all finite sets @ of reqular schemata such that for all propositional symbols p,

we have that (245645 occ(p, qb)) is either 1 or 0, we define the class LS of linked
schemata as

LS = |Jdo | | Pe)
peA pcd
Lemma 2. If ¢ is a reqular schema, then it is a linked schema.

Proof. By definition [12] we can consider the set @ = {¢}, also, ¢ € clo (P(¢)),
and thus, ¢ € LS.
]

Theorem 2. The class of reqular schemata is contained but mot equal to the
class of linked schemata.

Proof. We prove this by providing an example, see Ex. [7] of a linked schema
which is not a regular schema.
a

Ezxample 7. Let us consider @ containing the following three regular schemata.
In what follows, we write A <+ B as an abbreviation for (—AV B) A (=B V A):

k k

1=\ P A=\ P (8a)

i=1 i=1
i=1 i= i=1
= /n\ Mi (80)
i=1
We can construct the following LS formula using &:
k m m
<<\/ﬁpi—> \/QZ) <\/R - /\M) AN Qi+ R )
i=1 i=1 =1 i=1 (9)
(\/ -P; — /\ M)

i=1 i=1
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Formula [J] gives a formalization of the composition of certain boolean functions
when one function’s range has the same number of bits as another function’s
domain. This formula is obviously not regular, but it is linked. This concludes
the proof of Thm.

4 Pure Overlap Schemata

In this section we show how one can weaken the restriction that propositional
symbols occur indexed by only one parameter. Consider the following formula
schema :

0§n/\</n\pi>\/<7\ﬂpi>/\0§m (10)

i=0 i=0
It is not a linked schema because p occurs indexed by two different parameters,
however, using the tableaux extension rule for propositional V we see that the

occurrences are handled by two different branches, thus each parameter can be
handled separately. It is also important to note that

n m
O§n/\</\pi>\/</\—\qi>/\0§m (11)
i=0 i=0

Replacing p with ¢ in Eqn. [10| results in Eqn. which changes the formula
from valid to satisfiable (only when 0 < n,m). Thus, we cannot reduce this
formula to linked schemata without changing its semantic properties. To deal
with this problem we introduce relatively pure literals, based on the observation
that if the negation of a literal occurs in the same branch indexed by a different
parameter then the literal must not be of arithmetic importance. We then show
that relatively pure literals can be dropped without effecting satisfiability of the
considered pure overlap schemata.

4.1 Construction

We first introduce the notion of relatively pure literals and detail the construction
of pure overlap schemata.

Definition 13 (Iteration Invariant DNF (IIDNF)). The Iteration Invari-
ant disjunctive normal form of a linked schema is a schema of the form:

(@1,1 AREE /\501,711) VeV ((pm,l AN /\@m,nm)

where m,ny,--+ ,ny, € N (note they are not free parameters, but rather meta
variables) and p; j is either an iteration, an atom, or negated atom. We will refer
to the formula (@;1 A+ A pin,) as clauses C; for i € [1,m], That is, given a
formula ¢ in IIDNF we will write C; € ¢ as the " clause of ¢.
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Lemma 3. Given a set of reqular schemata @, for all ¥ € clo (U¢€¢7)(q§)>
there exists an IIDNF of 1.

Proof. Since, iterations are not unfolded in the creation of an IIDNF form of v,
the problem reduces to showing that all propositional formulae have a DNF form,
which is a well known result. Also, it is possible to put a regular schemata into
Negation Normal Form (NNF) because negation can be passed over iterations,
. b _ b b _ b

Le = /\i:a ¢i =F= vi:a _|¢i and ﬁvi:a (bl =F /\i:a _‘Cbi'

|

Definition 14 (Relatively Pure Literal ). Given a set of regular schemata
®, let 1 € clo (U ¢e¢7’(¢)> and ' be the IIDNF of 1. A literal po (—pa) is

relatively pure in 1 iff for every clause C € ¢ and for any two distinct regqular
schemata @1, pa2 € @ used to construct 1, where p, € C (—p, € C), —p, € C
(oo € C), Do € 1 (00 € 1) and —py € @o (py € p2), the arithmetic formula
Pz NIC(P) AN a=b is unsatisfiable, where & = P(C).

