Chapter I:
Introduction to Mathematical Fuzzy Logic

LIBOR BEHOUNEK, PETR CINTULA, AND PETR HAJEK

This chapter provides an introduction to the field of mathematical fuzzy logic, giving
an overview of its basic notions and results.

Similarly as in other branches of logic, formal systems of fuzzy logic can be strati-
fied according to the complexity of their formal means. In this way we can distinguish
propositional, first-order, higher-order, modal, etc., fuzzy logics, which closely parallel
their classical counterparts. In the first section of this chapter we shall start with the
simplest layer of propositional fuzzy logics, whose language consists of propositions
compounded by propositional connectives, and focus on the paradigmatic case of logics
based on continuous t-norms.

In Section 2 we indicate the directions in which the apparatus of fuzzy logic intro-
duced in the first section can be extended. We depict a rich landscape of mathematical
fuzzy logic, inhabited by dozens of different propositional logical systems and their
classes, with complex interrelations and interesting metamathematical properties.

The multitude of fuzzy logics introduced in the first two sections calls for a gen-
eral unifying (meta)theory. Section 3 first studies the position of fuzzy logics in the
logical landscape—i.e., their relationship to well-known broader families of proposi-
tional logics (such as substructural or algebraizable) as well as to particular prominent
non-classical logics. Then the section briefly surveys characteristic properties of fuzzy
logics, both those shared with the aforementioned classes of logics and those particular
to fuzzy logic.

Section 4 then examines basic metamathematical properties of propositional fuzzy
logics. Finally, Section 5 presents an introduction to predicate fuzzy logic.

In this chapter we adopt a didactic stance: we proceed from simple concrete promi-
nent fuzzy logics to their numerous generalizations and finally to an abstract theory of
mathematical fuzzy logic. This naturally gives rise to a certain redundancy and repeti-
tions in definitions and theorems, but we feel that this price is necessary for upholding
Comenius’ maxim “from the simple to the complex™.!

Particular topics in mathematical fuzzy logic are explained in detail in subsequent
chapters of this Handbook, to which this introduction frequently refers. All proofs of
theorems (except one) are omitted in this Introduction; we refer the reader to the spe-
cialized chapters of this Handbook and the literature listed in the Bibliography.

1J.A. Comenius: Didactica magna, XVII:25.
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1 Propositional logics of continuous t-norms

Any non-classical propositional logic has many facets, which can roughly be divided
into syntactical ones (e.g., Hilbert or Gentzen axiomatic systems and their induced sets
of theorems and provability relations) and semantical ones (e.g., general or intended
algebraic semantics, game-theoretical semantics, relational semantics, etc., and their in-
duced set of tautologies and semantic consequence relations). The need to formulate and
prove general theorems on classes of logics compels us to choose one of these facets for a
formal definition of logic as a mathematical object. Usually any of the facets determines
all other ones uniquely (in a fixed setting), and so the selection is mainly a matter of pref-
erence. We have decided to identify logics (as mathematical objects) with consequence
relations, presented either syntactically (as the provability relation of some axiomatic
system) or semantically (as the consequence relation of some particular semantics).

In this section we shall first present the traditional, ‘standard’ semantics of a certain
prominent class of fuzzy logics (namely, those based on continuous t-norms), and define
a consequence relation based on this semantics; then we shall proceed to the axiomatic
systems corresponding to this consequence relation. As we shall see, a straightforward
definition of the semantic consequence relation would lack certain desirable metamath-
ematical properties, including axiomatizability by means of finitary derivation rules.
In order to keep the correspondence between the syntactic and semantic facets of these
logics, the definition of the semantic consequence relation will therefore have to be mod-
ified to ensure its finitarity. After presenting axiomatic systems for prominent logics of
continuous t-norms, we shall briefly hint at some of their metamathematical properties,
treated in more detail in Section 4 as well as in further chapters of this Handbook. The
subsequent sections then introduce various broader classes of fuzzy logics and describe
their properties in more detail.

1.1 Standard semantics of t-norm fuzzy logics

Mathematical fuzzy logic generalizes bivalent Boolean logic to larger systems L
of truth values, typically the real unit interval [0, 1]. The—now classical—exposition of
[83] starts with certain natural constraints on the semantics of conjunction and other pro-
positional connectives, which are devised in such a way as to give rise to well-designed
propositional and predicate calculi. These constraints and the [0, 1]-valued semantics
(with respect to which many propositional fuzzy logics are sound and complete) distin-
guishes mathematical fuzzy logic from the study of other many-valued logics.

The most fundamental assumption of (mainstream) mathematical fuzzy logic is that
of truth-functionality of all propositional connectives. That is, each n-ary propositional
connective c is semantically interpreted by a function F,: L™ — L; the truth value of a
formula ¢(¢1, . .., @, ) is then defined as F,(x1, ..., 2, ), where z; is the truth value of
the subformula ¢;, for each ¢ € {1,...,n}. In other words, the truth value of a formula
only depends on the truth values of its subformulae (from which it can be calculated by
the truth functions F, of the connectives),” independently of the meaning, structure, or
other characteristics of the subformulae.

2Observe that the truth functions F.: L™ — L generalize truth tables of two-valued Boolean logic, as the
latter can be regarded as functions Fi.: {0,1}" — {0, 1}.
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Truth-functionality is one of the design choices employed in (mainstream) mathe-
matical fuzzy logic. In other words, mathematical fuzzy logic as developed here de-
fines the meaning of connectives truth-functionally, and studies mathematical properties
of the resulting truth-functional systems. Though it is certainly possible to develop
many-valued logics that are not truth-functional with respect to [0, 1] (or another in-
tended system of truth values),’ it turns out that the truth-functional systems described
here are mathematically rich and demonstrably applicable to many real-life problems.
This by no means controverts the suitability and applicability of non-truth-functional
many-valued logics for many purposes and applications (including logical analysis of
natural language).

Another design choice selects the real unit interval [0, 1] as the intended (or stan-
dard) system of truth values. Consequently, the primary intended application of formal
fuzzy logic is to propositions that can be assigned a numerical quantity (normalized to
the unit interval), taken as their truth value in a semantical model. Nevertheless, the
inference laws of fuzzy logic generalize over a class of admissible assignments of truth
values, and so abstract from particular truth values. The inference rules of fuzzy logic
are thus applicable to gradual propositions even in cases when their particular truth val-
ues cannot be determined.*

The truth values 0 and 1 are meant to represent, respectively, the (analogues of)
classical truth values false and true (to the full degree). The values between 0 and 1
represent intermediate grades of partial truth that can be assigned to propositions. Partial
truth is here understood as a technical term, referring just to the graded quality assigned
to propositions that is studied in formal fuzzy logic. Its philosophical interpretation is
left open here, as it is irrelevant to the mathematical study of the formal systems.

The usual order < of reals is understood as representing the logical strength of
propositions, which decreases from 0 to 1: the larger the truth value of a proposition, the
truer (in the technical sense) the proposition. This endows the standard system [0, 1] of
truth values with the structure of a complete linearly ordered lattice.

Further design choices of propositional fuzzy logic restrict possible truth-functions
of the logical connectives to those satisfying certain natural constraints. Following the
account of [83], we start with conditions on the truth function * of conjunction (&). The
following conditions are required of *: [0, 1]? — [0, 1], for all z, y, z € [0, 1]:

o Commutativity: Ty =y * T
o Associativity: (xzxy) *xz =z * (y * 2)
e Monotonicity: ifx < 2’ andy < y',thenz xy < 2’ xy/
o Unit: xx1=x
e Continuity: * is continuous on [0, 1]%
Commutativity and associativity embody the idea that the truth value of a conjunction

does not depend on the order or bracketing of the conjoined propositions. Monotonic-
ity expresses the intuition that increasing the truth values of both conjuncts should not

3Such systems have been developed, e.g., in [154, Part III], [71], or [5].
“#As is often the case with natural-language predicates: even though it is impossible to determine whether a
man of height 1.80 m is tall to degree 0.7 or 0.8, the laws of fuzzy logic can still be applied to the predicate tall.
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decrease the truth value of their conjunction. The neutrality of 1 is motivated by its in-
terpretation as full truth (conjunction with full truth should not change the truth value of
a proposition). The identity z * 0 = 0, corresponding to the interpretation of 0 as full
falsity, already follows from the above conditions (see Theorem 1.1.5(1) below). The
condition of continuity formalizes the intuitive idea that an infinitesimal change of the
truth value of a conjunct should not radically change the truth value of the conjunction.
We could add further conditions required of * (e.g., idempotence), but it has proved
useful to stop here, as the above conditions already yield a rich and interesting theory
and further conditions would be too limiting.”> It turns out that functions satisfying the
first four conditions from the above list have previously been studied in the theory of
probabilistic metric spaces under the name triangular norms (or t-norms for short):

DEFINITION 1.1.1. A binary function *: [0,1]> — [0,1] is a t-norm (or triangular
norm) if it is commutative, associative, monotone, and 1 is its unit element.

The above conditions on the interpretation of conjunction thus amount to the re-
quirement that x is a continuous t-norm. An extensive study of the properties of t-norms
and continuous t-norms can be found in [123]. Here we only recall such properties
that are needed for the development of mathematical fuzzy logic (for proofs see [123]
or [83)).

DEFINITION 1.1.2. Let * be a t-norm and x € [0,1]. Then we define 2° = 1 and
2"t = x % 2" for each n € N. We say that x is an idempotent element of * if
x * x = x. We say that x is a nilpotent element of * if there is n € N such that x™ = 0.

DEFINITION 1.1.3. We say that a t-norm x is Archimedean if for each z,y € (0,1)
there is m € N such that x™ < y. A continuous Archimedean t-norm x is called strict if
0 is its only nilpotent element; otherwise it is called nilpotent.

We shall say that a t-norm x is isomorphic to a binary operation x: [a, b]> — [a, b] if
there is a strictly increasing function f: [0,1] — [a, b] such that f(x*xy) = f(x)* f(y)
forall z,y € [0,1].

DEFINITION 1.1.4. Let T be a system of triples (x;, a;, b;) indexed by i € I such that
*; is a t-norm for each i € I and (a;,b;) C [0, 1] are mutually disjoint open intervals.
Then the t-norm * defined for each z,y € [0,1] as

{ai + (b — a;) - (fi‘i’ *; lf’:‘f}) ifx,y € (a;,b;) for some i € 1
Txy = i—a; i—a;

min{x, y} otherwise

is called the ordinal sum of the t-norms *; on the intervals (a;, b;) and denoted by P T.

If T is a finite system of triples (x1,a1,b1), ..., (*n,an,by) and a1 < by < as <
by < -+ < an < by, then the ordinal sum @ T can also be written as x1 @ -+ - B *p,
provided a;, b; are known from the context or are irrelevant (as all such ordinal sums

SFor instance, the additional requirement of idempotence (x * x = z for all z € [0, 1]) would already
limit * to a single possible function, namely the minimum: = * y = min{z, y}. However, there are contexts
in applications of mathematical fuzzy logic where interpretations of conjunction other than the minimum are
appropriate.
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are isomorphic). In general, T' induces an order < on I by letting i < j iff a; < a;;
in this sense we shall speak of the first, last, second, etc. component of the ordinal sum
DT (if they exist in the order <).

Without loss of generality, we shall assume further on that the union | J; ;(a;, b;) of
intervals from T is dense in [0, 1] (this can always be achieved by adding to T all triples
(*G,aj,bj) such that (a;, b;) is a maximal open interval of idempotent elements and g
is the minimum t-norm of Example 1.1.6 below).

THEOREM 1.1.5. Let * be a t-norm. Then:
1. 0xx =0forall z € 0,1].
2. The set of nilpotent elements of * is the interval [0, a) or [0, a] for some a € [0, 1].

3. If x is an idempotent element of *, then x * a = min{x, a} for any a € [0, 1] and
axb=aforanya,b € [0,1] such that a <z <b.

4. The t-norm x is continuous iff it is continuous in one variable, i.e., iff f.(y) =
x * y is continuous for each x € [0,1]; an analogous claim is valid for lower
semi-continuity (also called left-continuity) and upper semi-continuity (or right-
continuity).