Ezample 8. Consider the schemata:

—|(5<n)/\</n\pi>/\ 7\—|pi ANO<m (12)

i=0 j=6
The literal p; (—p;) is relatively pure in this example.

We will refer to a schema as relatively pure if all the literals in the schema are
either relatively pure or in the IIDNF of the schema they only occur in clauses
being indexed by a single parameter. The non-IIDNF form of a relatively pure
schema is also relatively pure. Given a set of regular schemata @, let ¢/} (®) be
the set of all schema which can be constructed using the logical connectives O
such that they are relatively pure.

Definition 15 (The class of Pure Overlap Schemata). Let us consider the
class A of all finite sets & of reqular schemata. We define the class of pure overlap
schemata as

POS=Jdg | P
PN pED

It should be noted that even though the definition of relatively pure literals uses
the IIDNF of a positional schema it is not the case that members of POS must
be in IIDNF.

Ezample 9. Both Ex. [§]and Eqn. [I0] are in the class of pure overlap schemata.
Lemma 4. If ¢ is a linked schema, then it is a pure overlap schema.

Proof. A linked schema is a pure overlap schema where each propositional variable
is indexed by only one parameter.
O
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Theorem 3. The class of linked schemata is contained but not equal to the class
of pure overlap schemata.

Proof. Eqn. [10]is a pure overlap schema but not a linked schema.
a

5 A Decision procedure for POS

We now introduce a decision procedure for the class POS of schemata, by using
and extending results of [4], as follows.

Algorithm 1 (STP©S Procedure) Given a schema ¢ € POS in negation
normal form. The following algorithm, called the STFCS procedure, decides the
satisfiability of p:

1) Apply STAB propositional extension rules with highest priority until no more
can be applied. This results in m sets of atoms and iterations referred to as
By,...,Bpn.

2) For each B;, we separate B; into n (the number of parameters in B;) sub-
branches B 1), B(in), where each By ;) contains iterations and atoms
indezed by a single parameter. Atoms without a free parameter in the indices
can be added to every B; ;). We will mark such a sub-branching with @y,
where n is the number of parameters on the branch.

3) Run the ST procedure on the sub-branch By jy.

4) For any branch B, if one of its sub-branches B; jy has a closed tableau after
following the ST procedure, then the branch B; is closed.

Let us make the following observation about the STFOS decision procedure.
When it comes to constructing the interpretation for a formula in POS we
specifically defined the class such that the procedure to construct the model
would be precisely the procedure used for regular schemata, except the number
of possible models would increase. For linked schemata this is obvious, the
propositional symbols are distinct in every sub-branch. However, for pure overlap
schemata two distinct sub-branches (of the same branch) can contain the same
propositional symbol, but by Def. [14] the occurrences are distinct from each other
arithmetically if one occurrence is negated and the other occurrence is not. Thus,
when a propositional symbol occurs on two distinct sub-branches and the two
occurrences are not arithmetically distinct, the two occurrences must be of the
same polarity. In this case when one sub-branch forces the propositional variable
using the positional symbol to be true (false in the case of a negated literal), the
other sub-branches will also interpret this literal as true. In some sense one can
consider it as a local tautology which can be removed from consideration when
constructing the model.