EXAMPLE 1.1.6. The following three are prominent examples of continuous t-norms:
o The minimum, also called the Godel t-norm: x g y = min{z, y}
e The product, also called the product t-norm: x xgy =x -y
e The Lukasiewicz t-norm: x *p, y = max{x +y — 1,0}.

In subscripts and ordinal sums, we shall often write just G, II, and ¥, instead of *¢, *,
and xy,, respectively.

Figure 1. The graphs of the minimum, product, and Lukasiewicz t-norms

The minimum is the only idempotent t-norm. The Lukasiewicz and product t-norms
are prototypical (and unique modulo isomorphism, by Theorem 1.1.7(3) below) rep-
resentatives of, respectively, nilpotent and strict Archimedean t-norms. Moreover, all
continuous t-norms can be decomposed into ordinal sums of isomorphic copies of these
t-norms (the Mostert—Shields Theorem, see Theorem 1.1.7(5) below). The following
theorem summarizes the most important properties of continuous t-norms.
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THEOREM 1.1.7. Let % be a continuous t-norm. Then:

1.
2.

* is Archimedean iff 0 and 1 are its only idempotent elements.

If * is Archimedean, then it is nilpotent iff each x € [0,1) is a nilpotent element

of *.

3. All continuous Archimedean t-norms are isomorphic to either the Lukasiewicz

t-norm g, (nilpotent t-norms) or the product t-norm xr (strict t-norms).

The Ltukasiewicz t-norm =y, is isomorphic to the product t-norm undercut at any
a € (0,1), i.e., to the function x x y = min{a, z - y} on [a, 1]%

The set of idempotent elements of  is a closed subset of [0, 1]. Its complement is
therefore a countable union of disjoint open intervals (a;,b;), for i € N. Since
the interval (a;,b;) contains no idempotent elements of *, the restriction of * to
(ai, b;) is isomorphic to a continuous Archimedean t-norm (either strict or nilpo-
tent), and so is isomorphic either to %, or . If there is no i € N such that
x,y € (a;,b;), then x * y = min{x,y} by Theorem 1.1.5(3). Consequently, ev-
ery continuous t-norm is isomorphic to an ordinal sum of the three t-norms from
Example 1.1.6. Since also any ordinal sum of continuous t-norms is a continuous
t-norm, a t-norm is continuous iff it is isomorphic to an ordinal sum of *q, *z,
and *11 (Mostert=Shields Theorem).

The suitability of continuous t-norms for the truth functions of fuzzy conjunction
is supported by the following property, which provides a natural candidate for the truth
function of implication.

THEOREM 1.1.8. For any continuous t-norm % there is a unique binary operation =,
on [0, 1] such that for all z,y, 2 € [0,1],

zxx <y iff z<z=,y. D

The operation =, is called the residuum (or residual) of *. The following theorem
lists basic properties of the residua of continuous t-norms:

THEOREM 1.1.9. For a continuous t-norm x, its residuum =, and any x,y € [0, 1]:

1.
2.

NS

r=,y=max{z |z *z <y}

x =, — Is a right adjoint to the functor — x x in the lattice [0, 1] taken as a poset
category

r=.y=1iffr<y
O=,y=1

l=y=y
min{z,y} =z * (x =, y)

max{x,y} = min{(z =, y) =. y, (y =+ ) =. z}.
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Theorem 1.1.9(1) provides an explicit definition of =, implicitly defined by the
residuation condition (1) of Theorem 1.1.8. A residuated couple * and =, equips the
interval [0, 1] with the structure of a (complete divisible linear bounded integral com-
mutative) residuated lattice (see Definition 1.3.1). Because of the adjunction stated by
Theorem 1.1.9(2), the residuated pair *, =, is often called an adjoint pair.

By Theorem 1.1.9(1), the residuum is the pointwise largest function such that z x*
(r=-,y) < y; or equivalently by Theorem 1.1.9(3), such that z % (x =, y) =,y equals 1
for all z,y € [0,1]. The latter condition can be understood as an internalized fuzzy
version of the modus ponens rule (if implication is interpreted as =, and, in accordance
with previous motivation, * interprets conjunction and 1 represents full truth). This
justifies adopting =, for the truth function of implication (—), as it is the logically
weakest function that makes the fuzzy modus ponens generally valid (i.e., fully true for
any truth values of fuzzy propositions).

By Theorem 1.1.9(3), the full truth of fuzzy implication internalizes the ordering of
truth values by logical strength.® Theorem 1.1.9(4), which represents a fuzzy version
of ex falso quodlibet, then corresponds to the designation of the full falsity as the log-
ically strongest value, while Theorem 1.1.9(4) confirms full truth as a logically neutral
assumption.

EXAMPLE 1.1.10. The residua of the three prominent continuous t-norms *g, *1, and
xy, are, respectively, the functions =g (Gddel implication), =11 (product implication,
also known as Goguen implication), and =, (Lukasiewicz implication), which have the
following values for x > y:

T=cY=Y
r=>ny=vy/z
r=>ry=1—z+y.

For x < y, all residua evaluate to 1 by Theorem 1.1.9(3). See Figure 2 for the graphs of
=a, =1, and =,

By Theorems 1.1.9(6)—(7), the operations of minimum and maximum are definable
in terms of * and = . Since the operation of maximum extends the bivalent truth-table
for classical disjunction on {0, 1}, it is a suitable truth-function for fuzzy disjunction (V).
The operation of minimum, which like * extends the classical truth-table for conjunc-
tion, becomes a second candidate for the truth-function of fuzzy conjunction. Since it is
anyway definable from * and =, it can be safely included in the propositional language
of fuzzy logic, playing the role of another conjunctive connective (A). Fuzzy logics will
thus consider two conjunctions, one interpreted by a continuous t-norm * (called strong
or residuated conjunction) and the other interpreted by the minimum (called weak, lat-
tice, or minimum conjunction). The two conjunctions coincide for the idempotent t-
norm *¢, but differ for all other t-norms; there are in fact deeper reasons for the pres-
ence of two conjunctions in fuzzy logic (see Section 3.1). In analogy to strong and weak

Notice that fully true fuzzy implication preserves the quality of being true ar least to the degree of its
antecedent. This motivates Font’s [65] definition of truth degrees (as opposed to truth values) as intervals
(e, 1], for any truth value o € [0, 1]. Theorem 1.1.9(3) then embodies the fact that fully true fuzzy implication
preserves truth degrees of propositions, and that a logically stronger proposition (i.e., one with the smaller truth
value) always implies a logically weaker one.
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Figure 2. The graphs of the residua of the minimum, product, and Lukasiewicz t-norms.
The function =¢ is discontinuous at the points (z,z) for x < 1; the function =1 is
discontinuous at the point (0, 0); and the function =, is continuous.

conjunction, strong disjunction () can be introduced in some systems of fuzzy logic
(see 2.2.2 or Chapter VI). The disjunction interpreted by the maximum is then called
weak (or lattice) disjunction. The terms min-conjunction and max-disjunction are also
used for the two lattice connectives.

The truth-function of the equivalence connective (<) can suitably be defined as the
bi-residuum <, of x:

T,y =min{xr =, y,y =, z}, ()

for all z,y € [0, 1]. It is irrelevant whether weak or strong conjunction is used in (2), as
(x=4y)* (Y=« 2) = min{z =, y,y=.z} forall z,y € [0, 1], by Theorems 1.1.9(3)
and 1.1.9(5).

Negation (—) can conveniently be interpreted by the function —.: [0,1] — [0, 1]
defined as —.x = r=>, 0, which represents a fuzzy version of the reductio ad absurdum.
To distinguish it from an additional involutive negation introduced in some systems of
fuzzy logic (see Section 2.2.2), this negation is sometimes called residual negation.

EXAMPLE 1.1.11. Residual negations for the three prominent continuous t-norms from
Example 1.1.6 come out as follows, for any = € [0, 1]:

t+r = 1l—=x
1 forz=0

Cers o = 0 forx > 0.
Observe that —y, is continuous and involutive (i.e., -~z = x for all x), while ~¢
is bivalent and coincides with —r;. The bivalent negation ~¢ = —yy is called strict (or
Godel) negation.

The function —, in fact coincides with —q (i.e., is strict) unless * has a first com-
ponent isomorphic to *g, on [0, a] for some a € (0, 1], in which case —, is isomorphic
to ¢, on [0, a] and =,z = 0 for = > a. All other continuous t-norms (i.e., those whose
first component is isomorphic to either xg or 1, and those that have no first component
in the ordinal sum) have strict residual negation.
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In this way, every continuous t-norm * determines a family of truth functions =,
=, Min, max, <, 7., which are natural candidates for the semantics of basic propo-
sitional connectives &, —, A, V, <+, - of fuzzy logic. These functions equip the interval
[0, 1] with an algebraic structure that can be used for a standard definition of algebraic
semantics for fuzzy logic. We shall call them -algebras and denote them by [0, 1].. (see
Definition 1.1.12 below); later we show that t-algebras are examples of the so-called
BL-algebras (see Definition 1.3.1). Notice that the constants 0 and 1 are added to the
signature of [0, 1], since 0 is used in the definition of —, and 1 is anyway definable
as —1,.0 for any * by Theorem 1.1.9(4); they will respectively represent the propositional
constants 0 for full falsity and 1 for full truth.

DEFINITION 1.1.12. For a continuous t-norm *, we define the t-algebra of * as the
algebra
[0,1]. = ([0, 1], ¥, =, min, max, 0, 1),

where =, is the residuum of * and min, max are the minimum and maximum in the
usual order of reals. The operations <, and —, are defined in each t-algebra by setting
&,y =min{x =, y,y =, x} and .z = x =, 0 forall z,y € [0, 1].

By convention, for any set K of continuous t-norms we denote the corresponding
set of t-algebras by K, and vice versa.

Now we can define the syntax and standard semantics of logics based on continuous
t-norms as follows:

DEFINITION 1.1.13 (Syntax and standard semantics of logics of continuous t-norms).
The language L of the propositional fuzzy logic Lk of the set K of continuous t-norms
consists of the propositional variables p, q,r, . . ., the binary propositional connectives
& (strong conjunction), — (implication), N (weak conjunction), V (weak disjunction),
and > (equivalence), the unary propositional connective — (negation), and the propo-
sitional constants 1 (truth) and 0 (falsity).

The formulae of L are formed as usual; by convention, — and <> have the lowest
and unary connective(s) the highest priority. The (denumerable) set of propositional
variables of L will be denoted by Var and the set of all formulae of L by Fm .

We shall use Greek letters o, 1, X, ... for formulae and ', A, . .. for sets of formu-
lae. We shall also use the following abbreviations: ©° =4¢ 1 and ga”Jrl =aqr " &, for
alln € N.

A [0, 1]-evaluation of propositional variables is a mapping e: Var — [0,1]. For
any continuous t-norm x, the evaluation e of propositional variables extends uniquely to
the x-evaluation e,.: Fmp — [0,1] of all formulae by the following recursive definition
(“Tarski conditions’), for any proposition variable p and any formulae ,):

e(p) = e(p) ep&v) = eulp) xen(t))
e.(0) = 0 elp = ) = eulp) > en(t)

e.(D) = 1 e A ) = minfe.(p), e.(1)}

en(=¢) = ~ulea(9)) eV ) = max{e.(9), e.(1)}
e 0 0) = eulp) & en¥).
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By Theorem 1.1.9 and the definitions of <, and —,, we can note that obviously:

) = elp&p—v))

) = elllp—=v) = D)A((Y = ¢) = 9))
ex(p oY) = ellp =) &Y =)

) = ellp—0)

) ex(=0).

Thus the only necessary connectives in any logic of continuous t-norms are &, —, and 0;
the remaining ones are definable by the above definitions.

It can be observed that given a continuous t-norm *, some formulae obtain the truth
value 1 for any x-evaluation of propositional variables; these can be regarded as the
tautologies of the fuzzy logic based on the continuous t-norm *. We shall call such
formulae *-tautologies. Some formulae turn out to be *-tautologies for any continuous
t-norm * in a given set K; these are tautologies of the logic L :

DEFINITION 1.1.14. Let K be a set of continuous t-norms. A formula  is a tautology
of the logic L if ex(¢) = 1 for any x € K and any *-evaluation e..

We shall use the expressions K-tautology, K-tautology, and L i -tautology as syn-
onyms for tautology of L. We shall also write just x-tautology if K = {x}. If K is the
set of all continuous t-norms, then K -tautologies are also referred to as t-tautologies.

The semantic consequence relation of L is the relation between sets of formulae
and formulae which preserves the truth value 1 (representing full truth) from premises
to conclusions under each evaluation of propositions in each t-algebra from K:

DEFINITION 1.1.15. A x-evaluation e, is called a x-model of a set I" of formulae if
ex(¥) = 1 forall ¢ € T. A formula ¢ is a semantic consequence of I in L (written
I =k @) if for each x € K, all x-models e, of T are x-models of {¢}. The relation
E K is called the semantical consequence relation of L.

Sometimes we shall write |=x instead of =k, and just =, if K = {x}.

In classical logic, the set of tautologies straightforwardly encodes the semantic con-
sequence relation, via the compactness and deduction theorems valid for this logic (i.e.,
I = piff there is a finite set {11, ..., %, } C I" such that the formula )1 A-- - A, — ¢
is a tautology). We shall see, however, that most fuzzy logics lack this suitable form of
the deduction theorem, and that their semantical consequence given by the standard (in-
tended) semantics is seldom finitary (i.e., axiomatizable by deduction rules with finitely
many premises). Thus in many fuzzy logics, the relationship between the set of tau-
tologies and the consequence relation is not straightforward. In fact, in many fuzzy
logics, the set of tautologies does not determine the consequence relation, as shown by
the following example.
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EXAMPLE 1.1.16. For a given set K of continuous t-norms, an alternative semantic
consequence relation =", can be defined in the following way [20]:’

I =y piff J}n% e« (1) < e«(ip) for each x € K and each #-evaluation e,.
€

It can be easily shown that, e.g., for each  we have =1, ¢ iff =} ¢, but ¢, = =g 0
whereas ¢, ~¢ £} 0.

On the other hand, the consequence relation does determine the set of tautologies,
as obviously ¢ is a K-tautology if ) =k . It is therefore more appropriate to identify
fuzzy logics (as mathematical objects) with their logical consequence relations rather
than just their sets of tautologies.

Unfortunately, as hinted above, the consequence relation =k cannot be, in general,
axiomatized in a finitary way (i.e., by deduction rules with finitely many premises), as
follows from this counterexample:

EXAMPLE 1.1.17. Let  be either ¥ or II. We consider a theory I'= {q¢ — p™ | n € N}.
We shall show that " |=, p V —g¢, but for no finite IV C T holds: IV =, p V —q.

We present the proof for x = II; the proof for « = L is analogous. The first claim is
proved by contradiction: assume that there is a *-evaluation e such that e(p V —¢q) < 1
and e(q — p™) = 1 for each n. Then obviously e(q) > 0, e(p) < 1,and e(q) < (e(p))",
which is clearly impossible (since inf,en(e(p))™ = 0). The second claim: let m be the
maximal n such that ¢ — p" € T”. Lete(q) = a and e(p) = %/a, for an arbitrary
a € (0,1). Then clearly e(p V —q) = %/a < 1 and e(q¢ — p™) = 1 for each n < m.

Even though it is not in general possible to axiomatize the consequence relation =g
by rules with finitely many premises, it turns out that its finitary companion =", i.e.,
the relation defined as

[ =" ¢ iff  there is a finite set T C T such that I |=x ¢,

is finitely axiomatizable for any set K of t-algebras, with modus ponens (from ¢ and
o — 1 infer ¢) as the only deduction rule (see the next subsection). Note that for finite
sets of premises the relations =k and =" coincide, thus in particular the tautologies of
these two consequence relations are always the same. On the other hand, the previous
example demonstrates that these two relations differ in general. In fact, even more can
be proven:

THEOREM 1.1.18 ([51, 104]). Let K be a set of t-algebras. Then =g and =" coincide
iff K={[0,1]c}-

In order to have the correspondence between the consequence relation and its ax-
iomatic presentation, by the logic of K we shall, therefore, call the finitary consequence
relation =11

"Note, however, that this consequence relation has rather bad properties: e.g., the modus ponens rule is not
satisfied by =/, unless K = {G}.
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DEFINITION 1.1.19. The logic of a set K of continuous t-norms (or equivalently the
logic of K) will be identified with the finitary consequence relation h%ﬂ and denoted
by LK.

The logics of *y, *m1, and g are, respectively, called Lukasiewicz, product, and
Godel (fuzzy) logic and denoted by ¥, TI, and G.® The logic of all continuous t-norms
is called basic logic and denoted by BL.° The logic of all continuous t-norms whose
residual negation is strict is called SBL (for ‘strict basic logic’).

The infinitary consequence relation |=x can be called the infinitary logic of K, with
the particular cases of infinitary Lukasiewicz, Godel, product, and (strict) basic logic.

For the logic L, the t-algebras of K are called the standard L -algebras. (For
general L -algebras see Section 1.3.)

Obviously, the (infinitary) logics (and so the sets of tautologies as well) of isomor-
phic continuous t-norms coincide, and similarly for sets of continuous t-norms differing
only by isomorphism. The converse, however, is not true, as for instance the logic BL
of all continuous t-norms coincides with the logic of any single t-norm which is an or-
dinal sum containing infinitely many isomorphic copies of g, having a first component
isomorphic to x*g,.

Thus there are sets K and K’ of continuous t-norms such that K # K’, but L =
L-; thus both K and K’ are the sets of standard L x-algebras. The notion of ‘standard’
algebra, i.e., that of intended semantics of a given logic, is clearly a matter of choice that
is essentially ad hoc; therefore we will leave this discrepancy unresolved.

Note that for L € {E,II, G} we have that L = L, if and only x is isomorphic
to *g,. Therefore, we postulate that the t-algebras [0, 1], [0, 1]z, and [0, 1] (being the
intended semantics of Lukasiewicz, product, and Godel logic) are the only algebras to be
called, respectively, the standard product algebra, the standard MV -algebra, 10 and the
standard Gédel algebra."! Finally we postulate that all t-algebras [0, 1], are standard
BL-algebras (or standard SBL-algebras if * has strict residual negation).

Although the logics G, ., and II are incomparable in strength (see Section 1.2 for
examples of formulae in which they differ), it is not the case for all logics L, of particular
continuous t-norms. The following theorem displays some of the relationships between
the logics L, for K a set of continuous t-norms (the first claim was proved in [104],
the remaining ones are folklore).

8Two of these logics had been known before the advent of mathematical fuzzy logic. The logic £ was intro-
duced in 1930 by Lukasiewicz and Tarski [129] (its three-valued variant already in 1920 by Lukasiewicz [128])
and studied by Hay [106], Rose [163], and others. The logic G was implicitly defined in Godel’s 1932 pa-
per [74] and extensively studied esp. by Dummett [47] and Horn [115]. Hence they have been known in
the literature as the infinite-valued (propositional) logic of Lukasiewicz and Dummett’s (or Godel-Dummett’s)
propositional logic.

9At least three other logics are also called ‘basic logic’ in the literature; two related to intuitionistic
logic [166, 175] and one to relevant logics [165]. When a misunderstanding could arise, the logic of con-
tinuous t-norms should better be called basic fuzzy logic or Hdjek’s basic logic.

10Algebras for Fukasiewicz logic are traditionally called MV-algebras, where MV stands for “many-
valued”, since Lukasiewicz logic was for long considered a paradigmatic example of many-valued logic.

This exception actually does not make a difference in the case of the standard Godel algebra, as G = L
if and only if K = {*g}, and so [0, 1] is the only standard Godel algebra by either definition.
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Figure 3. The prominent logics of continuous t-norms and their position with respect to
classical logic (Bool) and intuitionistic logic (Int). Note that similar Hasse diagrams in
this chapter only capture the relative strength of the logics (increasing upwards), rather
than the lattice relationships between the logics: e.g., SBL is not the intersection of the
logics G and II.

THEOREM 1.1.20. Let K, K’ be sets of continuous t-norms and *,*' continuous t-
norms. Then the following properties hold:

1. There is a finite set of continuous t-norms K such that L = L e
2. If K C K/, then L, C L.

3. Lugs C L.

4. If = has infinitely many idempotent elements, then L, C G.

5. BLC Lg,and Lg CLorLg CIlorLg C G.

1.2 Axiomatic systems for logics of continuous t-norms

Now we shall deal with the axiomatic facet of fuzzy logics, following the exposition
of [83]. First let us recall some standard definitions pertaining to the notion of (finitary)
Hilbert-style calculus:'?

DEFINITION 1.2.1. A Hilbert-style calculus (or axiomatic system) is given by a set of
axioms and a set of derivation rules. Axioms are selected formulae in a given language.
Derivation rules are pairs consisting of a finite set of formulae (called the premises of
the rule) and a single formula (called the conclusion of the rule).

The axioms and derivation rules of a Hilbert-style calculus are usually given in
the form of schemata—i.e., with formulae containing placeholders to be replaced by
arbitrary formulae of the language. Particular axioms and derivation rules of the calculus

1211 this chapter we restrict ourselves to finitary axiomatic systems, i.e., such that all of their derivation rules
have finite sets of premises. Some definitions (esp. that of the notion of proof) would need to be modified for
infinitary axiomatic systems (see Chapter II).
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are then instances of the schema resulting from such a replacement. We say that an
axiomatic system is finife if it has finitely many schemata of axioms and derivation rules.
We say that a calculus L’ is an axiomatic extension of L if both have the same language
and L arises by adding some set of axiom schemata (but no deduction rules) to L.

DEFINITION 1.2.2. A proof of a formula ¢ from a theory"® T in a given Hilbert-style
calculus L is a finite sequence of formulae whose last member is ¢ and whose every
member is either (i) an axiom of the calculus, (ii) an element of T, or (iii) is derived
from previous members of the sequence by a derivation rule of the calculus (i.e., is the
conclusion of some derivation rule whose all premises are among the predecessors of
the formula in the sequence).

Ifthere is a proof of p from T in L, we say that o is provable from T in the calculus L
(written T &1, @). If O b1, @, we say that ¢ is a theorem of the calculus L (written just
b ). The relation -1, i.e., the set of all pairs (T, @) such that ¢ is provable from T
in L, is called the provability relation of the calculus L.

It turns out (see [29, 58, 83, 104]) that for each set K of continuous t-norms, there is
a finite axiomatic system such that the logic L (regarded here as a finitary consequence
relation, cf. Def. 1.1.19) coincides with the provability relation given by this axiomatic
system. An explicit formulation of this claim for the logics BL, SBL, ¥, II, and G will
be given in Theorem 1.2.4.

Recall that the language of BL consists of the primitive binary connectives — and &,
and the truth constant 0. Further it contains the following derived connectives defined as:

eNY =a & (p— 1)
VY =ar (e —=9) =2 P)A (Y = 9) = @)
pov =i (p—=P)& W — @)

- = ¢—0

1 =4 0.

In this section we shall show that the following set of axioms, !4

BL1) (=) = (¥ —=x) = (e—x)

BL4) p&(p =) =& — )

BL5a) (&= x) = (= @ —x)

BL5b) (=W —=x) = &y —Xx)

BL6) ((p—=9)=x) = (¥ —=9) = x) = X)
BL7) 0— o,

13A theory is just a set of formulae. In the literature the term theory is sometimes used for sets of formulae
that are closed under the provability relation of a given logic. In this chapter we opted for the simpler meaning,
but the latter meaning is used in Chapter II.

14Note that in fact we use axiomatic schemata, i.e., for an arbitrary formula ¢, the formula 0 — ¢ is an
instance of the axiom schema (BLT7), and similarly for other axioms.
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together with the deduction rule of modus ponens,
(MP) from ¢ and ¢ — v infer v,

is a sound and complete axiomatization of the logic BL. Before we formulate this claim
formally, we shall discuss the roles of these axioms and give axiomatic systems for some
of the stronger logics introduced in the previous section.