Theorem 4. The STFOS procedure terminates for POS.
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Proof. The key to the termination is that we only need to decompose the members
of POS using the procedure outlined above. This decomposition process always
terminates being that we are, up to this point, only applying propositional
tableaux extension rules. When the formulae are completely decomposed we use
the ST procedure on each sub-branch. The procedure is known to terminate for
regular schemata [4] and each of the sub-branches is regular. [J

In regards to the soundness and completeness of STFOS the procedure, it
was shown that STAB is sound and complete for all propositional schemata [4]
(Sec. 5.4). The propositional schemata we introduce in this paper are constructed
using exactly the same language as in the work by Aravantinos et al. [4] Our
extension of STAB with the sub-branching rule does not change the soundness
and completeness results being that the sub-branching rule, rather than being an
additional tableaux rule, is more a method to enforce termination. It essentially
states that instead of considering the given branch as a whole we consider it in
parts using the same tableaux rules introduced for STAB in prior work.

Theorem 5. The STTOS decision procedure is sound and complete for all propo-
sitional schemata ¢ € POS.

Ezample 10. We conclude this section by illustrating our STTS decision proce-
dure on the following formula ):

Po ( ((Af:o _'qi> v (/\?:0 —Pi \/Pi+1) A ﬁpn+1) Vv

Nito ~pi-1 V Pi) A Pm+1 A ﬁqw+3))

Applying STFOS on the above formula, we obtain the following branching tree

(corresponding to the run of STFOS):
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PoA
k
(((/\i:o;qi) V (ANizo 7Pi V Pit1) A “Ppy1)V
(A1 =Pim1 V i) A Pmg1 A Gus))

Do,
k
((Aizp —ai) v (Ni=o =Pi V Pit1) A =pny1)V
((/\i:l Pi—1 \/pi) A Pma1 N Qw+3))

Po Do
((Aizo i)V (AL =Pi-1 V pi)A
(Ao =i V Pig1) A "Drt1) Pm+1 A Qu+3)
\ \
®2 Po
T (NiZy —pi1 Vpi)
Do N Po y Pm+15 Quw+3
(/\fzo ~¢i) (Aizo =Pi V Pit1) ‘
) Pn+1 R
ST ST on Eﬂ?
Po
A2y —pi-1 V pi)
Pm ST
ST

Interesting result of this derivation is that the assignment to w influences the
interpretation modelling the formula. If an interpretation Z assigns q_1 = T',qo =
Fpo=Tp1=F,ps=F w+ —4,n< =2, k<« 0, and m < 5 then Z |= %.
But if Z assigns to n < 0 keeping the same propositional variable assignments,
then Z [~ 1.

6 Conclusion and future work

In this work we have shown that the ST procedure of Aravantinos et al. [4]
can be extended to handle more expressive classes of schemata which allow for
restricted use of multiple free parameters. The two classes shown, though their
construction is awkward, are simple to conceptually understand and work with.
Also, neither requires the heavy machinery of normalized clause sets, nor do the
classes require a conversion of the schemata into a clausal normal form. Also,
the introduced decision procedure STF©S is sound, complete, and terminates for
all propositional schemata in the class POS. Though an advantage normalized
clause sets have over both of the introduced classes of schemata is that they
can handle propositional variables being indexed by multiple free parameters
without restriction. This is one of the significant advantages to separating the
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propositional part from the equational part, and using a levelled resolution
calculus. When it is not required to have unrestricted usage of the propositional
variables it suffices to use STAB. This also has the added value of compression
being that it is possible for clausal form to result in an exponential increase in
the size of the formula.

As for future work, further increase in expressivity by relaxing the purity
constraint does not seem feasible as this would require two parameters to be
active in the same branch. This is when the undecidability result for propositional
schemata [4] stops us in our tracks. However, investigating how the new classes
outlined here can interact with the class of regular nested schemata [3] could lead
to new expressivity results. In particular, we are interested in the relationship
between alternation-free p-calculus [II] and such a class of schemata. Also,
Aravantinos et al. [5] investigated the relationship between LTL and regular
schemata. Being that pure overlap schemata are a super class of regular schemata
it is quite possible that a more expressive temporal logic is related to pure overlap
schemata or linked schemata. In either case this work has broaden the scope of
application of propositional schemata.
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