The axiom (BL1), also called suffixing, ensures the transitivity of implication (cf. the
relationship between — and the ordering of truth values: see Theorem 1.1.9(3) and Sec-
tion 3.3). The axiom (BL4) ensures the commutativity of the defined min-conjunction
A; it is also called the axiom of divisibility, as together with the other axioms and def-
initions it ensures the divisibility condition in BL-algebras (see Definition 1.3.1). The
mutually converse implications (BL5a) and (BL5b) express the residuation condition
(cf. Theorem 1.1.8(1) and Definition 1.3.1). The axiom (BL6), which is equivalent to
(¢ — )V (¥ — @), expresses the property of prelinearity (cf. Definition 1.3.1). Fi-
nally, the axiom (BL7) is the ex falso quodlibet law. This is a minimal independent
set of axioms [26]. The numbering of axioms is due to the original numbering in [83],
which included two more axioms (later proved redundant, see [26]):

(BL2) p&p—
(BL3) p& W — Y & p.

The logics G, T, and IT are axiomatized by adding some of the following axioms to
the axiomatic system of BL:

(G) p—=p&y
(L) 2
(IT) oV ((p = o &) = P).

Thus, G = BL+(G); L. = BL+(L); and IT = BL + (II). The axiom (G) expresses the
idempotence of the residuated conjunction (note that the converse implication is a special
case of (BL2)), and so its coincidence with the minimum conjunction. The axiom (¥.)
of double negation expresses the involutiveness of negation (cf. Example 1.1.11); its
converse implication is provable already in BL: see theorem (T1,40) on p. 18. Product
logic can equivalently be axiomatized by adding the following two axioms to BL:

(S) (e A )
(ITs) —x = ((p&x =P &x) = (¢ = ).

The axiom (S) expresses the strictness of residual negation (Example 1.1.11). Adding
just the axiom (S) to BL yields the logic SBL of continuous t-norms with strict residual
negation (see Definition 1.1.19). The logic SBL extends BL and is extended by both IT
and G as well as by all other logics L x where K is a set of t-norms with strict negations,
i.e., t-norms which are not of the form L.&* (cf. Example 1.1.11 and Theorem 1.1.20). In
SBL, the axiom (Ilg) expresses the cancellativity of the t-norm: provided  is non-zero
(which in SBL is expressed by =—Y), it can be canceled from ¢ & x — ¥ & x.
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The logics of other continuous t-norms (or even sets of continuous t-norms) can
also be axiomatized by adding certain finite sets of axioms to BL; however, since
most of these axioms are not very intuitive, we do not present them here; they can
be found in [58]. Extending BL (or any logic of continuous t-norms) by the law of
excluded middle,

(LEM) @V,

already yields classical logic.

The completeness theorem for logics of continuous t-norms can be formulated in
a compact way by stating the equality of the logic (defined semantically as finitary se-
mantic consequence relations, see Definition 1.1.19) and the corresponding syntactic
provability relation (of Definition 1.2.2):

THEOREM 1.2.3. Let L be any of ¥, G, 11, BL, and SBL. Then for every theory I' and
Sformula o holds:

Tk iff TEMe.

An expanded (traditional) formulation of this so-called finite strong standard complete-
ness theorem for the prominent logics of continuous t-norms is as follows:

THEOREM 1.2.4 (Finite strong standard completeness). Let L be one of the L., G, 1],
BL, SBL. Then the following are equivalent for any finite theory I" and a formula p:

1. T |_L ®.
2. e(p) = 1 for each standard L-algebra [0, 1], and any x-model e of T

Notice that Theorem 1.1.18 tells us that the restriction to finite theories I' can only
be dropped in the case of Godel logic. The fact that I' F1, ¢ implies the second claim
of Theorem 1.2.4 (usually called the soundness of the axiomatic system of L w.r.t. its
standard semantics) is easily obtained by simple computation in [0,1]. We will not show
the proof of the converse implication (usually called the completeness of the axiomatic
system of L w.r.t. its standard semantics) here;'> for particular logics it can be found in
Chapters V, VI, and VII of this Handbook. Nevertheless, in the next subsection we will
show the proof of a weaker claim, namely the completeness w.r.t. the (broader) class of
linearly ordered L-algebras.

Let us now list some important formulae provable in the logics we have just defined,
and comment on their réle and importance. We start with theorems of BL (which by
Theorem 1.2.4 coincide with t-tautologies) and list them with their customary names.
Most of them are proved (and others are easily derivable from those proved) in [83].
First, the logic BL proves the following simple properties of implication:

I5For BL this was proved in [29] by showing the redundancy of two additional axioms needed in Hajek’s
completeness proof [82]; for SBL in [29]; for Lukasiewicz logic in [106] (a weaker result, showing only the
coincidence of tautologies and theorems of Lukasiewicz logic, was proved before independently in [24, 164]);
for Godel logic in [47]; and for product logic in [99].
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( )
( ) e (W =)

(Tpr3) (p—= W —=x) = (@ = (¢ = X))
( ) (p=Y) = ((x—9) = (x—=v)
( ) = (=) =)

=@ reflexivity of —

weakening
exchange
prefixing

assertion

We continue with the properties of the residuated conjunction &. Note that the first
two theorems were originally included among the axioms of BL (see page 15), and are

therefore often referred to as (BL2) and (BL3):

(Ter6) ¢&¢— ¢ (&-form of) weakening
(Ter7) &y =9 &e commutativity of &
(TeL8) (p—=v) = (p&x—v&x) monotonicity of &
(TrY) (p&Y)&x < & (W &x) associativity of &
(Ter10) ¢ = (¥ = @ &y).

Next we deal with properties of min-conjunction A and max-disjunction V. Note
that the minimum conjunction A differs from the residuated one &, i.a., by its idempo-

tence. Also note that the commutativity of A is stated in axiom BL4.

(TeLll) & — o AP

(TpL12) 9AY — ¢

(TeL13) e A idempotency of A
(Terl4) (pAY)Ax AW AX) associativity of A
(Terl5) (p =) = (pAXx =Y AX) monotonicity of A
(TeL16) (@ =) = (¢ & 9 A).

Theorems (Tpr11) and (Tpr10) allow us to obtain (by a double application of

modus ponens) a derived deduction rule of BL called A-adjunction: p,v Fpr, @ A ¥

(thus in particular: ¢ — 1,Y — @ FpL @ <> P).

o= eV

(
(p =) = (Y oV
(o =)V (Y — ).

( )

( ) pereVe idempotency of
( ) pVY YV commutativity of
(Tpr20) (pVY)Vx eV (YVY) associativity of V
( ) (p—=9Y) = (VX —9PVX) monotonicity of V
( )

( )

prelinearity
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Furthermore we list several forms of distributivity laws between the connectives:

(Tpr24) (x > @ AY) < (x = @) A(x — )  distributivity of A over —
(Ter25) (x > pVY) e (x =) V(x — ) distributivity of V over —
(Tpr26) (A = x) < (p = x) V(¥ — x) ‘distributivity’ of A over —
(Ter27) (VY —=x) < (¢ —x)A (¥ — x) ‘distributivity’ of V over —
(Tr28) & (WAY) < (&) A (v & X) distributivity of & over A
(Ter29) & (W VX) < (&) V(p&x) distributivity of & over V
(TeL30) eV (WP AX) < (VY)A(pVX) distributivity of V over A
(Ter3l) AWV X) < (eAY)V (eAX). distributivity of A over V

The following properties of truth constants 0 and 1 are provable in BL:

(TpL32) &l 1 is the unit of &
(TeL33) ¢Alw o 1 is the unit of A
(TpL34) &0+ 0 0 is the annihilator of &
(TpL35) ¢ A0+ 0 0 is the annihilator of A
(TpL36) (1 — @) < . push and pop

Finally we give some BL-provable properties of residual negation. Note that the
properties of negation are weaker than those known from the classical logic: in fact,
they more resemble those of intuitionistic logic; later we show that BL, indeed does not
prove their classical variants.

(TeL37) —¢ — (¢ =) ex falso quodlibet
(TeL38) —(¢ & —p) law of non-contradiction
(Ter39) (p =) = (0 — —p) antitonicity of =
(TprL40) ¢ — ——p ‘weak’ double negation law
(Tprdl) —(eAY) < (mpV ) ‘weak’ De Morgan law
(TgrL42) —(e V) < (mp A ). ‘weak’ De Morgan law

Observe that the monotonicity properties proved for all the connectives can be used
to prove the corresponding properties of congruence w.r.t. equivalence—e.g.:

(Ter43) (p+ )= ((x = ) & (x = V) right-congruence of —
(Terdd) (p+ )= ((p—x) & (¥ —x) left-congruence of —
(Tgr4d) (p¥) = ((p&x) < (Y& X)). congruence of &

Thus proceeding inductively (and using modus ponens) we obtain the following the-
orem, which later plays a crucial rdle in the proof of the completeness theorem (see
Definition 1.3.8).
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THEOREM 1.2.5 (Intersubstitutivity). Let x be a formula and let X' be a formula re-
sulting from x by replacing some occurrences of its subformula ¢ by a formula 1. Then:

@ YhpLx ¢ X (Cong)

The theorem holds analogously in all extensions of BL. By Theorem 1.2.5, we
also obtain: ¢ <> 1, x FpL X’. Provably equivalent formulae can thus be freely inter-
substituted in the context of any formula without changing its provability.

Now let us show some theorems of the prominent axiomatic extensions of BL:

THEOREM 1.2.6. The logic SBL can be equivalently axiomatized by adding any of the
following (SBL-provable) formulae to the axioms of BL:

(TsprLl) -V -—p weak law of excluded middle
(TspL2) (¢ = ) = —p
(TspL3) ~(p &) = =(p AY).

EXAMPLE 1.2.7. The axiom (S), and thus (by the previous theorem) also the formulae
(TspL1)-(TspL3), are not provable in Lukasiewicz logic. Indeed, consider any evalua-
tion e such that e(p) = 3: then eg,(~p) = 1, thus e, (=(p A ) = 5 # 1.
THEOREM 1.2.8. Lukasiewicz logic can be equivalently axiomatized by adding any of
the following Y.-provable formulae to the axioms of BL:

(Te1) (=) = =) = (¢ = 9¥) converse contraposition law
(Tr2) (=) =) = (v =) = @) Wajsberg axiom
(Te3) v &y o =(p— ) definability of &
(Ted) (=) & ~(p& ) definability of —
(Te5) @AY (—p V) De Morgan law
(T1.6) YV a(mp A ). De Morgan law

EXAMPLE 1.2.9. The axiom (L), and thus (by the previous theorem) also the formulae
(Tr.1)—(T4y6), are provable neither in Godel logic nor product logic (and also not in
SBL and BL). Indeed, consider any evaluation e(y) = % In both G and II we obtain
e(=—p) =1, thus e(-—p — @) =  # 1.

Notice that the theorems (Ty3)—(Tg4) allow us to further reduce the set of basic
connectives in Lukasiewicz logic, to either {—, 0}, or {&, =}, or {—, =}. The last one
is the set of connectives used by Lukasiewicz and Tarski in their original axiomatiza-
tion of Lukasiewicz logic (see, e.g., [83]); they used an equivalent system of axioms,
composed of (BL1), (Tr2), (T.1), (Tr2), and modus ponens.

So far we have seen four notable axiomatic extensions of BL, namely, t., G, II, and
SBL, shown by Theorem 1.2.4 to be the logics of certain (sets of) continuous t-norms.
Clearly not all axiomatic extensions of BL are ‘t-norm based’ in the latter sense: for
example, even though classical (Boolean) logic is the axiomatic extension of BL by the
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law ¢ V = of excluded middle, it is not complete w.r.t. any set of t-algebras, since for
any x-evaluation e in any t-algebra [0, 1], e(p V =) = Liff e(p) = 0 ore(p) = 1.

All axiomatic extensions of BL: enjoy a so-called local deduction theorem (for a
proof see Chapter II):

THEOREM 1.2.10 (Local deduction theorem). Let L be an axiomatic extension of BL.
Then the following holds for each theory I' and formulae ¢, ):

T,pbFL v iff thereisanatural n suchthatT = "™ — 1.

The word local in the name of the theorem refers to the dependence of the mul-
tiplicity n in the right-hand side of the equivalence on the formula ¢. An axiomatic
extension L of BL enjoys the classical deduction theorem (T, b, Y iff T 1, o — 1)
if and only if L extends Godel logic. Thus (see Theorem 1.1.20) Gddel logic is the only
logic of continuous t-norms which enjoys the classical deduction theorem.

The following two properties of axiomatic extensions of BL, the proof by cases
property and the semilinearity property, were implicitly proved (though not mentioned
by these names) in [83]. While the former is widely used and studied in the general
logical literature, the latter was first explicitly formulated in [34] and called there ‘the
prelinearity property’; later in [41] it was renamed to its current name (for reasons for
this change see the comments preceding Definition 3.3.9). The semilinearity property
plays a crucial rdle in the proof of the so-called linear completeness of fuzzy logics (see
Theorem 1.3.12), and arguably in whole Mathematical Fuzzy Logic (cf. [13]); therefore
we sketch its proof here.

THEOREM 1.2.11. Let L be an axiomatic extension of BL. Then L satisfies the follow-
ing two properties, for each theory I' and formulae ¢, ), x:

1. The proof by cases property (PCP):

IyoVyty x whenever T @t xand T, b, x.

2. The semilinearity property (SLP):

'L x whenever Ty =Y by xand U, — o b x.

Proof. The first claim is a straightforward application of the local deduction theorem and
theorems of BL: From the assumptions we obtain some m and n such that " -1, ¢™ — x
and ' Fy, ™ — ¥, and so by (Tg27) we have T k1, ™ V ™ — x. If we show
that BL proves: (¢ V 9)"t™ — ™ V ¢)™, the proof is done. Using (Tpr,29) and the
associativity and commutativity of V we obtain (¢ V )" T ¢+ \/?j)n @t & PpmInTl
Observe that for each i < m +n we have ¢ & ™"t — " or ! &Ym=t — Y™
(using (BL2) and (Tpr8)), Theorems (Tpy,17) and (Tpr,29) complete the proof.

The second claim is then a simple corollary of theorem (Tpr23), (¢ — ¥) V

(¥ — ). O
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It can be proved that if T ¥1, x, then there is a theory IV D T" such that T ¥, x and
IV, ¢ b1 x for each ¢ ¢ I'.'® Note than in classical logic such a theory I would be
‘complete’ (i.e., for each formula ¢, either ¢ of ¢ would be provable from I'). In fuzzy
logic, however, only a weaker statement can be proved: I' b, ¢ = Y and ' g, ¢ — ¢
for each ¢, 1.!7 The theories satisfying this property have in [83] and subsequent papers
been called ‘complete theories’, since the role they play in the proof of a completeness
theorem for fuzzy logics is similar to that of complete theories in the completeness proof
for classical logic. However, this name can be misleading, as even though this property
entails completeness (in the above sense of I' = ¢ or I' - —p for each ¢) in classical
logic, in fuzzy logics it differs from this notion of completeness. Thus in recent papers,
the term ‘linear theory’ has been coined for this notion (for the rationale of the term
‘linear’ see Lemma 1.3.9).

Besides linear theories, we also define the notion of prime theory, which is well
known, e.g., from the study of super-intuitionistic logics.

DEFINITION 1.2.12 ([34]). We say that a theory I is
e Linear in L if for each ¢, : T, o = Y or T Fp ¢ — .
e Prime in L if for each p,v: T 1, o V¢ implies T b, ¢ or T 1, 4.

It can be shown [176] that the notions of prime and linear theory coincide in any
axiomatic extension of BL (but they differ, e.g., in intuitionistic logic where, due to the
disjunction property, the set of theorems is a prime, but clearly not linear theory). Later
we will see that this equality is one of the characteristic properties of fuzzy logics (in
a certain setting, see Chapter II for details). As hinted above, the following theorem
of [83] is crucial for the proof of the so-called linear completeness of fuzzy logics,
described in the next Section 1.3.

THEOREM 1.2.13 (Linear / prime extension principle). Let L. be an axiomatic extension
of BL. Let T" be a theory and ¢ a formula such that U ¥y, x. Then there is a linear
(prime) theory I'" D T such that T ¥4, x.

1.3 Algebraic semantics

In this subsection we introduce a more general algebraic semantics of the logics we
have considered so far. It will be, in a certain specific sense, the most general algebraic
semantics, and so we will be able to easily prove that it is also a complete semantics.
The proof of the so-called general completeness, together with its strengthening, the
linear completeness, is the crucial first step in the proof of the standard completeness
mentioned in the previous section. Unlike in the standard case, we are able to show that
the semantical consequence relations given by general and linear semantics are finitary,
and the axiomatic systems presented in the previous subsection are complete w.r.t. these
semantics for all (possibly infinite) sets of formulae.

16The proof consists in a simple application of Zorn’s Lemma, see Chapter II.
17The proof is easy: Assume otherwise, then from the ‘maximality’ of T we obtain I, — 1 F, x and
TV, v — ¢ 1, x thus the semilinearity property will give us I 1, x—a contradiction.
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General algebras for the logic BL are called BL-algebras [83]. The notion of BL-
algebra can be defined in several equivalent ways; the definition given below puts
BL-algebras in the context of the well known and deeply studied class of residuated
lattices (see, e.g., [67]). For simplicity we use the same symbols for the connectives of
L and the operations in the algebras, although we keep using the alternative symbols,
introduced in Section 1.1, for realizations of connectives in the standard semantics. If
necessary, they can be disambiguated by superscripting the name of the algebra to the
operation symbol.

DEFINITION 1.3.1 ([67]). A bounded integral commutative residuated lattice, or an
FLcy-algebra,' is an algebra A = (A, &, —, A\, V,0,1) such that:

1. (A, A, V,0,1) is a bounded lattice
2. (A, &, 1) is a commutative monoid

3. — is the residuum of &, i.e., foreach x,y,z € Aholds: v &y < ziffx <y — z.
The class of all FLey-algebras will be denoted by FlLy,. The operations — and <
are defined in each FLqy-algebra by setting for all z,y € [0,1]:
zoy=(z—=y) Ay —a)
-~z =x— 0.
We say that a FLey-algebra A is

e Linearly ordered if the order induced by its lattice reduct is total.
e Prelinear if it satisfies the identity (x — y) V (y — x) = 1 forall z,y € A.
e Divisible if it satisfies the identity x Ny = x & (x — y) forall z,y € A.

Divisible prelinear ¥ L.y, -algebras are simply called BL-algebras and their class is de-
noted by BILL; linearly ordered BL-algebras are called BL-chains.

In earlier literature on mathematical fuzzy logic (prominently in [83], where the reader
can also find the proofs of the following theorems), FL.-algebras were called just
residuated lattices.

If we assume that an algebra A = (A, &, —, A, V, 0, 1) satisfies conditions 1 and 2
of the definition of a FL,-algebra, then the residuation condition 3 is equivalent to the
following pair of identities:

(z&(x—2zNy)Vz=2z

(= (z&yV2) Ay =y,
for all z,y, z € A. Thus both FLL.,, and BL are varieties of algebras. Before we show
the relation of the just defined class of BL-algebras and the logic BL, let us give some

of its basic properties and define its important subvarieties related to other fuzzy logics
introduced in the previous section.

18See Section 3.1 for the motivation of this terminology. Note that bounded integral residuated lattices can
be regarded as FLey -algebras (see Definition 2.1.6), since FLew-algebras the constant O coincides with the
least element.
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THEOREM 1.3.2. Let A be a Fly-algebra. Then:
L z<yiffr—y=1
2. x=yiffr < y=1

It is very easy to check that every t-algebra is a BL-algebra; in fact, even the con-
verse claim can be proved:

THEOREM 1.3.3. A FL¢y-algebra A = ([0, 1], &, —, min, max, 0, 1) is a BL-algebra
if and only if & is a continuous t-norm and — is its residuum.

For any FL,-algebra A we define the notion of A-evaluation and A-model in the
same way as in the case of t-algebras (see Definitions 1.1.13—1.1.15). The next theorem
shows that BL-algebras form a sound semantics of the logic BL.

THEOREM 1.3.4 (Soundness). For any theory I' and a formula o such that T Fgy, ¢
we have e(p) = 1 for each BL-algebra A and any A-model e of T.

In fact even more can be proved, namely that the BL-algebras are the maximal sound
semantics of BL. among all algebras with the same signature (see Section 3.3 for details).
In particular, if A is a FL.-algebra, then A is a BL.-algebra if and only if for any theory
I" and a formula ¢ such that " gy, ¢ holds that e(¢) = 1 for each A-model e of T.

DEFINITION 1.3.5. A BL-algebra A is called:
e An SBL-algebra if it satisfies the identity x A —~x = 0 for all v € A.
e An MV-algebra'® if it satisfies the identity ——x = x for all x € A.

e A product algebra if it satisfies the identity -z V ((x — x & y) — y) = 1 for all
x,y € A.

e A Godel algebra if it satisfies the identity v & x = x for all x € A.
The corresponding varieties of algebras will be denoted by SBIL, MV, P, and G.

Notice that in the definition of product algebras we simply use the defining axiom
(IT), and put it always equal to 1. Analogously the defining identities of SBL-, MV-,
and Godel algebras could be equivalently replaced by =(z A —z) = 1, -z — x = 1,
and z — = & x = 1, respectively, i.e., by the validity of the axioms (S), (L), and (G).
Conversely, each subvariety of BL-algebras determines an axiomatic extension of BL.
We give a general definition:

19 As mentioned in footnote 10 on p. 12, we speak about MV -algebras rather than Fukasiewicz algebras for
historical reasons. Strictly speaking the M'V-algebras are usually presented with a different signature, but can
be shown termwise equivalent to our definition of M'V-algebras, cast as a subvariety of FlLc.. MV-algebras
can also be, termwise equivalently, presented as Wajsberg algebras, with only one binary connective — and
the truth constant 0. (Recall that we have seen in Theorem 1.2.8 that & is definable in Lukasiewicz logic,
and the remaining connectives of F Ly -algebras can already be defined in BL.)
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DEFINITION 1.3.6. Let L be an axiomatic extension of BL. We define a subvariety Vi,
of BL-algebras as those satisfying, for each L-theorem ¢, the identity o = 1 for all
values of propositional variables. The algebras from V1, are called L-algebras.

Let L be an axiomatic extension of BL by a set of axioms .4; then we can simply
prove (by induction on the complexity of the proof) that A is an L-algebra iff it satisfies,
for each ¢ € A, the identity ¢ = 1 for all values of propositional letters. In particular,
for the logics from the previous subsection we have: SBLL = Vg, MV = Vg, P = Vpq,
and G = V. Consequently, we will sometimes write L instead of V..

THEOREM 1.3.7 (General completeness). Let L be an axiomatic extension of BL. Then
the following are equivalent for each theory I' and formula ¢:

1. T I_L ®.
2. e(p) =1 for each L-algebra A and any A-model e of T.

Below we give a hint of the proof of this fundamental theorem. First we need one
important definition and a lemma.

DEFINITION 1.3.8 (Lindenbaum-Tarski algebra). Let L be an axiomatic extension
of BL and T a theory. For every formula p, we define the set

[elr ={¢ | T FL ¢ & 9}

The Lindenbaum—Tarski algebra of the theory I, denoted by LT, is the algebra with
the domain {[|r | ¢ a formula of BL} and the operations defined as follows:

(el &7 [Ylr = [0 & ¢lr
[elr =57 [lr = [ — ¢Ir
[l AFTT [l = [p A Y]
[ele VETT [lr = [p V ¢lp
0LT" = (O]
TETe — [Ty,

The soundness of the latter definition of operations follows from Theorem 1.2.5.
The proof of the following lemma is straightforward.

LEMMA 1.3.9. Let L be an axiomatic extension of BL and T" a theory. Then:
1. LTt is an L-algebra.
2. LTr is an L-chain iff T is a linear theory.
3. The LT r-evaluation e(p) = [¢|r is an LT r-model of T.

Proof of Theorem 1.3.7. One implication is Theorem 1.3.4. We prove the converse im-
plication counterpositively: assume that I" };, ¢ and consider the LT 'r-evaluation
e(p) = [¢]r. We know that e is an LTr-model of " and obviously e(p) # 1ETr
(as otherwise I' - ¢ <+ 1, and so I' = o—a contradiction). O
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Next we move to a characteristic topic of mathematical fuzzy logic: completeness
w.r.t. linearly ordered algebras of truth values. Since all t-algebras are indeed linear, we
have already shown a form of such completeness; however, recall that we have done so
for finite theories only. Historically speaking, there are two possible approaches: one
using the notion of subdirect product and another using the notion of linear theory. The
next chapter will study the mutual relationship of these two approaches and show their
equivalence; here we give the main theorems of both approaches.

DEFINITION 1.3.10. We say that a Fley-algebra A is representable as a subdirect
product of the family of Fley-algebras {A; | © € I} if there is an injective homo-
morphism o from A into the direct product [[;.; A; such that for every i € I, the
composition of o with the i-th projection, m; o a, is surjective. In this case, o is called a
subdirect representation of A; it is called finite if I is finite.

A Flgyw-algebra A is (finitely) subdirectly irreducible if for every (finite) subdirect
representation « with a family {A; | i € I} there is i € I such that 7; o « is an
isomorphism.

THEOREM 1.3.11 (Linear subdirect representability). Let L. be a axiomatic extension
of BL. Then any L-algebra is a subdirect product of a set of L-chains.

THEOREM 1.3.12 (Linear completeness). Let L be an axiomatic extension of BL. Then
the following are equivalent for each theory I' and formula p:

I TFL o
2. e(p) = 1 for each L-algebra A and A-model e of T.
3. e(p) = 1 for each L-chain A and A-model e of T.

Proof. We can either (straightforwardly) use the previous theorem to show that 3. im-
plies 2., or we can counterpositively prove that 3. implies 1.: We start as in the proof of
Theorem 1.3.7, and using Theorem 1.2.13 we obtain a linear theory IV D T' such that
I 1, ¢. From Lemma 1.3.9 we know that LT is an L-chain, and again the LT/~
evaluation e() = [¢]r is an LT -model of I such that obviously e(p) # 1T, [

Theorem 1.3.11 can be strengthened in the following way:

THEOREM 1.3.13 ([145]). Let L be an axiomatic extension of BL. Then any L-algebra
is finitely subdirectly irreducible iff it is an L-chain.

By a well known algebraic fact, the class of subvarieties of BLL as well as the set
of axiomatic extensions of BL form lattices. In Definition 1.3.6 we have introduced the
mapping Vp, that assigns to each axiomatic extension of BL the corresponding subva-
riety of BLL. This mapping is in fact a dual isomorphism of these two lattices, whose
inverse Ay assigns to V the extension of BL by the set of axioms Ay = {¢ < ¥ |
the identity ¢ = 1) is valid in V}. This fact is formalized in the next theorem, which for
BL-algebras is folklore; in the general framework of algebraizable logic it was proved
by Blok and Pigozzi in [18] (see Section 3.3, and Theorem 3.3.8 in particular, for more
details on this topic).
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THEOREM 1.3.14. Let L, L' be axiomatic extensions of BL and let U, U’ be subvari-
eties of BL. Then:

1. U=V, and L = Ay,

2.0UNU =AyUAy andLUL =V, NV

2 Variations of basic propositional fuzzy logics

In Section 1 we introduced basic systems of fuzzy logic based on continuous t-
norms. In this section we shall indicate the directions in which the apparatus of fuzzy
logic can be extended. The principal ways of altering the logics of continuous t-norms
are the following:

o Discarding axioms or rules of a fuzzy logic, enlarging thus the class of its models
e Adding new connectives, thus increasing the expressive power of the logic

e Discarding connectives present in a fuzzy logic and dealing with its fragments

o Adding axioms or rules to obtain stronger logics with more specific models.

These types of alterations can further be combined—e.g., some axioms can first be dis-
carded and some others (possibly weaker or incomparably strong) added back, or con-
nectives be added to a previously weakened logic, etc. Variations of the above moves
generate a rich landscape of mathematical fuzzy logic, inhabited by dozens of different
logical systems and their classes, with complex interrelations and interesting metamath-
ematical properties.

In the subsections of the present section, we shall briefly introduce the main fuzzy
logics resulting from these modifications of the logics of continuous t-norms. The way
of extending propositional fuzzy logics to predicate fuzzy logics of the first or higher
order is postponed to Section 5.

The new fuzzy logics will mainly be introduced by their standard semantics, or by
syntactic manipulation with their language or axiomatic system. In order to avoid many
repetitive definitions, we shall employ the following terminological convention (for a
general formal definition of L-algebras and other notions introduced by this convention
see Section 3.3):

CONVENTION 2.0.1. For all newly introduced logics L, the corresponding algebras
for which L is sound will be called L-algebras. A terminological exception are modifi-
cations of Lukasiewicz logic, where (subscripted) MV - is used instead of Y¥.- (cf. foot-
note 10 on p. 12).

More precisely, we say that A is an L-algebra if T 1, @ implies that any A-model
of all formulae from T is an A-model of p, where an evaluation e is an A-model of ¢ if
e(¢) = 1, unless said otherwise.?

20 A different specification of A-models is employed, e.g., in Section 2.1.2. As in the previous section, the
class of L-algebras will usually admit some explicit (often equational) description.
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We say that an L-algebra A is:

o An L-chain if the order determined by the lattice connectives of L is linear?!
o A real-valued L-algebra if its lattice reduct is the real interval, either closed [0, 1]
or half-open (0, 1], with the usual ordering of reals.

e A (finitely) subdirectly irreducible L-algebra if it cannot be obtained as a non-
trivial (finite) subdirect product of a family of L-algebras (for a formal definition
in the case of BL-algebras see Definition 1.3.10).

In the previous section we have seen that particular real-valued L-algebras may be
specified as the standard L-algebras. These algebras are the intended semantics of the
logic. By default, all real-valued algebras will be considered standard. In some cases,
however, we may want to select a narrower class of real-valued algebras as standard: for
instance, if all real-valued L-algebras are mutually isomorphic (as is the case, e.g., in G,
T, and 11, see p. 12), we pick one particular representative.

CONVENTION 2.0.2 (Standard algebras). Unless specified otherwise, all (and only)
real-valued Li-algebras are the standard L-algebras.

The logic need not be complete with respect to its standard algebras;?? if it is, we
speak about the standard completeness of the fuzzy logic. As we have seen in Sec-
tions 1.1-1.2, the logics L and II enjoy standard completeness for finite theories only;
Godel logic, on the other hand, enjoys standard completeness even for infinite theories.
This motivates the distinction made in the following convention.

CONVENTION 2.0.3 (Standard completeness). We say that L enjoys finite strong stan-
dard completeness if the following conditions are equivalent for each formula p and
each finite theory T':

o T l_L ®.
e For each standard L-algebra A and each A-model e of T, e is an A-model of .

If the equivalence holds for all theories, we say that L. enjoys strong standard complete-
ness, and we speak just about (weak) standard completeness if the equivalence holds for
T =.

All logics L that will be introduced in this section enjoy several important prop-
erties that have been discussed in the previous section for logic BL and its axiomatic
extensions:

e The intersubstitutivity of equivalent subformulae (cf. Theorem 1.2.5)

e The proof by cases property PCP and the semilinearity property SLP (cf. Theo-
rem 1.2.11)

211f the logic L does not possess lattice connectives, the order can be defined by means of implication, see
Section 3.3.

2Incompleteness with respect to the intended semantics is not unusual in logic: cf., e.g., the essential
incompleteness of Peano arithmetic with respect to the standard model of natural numbers.
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The linear (or prime) extension property (cf. Theorem 1.2.13)

The general completeness theorem (i.e., completeness w.r.t. all L-algebras, cf.
Theorem 1.3.7)

The linear completeness theorem (i.e., completeness w.r.t. all L-chains, cf. Theo-
rem 1.3.12)

o The linear subdirect decomposition property (cf. Theorems 1.3.11 and 1.3.13).

Therefore we are not going to mention these properties repeatedly, and will omit stating
that each of the upcoming logics possesses them. On the other hand, the logics will differ
in what form of the (local) deduction theorem (cf. Theorem 1.2.10) holds for them; also
the form of standard completeness (see Convention 2.0.3) will change from logic to
logic.

Finally, let us remark that the intersubstitutivity of equivalent subformulae and gen-
eral completeness are properties possessed by a broad range of logics (namely the so-
called weakly implicative logics, which include, i.a., intuitionistic logic or normal modal
logics). The remaining properties from the above list, on the other hand, are ‘character-
istic’ of fuzzy logics: namely, they are satisfied by nearly all logics studied under the
name ‘fuzzy logic’ in the literature, and rarely satisfied by a logic that is not commonly
classified as ‘fuzzy’. This remark will be made more precise in Section 3 and Chapter II.

2.1 Discarding axioms or rules

Even though the conditions adopted in Section 1.1 for propositional connectives,
with the ensuing axioms of Section 1.2, are reasonable assumptions on generalized ver-
sions of classical propositional connectives, not all of them are necessary for generating
a meaningful system of truth-functional fuzzy logic. In this subsection we shall describe
several systems arising from dropping some of the properties of logics of continuous
t-norms. The algebraic semantics of logics introduced in this subsection is thoroughly
studied in Chapter I'V.

2.1.1 Logics of left-continuous t-norms

In Section 1.1 we assumed that the t-norm representing conjunction is continuous.
This assumption ensured the existence of a unique residuum (see Theorem 1.1.8), result-
ing in a good interplay between conjunction and implication. It turns out, however, that
continuity is unnecessarily strong a condition for the existence of a unique residuum, the
minimal condition for residuation being just the left-continuity of the t-norm.

Recall that a unary function is left-continuous (or lower-semicontinuous) if and only
if it commutes with suprema: sup, ., f(z) = f(a). By a left-continuous t-norm we
mean a t-norm that is left-continuous in either argument (see [123]). Unlike for con-
tinuous t-norms, no characterization similar to Theorem 1.1.7(5) (the Mostert—Shields
Theorem) is known for left-continuous t-norms. Prominent examples of left-continuous
t-norms that are not continuous are the weak nilpotent minimum t-norms *wxu(n):
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EXAMPLE 2.1.1 ([53]). An order-reversing function n: [0, 1] — [0, 1] with n(n(x)) >
x forall z € [0,1] and n(1) = 0 will be called a weak negation. Given a weak nega-
tion n, the weak nilpotent minimum t-norm *wnwi(,) is defined as follows:

0 ifx <n(y)
min{x,y} otherwise.

3

T *WNM(n) Y =

Each #wnw(n) i8 nilpotent and left-continuous, but not (right-)continuous.

A weak negation n that is involutive, i.e., n(n(x)) = z for all z € [0, 1], will be
called a strong negation. If n is a strong negation, then *wnm(n) is called the nilpotent
minimum t-norm pertaining to n and can be denoted by *Nwi(,). For the standard in-
volution n(x) = 1 — =, the nilpotent minimum #yp(y) is called the standard nilpotent
minimum t-norm and denoted by xnnr (see Figure 4 for the graph). Historically, this
t-norm was the first known example of left-continuous, but not continuous t-norm [64].

Theorem 1.1.8 holds for left-continuous t-norms as well, and ensures the unique ex-
istence of its residuum satisfying the condition (1) of the Theorem. Also Theorem 1.1.9
holds equally well for left-continuous t-norms, except the claim 6 (the definability of
min in terms of * and =-): due to its failure, the minimum conjunction has to be in-
cluded among primitive connectives of the logic of left-continuous t-norms.

EXAMPLE 2.1.2 ([53]). The residuum =-wnm(n) of any weak nilpotent minimum t-
NOrm *ywNm(n) COMES out as

1 ife <y

z = =
WNM(n) ¥ max{n(z),y} otherwise.

The residual negation —wynwi(n) pertaining to the weak nilpotent minimum t-norm
*WNM(n) Coincides with n.

Figure 4. The graphs of the standard nilpotent minimum t-norm and its residuum. The
function *x is discontinuous at the points (x, 1 — x) for 0 < x < 1, and the function
=N is discontinuous at the points (z, ) for 0 < = < 1.
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The definition of standard semantics for the logics of left-continuous t-norms can
thus run along the same lines as for the logics of continuous t-norms described in
Section 1.1. The notions of tautologicity and (finitary) consequence relation with re-
spect to any set of left-continuous t-norms (or the logic of the set of left-continuous t-
norms) can be defined in the same way as for continuous t-norms (see Definitions 1.1.15
and 1.1.19; the notational conventions introduced in the definitions will be extended to
left-continuous t-norms as well).

The logic of all left-continuous t-norms is called monoidal t-norm logic, or MTL,
and was introduced in [53]. The primitive connectives of the logic MTL are &, —, A,
and 0. Its derived connectives V, <%, -, and 1 are defined in the same way as in BL
(see Section 1.2). Also the axioms and rules of MTL are the same as those of BL, only
the divisibility axiom (BL4) is replaced by the following three axioms describing the
properties of A:

(MTLA4a) YA =@
(MTL4Db) PANY =P A
(MTL4c) p& (p =) = p A

Clearly, the logic BL extends MTL by the converse of (MTL4c). The logic MTL shares
many metamathematical properties with the logic BL: besides those mentioned in the
introduction to this section, also all formulae (Tgr,1)—(Tp45) are theorems of MTL as
well, and M'TL enjoys the same variant of local deduction theorem (cf. Theorem 1.2.10).

MTL-algebras (i.e., the algebras for which the logic M'TL is sound) can be charac-
terized as prelinear bounded integral commutative residuated lattices, or prelinear F L., -
algebras (see Definition 1.3.1);? the class of MTL-algebras is thus a variety. Unlike in
BL, where the standard completeness could be proved only for finite theories, in MTL it
can be proved for all theories [117];** i.e., the logic MTL enjoys the full strong standard
completeness.

2.1.2 Uninorm fuzzy logics

Another way of relaxing the conditions on t-norm fuzzy logics is dropping the re-
quirement that the unit element of the operation representing conjunction coincides with
the largest element of the lattice of truth values. This leads to a generalization of t-norms,
called the uninorms:

DEFINITION 2.1.3 ([180]). A binary function *: [0,1]2> — [0, 1] is a uninorm if it is
commutative, associative, monotone, and has a unit element e € [0,1]. The uninorm
is conjunctive if 0 * 1 = 0, and disjunctive if 0 * 1 = 1.

All uninorms are either conjunctive or disjunctive. T-norms are uninorms with the
unit element e = 1. The unique residuum =, that satisfies the residuation condition (1)
of Theorem 1.1.8 and is explicitly given by Theorem 1.1.9(1) exists if and only if * is
left-continuous and conjunctive.

23This class of algebras was independently introduced in [63] under the name weak-BL-algebras.
24This difference is caused by the fact that for the class T of all left-continuous t-norms, =1 = %“
obtains, like in the case of the minimum t-norm, but unlike all other continuous t-norms (see Theorem 1.1.18).
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All continuous conjunctive uninorms are already continuous t-norms. Prominent ex-
amples of left-continuous conjunctive uninorms that are not t-norms are the idempotent
left-continuous conjunctive uninorms characterized by the following theorem:

THEOREM 2.1.4 ([43]). The binary operation *: [0,1)> — [0, 1] is an idempotent left-
continuous conjunctive uninorm with the unit element e € (0, 1] if and only if there is a
weak negation (see Example 2.1.1) n: [0,1] — [0, 1] such that n(e) = e and

min{z,y} ify < n(x)
max{z,y} otherwise.

“

kY =

The uninorm given by (4) will be denoted by *1y (), or just ¥y if n(r) =1 — .

The existence of unique residua makes it possible to construct the semantics of
propositional calculus based on left-continuous conjunctive uninorms along similar lines
as done for (left-)continuous t-norms in Section 1.1; the first paper studying logics of
uninorms was [133]. The primitive binary connectives of uninorm logics are &, —, A,
and V, interpreted respectively by a left-continuous conjunctive uninorm s, its residuum
=, and the lattice operations of minimum and maximum. Since the unit element e of
* need not equal 1, two different primitive truth constants 1 and T are distinguished,
the former represented by e and the latter by 1. Similarly there are two different falsity-
related primitive truth constants 0 and L, the latter interpreted by 0 and the former by
any fixed element f € [0, 1]. Negation — is defined as ¢ — 0 and equivalence < 1)
as (p — ) A (& — o).

In logics based on t-norms, only the largest truth value 1 (which coincides with the
unit element e of conjunction) is considered as representing the full truth of a proposition
(i.e., is the designated truth value in the definitions of consequence and tautologicity).
In logics based on left-continuous conjunctive uninorms (where e < 1), all truth values
x > e are considered as representing the full truth of propositions.?® Consequently,
the formula ¢ is defined to be a tautology w.r.t. a set K of uninorms if v.(¢) > e
(i.e., if v, () is a designated truth value) for each valuation v in each uninorm algebra
[0,1]« = ([0, 1], *x, =4, min, max,0,1,e, f) for x € K. Similarly, the consequence
relation = is defined by the transmission of the ‘designatedness’ property v, (@) > e
from the set of premises to the conclusion in each valuation v, for each ¥+ € K. Formally,
we say that v is an x-model of T" iff v, (p) > e for each ¢ € T', and then proceed as in
Definition 1.1.15. The notion of finitary consequence relation w.r.t. a set K of uninorms,
or the logic of K, is defined analogously to Definition 1.1.19.

Thus, while t-norm fuzzy logics recognize degrees of truth between the full truth
e = 1 and the full falsity f = 0, uninorm logics furthermore recognize degrees of full
truth”’ > e and degrees of full falsity z < f. The truth constant T thus denotes the

25The symbols ¢ and f are also often used in the literature for T and 0, respectively.

Z6Note, however, that the understanding of the values e and f in mathematical fuzzy logic differs from
that used in engineering fuzzy methods and the theory of aggregation operators. In the latter areas, only the
values 0 and 1 are understood, respectively, as full membership and full non-membership, while the value e
just separates values with different aggregating behavior.

?TEarlier than in the context of mathematical fuzzy logic, degrees of full truth were discussed by Casari
in [23].
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largest degree of full truth, while 1 denotes the smallest degree of full truth. Similarly 0
denotes the largest and L the smallest full falsity. Observe that since no assumption is
made on the value of f, uninorm logics leave room for dialetheism (see [157]): if f > e,
then the truth values x € [e, f] represent propositions that are both fully true and fully
false.

Unlike in t-norm logics, in uninorm logics A is not generally weaker than &: if
x,y > e, then on the contrary holds = * y > (z V y) > = A y. In uninorm logics it is
therefore preferable to use the names lattice and residuated conjunction instead of weak
and strong conjunction. Another consequence of this fact is that the A-adjunction rule
(which is derivable in BL, see the comments after (Tr,16) in Section 1.2) has to be
added as a primitive rule of the uninorm logic UL introduced below.

The logic UL of all left-continuous conjunctive uninorms can be axiomatized by the
following axioms:

(ULL) =

(UL2) (=)= (¥ —=x) = (¢ = X))
(UL3) (=W —=2x) = W= (p—=Xx)
(UL4) (& —=x) & (= (¥ = X))
(UL5a, b) CAY =@, @AY —YP

(UL6) (=)A= x) > (P2 YAX)
(UL7a,b) = (eVY), Y= (pVY)
(UL8) (p=x)N @ —=x) = (VY —=X)
(UL9) o (1= )

(UL10a, ) L=y, =T

(UL11) (o= )AD)V (¥ — ) AT)

with the definitions:
porp=(p =) A —p)
Y= — 0
and the derivation rules of modus ponens and A-adjunction:
(MP) From ¢ and ¢ — v infer ¢
(A-Adj) From ¢ and 1) infer ¢ A ).

Further logics of various sets of left-continuous conjunctive uninorms will be intro-
duced in Section 2.4. The logic MTL of left-continuous t-norms extends the logic UL
of left-continuous conjunctive uninorms by the axiom stating that 0 is the smallest and
1 the largest truth value:

(W) 0= @) A(p—=1).

Unlike MTL, the logic UL differs more radically from BL: e.g., the formulae (Tgy,6),
(Tpr2), and (Tpr11) are not theorems of UL, and the local deduction theorem of BL
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(cf. Theorem 1.2.10) is not valid for UL. However we can prove a modified variant of
the deduction theorem:

T,y 1 iff there is natural n such that T+ (o A 1)™ — 1.

The logic UL enjoys strong standard completeness.
The algebras for which the logic UL is sound (i.e., UL-algebras) can be character-
ized as pointed semilinear’® commutative bounded residuated lattices:

DEFINITION 2.1.5 ([67, 133]). A bounded pointed commutative residuated lattice, or
an FLc-algebra,? is an algebra A = (A, &, —, A\, V,0,1, L, T) such that:

1. (AN, V, L, T) is a bounded lattice
2. (A, &, 1) is a commutative monoid
3. — is the residuum of &, i.e., foreach x,y,z € Aholds: v &y < ziffx <y — z.

A bounded pointed commutative residuated lattice A is a Ul-algebra if it satisfies the
identity ((x = y) A1)V ((y = ) A1) =1 forall x,y € A

2.1.3 Fuzzy logics with non-commutative conjunction

Now we shall survey fuzzy logics that omit the assumption that strong conjunction
is commutative, i.e., that x x y = y x x for all truth values x and y. The residuation
condition (1) of Theorem 1.1.8 then has two non-equivalent variants:

zxx <y iff z<z=y
rxz<y iff z<ax=1y.

Each of them corresponds to a distinct residuum, respectively denoted by / and \, and
called the left and right residuum. The residuation condition then reads:

xxy<z iff z<z/y iff y<z\-=z 5)

The general non-commutative case of residuated lattices (cf. Definitions 1.3.1 and 2.1.5)
is thus defined as follows:

DEFINITION 2.1.6 ([67]). A residuated lattice is a lattice equipped with a monotone
monoidal operation * (with a unit e) and a pair of operations /,\ satisfying the residu-
ation condition (5).

A pointed residuated lattice, or an FL-algebra (cf. Section 3.1) is a residuated lattice
expanded by a constant 0 (with no conditions imposed on 0).

28 A class of algebras is called semilinear (a term representable is sometimes used instead) if all its subdi-
rectly irreducible members (cf. Definition 1.3.10) are linearly ordered. Note that in BL- and MTL-algebras,
the axiom (x — y) V (y — ) = 1 called prelinearity was sufficient to enforce semilinearity (which can
equivalently be formulated as the subdirect representation theorem, cf. Theorem 1.3.11). In UL and psMTL"
(introduced in Section 2.1.3 below) this is no longer the case, and more complex axioms are needed to ensure
semilinearity (cf. Definition 2.1.5 and footnote 31 on p. 34). See Section 3.3 for more details and Chapter II
for a thorough exposition of this phenomenon.

29See Section 3.1 for an explanation of this terminology.
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A residuated lattice or an FL-algebra is called:

o Commutative if its monoidal operation * is commutative.
e Bounded if its lattice reduct is a bounded lattice.

o Integral if the unit of * is its greatest element.

Clearly * is commutative iff / and \ coincide, in which case they can be denoted by
— as usual. In [0, 1], or any residuated lattice, the two residua can be explicitly defined
as follows (cf. Theorem 1.1.9(1)):

z/y=max{z|z*xy <z}

z\z=max{y | z*xy < z}

The residua / and \ are the pointwise largest (i.e., logically weakest) functions validating
the two versions of ‘internalized modus ponens’:

(z/y)*xy <z ©)
zx(z\z2) <z @)

Integral bounded residuated lattices on [0, 1] are given by left-continuous pseudo-
t-norms ([63]), i.e., binary operations *: [0,1]> — [0, 1] which are associative, non-
decreasing in both arguments, have 1 as both the left and right unit element, and are
left-continuous in both arguments.

EXAMPLE 2.1.7. Let0 < a < b < 1 and let

ifr<aandy <0

THrY = . .
min{z,y} otherwise.

This is a non-commutative pseudo-t-norm which is left-continuous in both arguments.

The existence of the left and right residua of left-continuous pseudo-t-norms makes
it possible to define the propositional logics of sets of left-continuous pseudo-t-norms
along the lines of Section 1.1, with the main difference of having rwo implications:
/ interpreted by /, and \, interpreted by \.>° The logic of all left-continuous pseudo-t-
norms has been denoted by psMTL" and called representable pseudo-MTL.3! It can be

30In the literature on substructural logics, the implications are usually denoted by the same signs /, \ as
the residua. In the literature on non-commutative fuzzy logic, /, / are often denoted by — (with swapped
arguments) and \, \, by ~». Here we use the signs /, \, suggested by L.N. Stout, since besides indicating the
side of conjoining the antecedent in (6)—(7) they also mark the direction of the implication from the antecedent
to the succedent.

31 The superscript * and the adjective representable come from the historical fact that an ill-motivated
weaker logic lacking the axioms (psMTL"8a,b) was originally named psMTL. The latter logic was intro-
duced in [88], following the terminology for previously introduced logic psBL [87], whose name was in turn
based on previously defined corresponding algebraic structures [46], originally motivated by non-commutative
version of MV-algebras [69]. The logic psMTL does not enjoy standard completeness nor linear subdirect
representation (i.e., semilinearity, cf. footnote 28 on p. 33). The ‘representability’ means recovering the latter
property in psMTL" by adding the axioms (psMTL"8a,b) to the original psMTL. The fact that these axioms
ensure this property was explicitly proved in [126]; it is also a corollary of the characterization of representable
residuated lattices given in [119]. A systematic name FLfﬁV for psMTL" will be introduced in Section 3.
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axiomatized as follows:

(psMTL"1a,b) (@ \¥)\ (x V)V (x V), (W/x)/ (/X)L W /)
(psMTL'2a,b) o &\ ¢, @&\ 9
(psMTL'3) VYDV
(psMTL'a) @A\
(psMTL*4b) PAYND AP
(psMTL ¢, d) @& (@ \Y)\ @AY, oA /(P /@) &
(psMTL"5a,b) (o \ (P \ X)W (W &\ X)), (X /¥) L)/ (x/e&)
(psMTL"6a) (PN )V )N (DN ) V)V x)
(psMTL*6b) XL (L)L (x L@ /)
(psMTL'7) 0\ ¢
(psMTL'8a,b) (o \¥)V(x& W\ ) /x), (/o) V(x\ (p/¥)&X)
with the definitions:
eV = /o)) A(e/(W\ @)
PWNY=(e\VY)A [P\ )
oNb=(@/Y)NE /L 0)

and the derivation rules:

(MP)
(Imp a, b)

from ¢ and ¢ \, ¥ infer ¢

from ¢\ ¢ infer ¢ / ¢, from / ¢ infer ¢\ 1.

The logic psMTL" also enjoys a variant of the local deduction theorem, but we do not
give it here due to its complexity (see Chapter II).

The algebras for which the logic psMTL" is sound are called representable psM'TL-
algebras, or psMTL"-algebras; they can be characterized as semilinear bounded integral
residuated lattices (see Definition 2.1.6). Their lattice reduct is [0, 1] if and only if * is
a left-continuous pseudo-t-norm (then they are called standard psMTL"-algebras). The
strong standard completeness theorem holds for psMTL" [118].

A similar non-commutative generalization can be done with other logics. In this
way we obtain, e.g., the logic psBL" that extends psMTL" by the converse of the ax-
ioms (psMTL*4c,d),* or the logic psUL of semilinear bounded residuated lattices.
In both cases, however, the standard completeness is lost: in psBL" it is simply be-
cause any continuous pseudo-t-norm is already a continuous t-norm [63] and it can be
shown [177] that psUL is not the logic of residuated pseudo-uninorms either (for details
see Chapter IV).

32Consequently, psBL"-algebras are psMTL* -algebras satisfying the identity = * (z \ y) = (y /z) *x =

T N\y.
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BL

psBLr

psUL

Figure 5. Relative position of fuzzy logics introduced in Section 2.1

2.2 Adding new connectives

We shall now survey another direction in varying the apparatus of propositional
fuzzy logics, namely expanding its expressive power by adding new primitive connec-
tives. It can be observed that truth functions definable by means of the basic propo-
sitional connectives (&, —, A, V, <, —, and 0) of the logic MTL in a given stan-
dard MTL-algebra form just a limited subset of all truth functions [0,1]" — [0, 1]
(or A™ — A in a general MTL-algebra A). The same is true about other fuzzy log-
ics treated in previous sections (for characterizations of truth functions representable by
formulae in various fuzzy logics see Section 4.2). Various important propositional con-
cepts are actually unexpressible by these basic connectives, and if they are to be available
in a system of fuzzy logic, new primitive connectives with suitable truth functions need
be added. The logics introduced in this subsection are studied in detail in Chapter VIII.

2.2.1 The Delta connective

One of the concepts expressible in neither MTL nor other logics of left-continuous
t-norms (except some of their finitely valued variants, see Section 2.4.3) is the notion of
full truth of a proposition, formally represented by a truth function A: A — A such
that the conditions A(x) = 04 for all # < T4 and A(14) = T4 would hold at least in
the intended semantics (i.e., standard or linear): for instance, such a function is clearly
not definable in the standard M'V-algebra, due to the continuity of its primitive truth
functions. This deficiency can be remedied by adding a new primitive connective A,
with the standard and linear semantics given as:

14 ifz=14
A =< _ 8
(z) {OA otherwise. ®)

3 The connective first appeared in Monteiro’s paper [142] in the context of intuitionistic and Gédel logics,
and was later extensively studied by M. Baaz; therefore it is often called Baaz Delta. Its axiomatization was
generalized for other fuzzy logics in [83].
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Tarski conditions (see Definition 1.1.13) are then extended by the clause:

ex(Dp) = Alex(p))-

Let us fix (for the rest of this subsection) an axiomatic extension L. of MTL. A
fuzzy logic L expanded by this connective is called “L with A” and denoted by L. It
can be axiomatized by adding the following axioms and rule to the axiomatic system for
the logic L:

(A1) DoV -Ap

(A2)  AlpVy) = DepVAY
(A3)  Lp—=e

(L4) Np = ANy

(A5)  Alp =) = (Dhp = Ay)

and the rule of A-necessitation,
(A-Nec) from ¢ infer Ap.

Linear L o-algebras are linear L-algebras expanded by the operation A defined
by (8) above.** The usual linear and general completeness theorems hold for L, as
well as the linear subdirect representation theorem. In consequence of these properties,
L extends L conservatively. The form of the deduction theorem for Lo is different
from that for L (see Theorem 1.2.10):

THEOREM 2.2.1 (A-deduction theorem). Let L be an axiomatic extension of MTL.
Then for any set of formulae T and formulae p,v of L, the following equivalence
holds:

Ta‘)D'_LA'(/J lﬁc Tl_LA ASO—>¢

The standard L 5 -algebras are defined (cf. Convention 2.0.2) as those L A -algebras
whose lattice reduct is [0, 1], with the exception of LA and ITa, where only the single
t-algebras [0, 1], resp. [0, 1];; expanded by A are considered standard. The standard L a -
algebras are thus the standard L-algebras expanded by the operation A defined by (8).
The logic L a is strong (resp., finite strong) standard complete if and only if L is strong
(resp., finite strong) standard complete [35].

Besides the notion of full truth, also the ordering of truth values is internalized in
La, as A(z — y) = 1iff # < y. The connective /A makes it possible to interpret
classical logic in L o by prefixing each propositional variable by /. Moreover, the logic
G, can be interpreted in any L (so already in MTLA), as Godel conjunction is the
lattice conjunction of MTL A and Godel implication is definable in MTL A by setting:

o —=a ¥ =ar Alp = ¥) V.

34The semantics of A in non-linear L o algebras, however, need not be that given by (8): rather, general
L A -algebras are L-algebras B expanded by the operation defined as (8) in every component A of the linear
subdirect representation of B.
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2.2.2 Fuzzy logics with additional involutive negation

Another frequent expansion of basic t-norm logics is by adding an extra unary con-
nective ~ which is order-reversing (i.e., if z < y then ~x > ~y for all truth values x, y)
and involutive (i.e., ~~x = z for all truth values x). The connective is usually called
involutive negation, or simply involution. The expansion is done in a similar way as in
the case of A.

Let us again fix (for the rest of this subsection) an axiomatic extension L of MTL
or MTLA. The logic L expanded by involutive negation is called “L with involution”
and denoted by L...» In logics with involution we depart from Convention 2.0.2 and
call standard 1...-algebras only the expansions of standard L-algebras by the standard
involutive negation ~x = 1 — x. Thus there are just single standard II..- and G.-
algebras, and the standard MV . -algebra is (modulo the signature) identical with the
standard MV-algebra [0, 1]g,, as in the former both negations (— and ~) coincide.

The logic L., is axiomatized by adding the following axiom and rule to the logic L:

(=) S
(Rev-v) From (¢ — 1)) V x infer (~1) — ~p) V x.

In logics with A, the rule (Rev-V) can equivalently be replaced by the axiom
(Rev-A)  Alp = 9) = (~ = ~p).

If (¢ A —¢) is a theorem of L (i.e., the residual negation — of L is strict, as, e.g., in
G, II, or SBL; cf. Example 1.1.11), then (Rev-V) can be replaced by the following two
axioms and rule [30]:

(Rev-S1) =9 = ) = =~ (i = ~p)
(Rev-S2) —p — ~
(Rev-S3) From ¢ infer ~~.

In such logics, the connective A is definable by setting Ay = —~p. Thus if L has
strict residual negation, then L., includes L a; in particular, Go C G and IIo CII..
Furthermore, in this case the logic L., enjoys the same deduction theorem as L (cf.
Theorem 2.2.1)

A (form of) standard completeness of L. can be proved for a broad class of t-
norm logics satisfying certain criteria (for details see [62] or Chapter VIII), among them
the logics MTL.., BL., SBL., and G.. As in the case of L, the logic L., is strong
(resp., finite strong) standard complete if and only if L is strong (resp., finite strong)
standard complete.

35As in the case of Baaz Delta, the additional involutive negation first appeared in [142] in the context
of intuitionistic and Godel logics. Later is was studied in [56] in logics L extending SBL (in which the
connective A, needed for the rule (Rev-A) below, becomes definable in L~.). The next generalization [62]
required that the logic L extend MTL A ; the logic called MTL~ in [62] thus in fact denoted the logic
MTLA .. We are changing the terminology here to a more systematic one, since the A can be dispensed
with by using the rule (Rev-V); cf. Chapter II. Note also that this generalization also allows us to add an
additional involution ~ to a logic in which already the residual negation — is involutive, e.g., IMTL or L.
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The logics L. and I fail to be standard complete, i.e., complete w.r.t. the (single)
standard MV-algebra [0, 1]y, resp. II-algebra [0, 1];; expanded by the single standard
involution 1 — 2.3® Nevertheless, they do enjoy what is sometimes called the semi-
standard completeness [56], i.e., completeness w.r.t. the (single) standard MV or II-
algebra expanded by arbitrary involutive negation ~ on [0, 1]. Interestingly, both these
logics are also complete w.r.t. the class of all real-valued MV or II-algebras expanded
by the standard involutive negation 1 — x (this is a simple corollary of the fact that
all involutive negations on [0, 1] are isomorphic). Thus in ¥... and II.. we can, roughly
speaking, fix either the ‘standard’ t-norm or the ‘standard’ negation, but not both at once.
Clearly the logic of the standard MV -algebra is the axiomatic extension of t... by the
axiom ~¢ <> —. The case of I, is more involved and interesting; we will comment
on it further in Section 2.2.3. Axiomatic extensions of II.. were studied in detail in [40]
and [105].

An important feature of the logics L. is the definability of the so-called strong
disjunction, i.e., a connective @ dual to strong conjunction:

oY=~ (~vp &)
The standard semantics of @ on [0, 1] is that of a t-conorm:

DEFINITION 2.2.2 ([123]). A binary function S: [0,1]* — [0, 1] is called a triangular
conorm (a t-conorm for short) if it is commutative, associative, monotone, and 0 is its
neutral element.

T-norms and t-conorms are mutually dual via the standard involution 1 — x: every
t-norm 7" has the dual t-conorm Sr(z,y) =1 —T(1 —z,1 — y), and every t-conorm S
has the dual t-norm Ts(z,y) =1 — S(1 — 2,1 —y), with S;, = Sand T, = T.

EXAMPLE 2.2.3. The t-conorms dual to the three prominent continuous t-norms come
out as follows:

o The t-conorm dual to *y, is the bounded sum x @y, y = max{zx +y, 1}.
e The t-conorm dual to xy is the probabilistic sum x Sy = + y — xy.

e The t-conorm dual to x¢ is the maximum. Consequently, due to the standard
completeness of G., strong disjunction & coincides with lattice disjunction V
in G..

The presence of two disjunctions alongside two conjunctions in fuzzy logics is nat-
ural in view of their relation to substructural logics (see Section 3.1). Various concepts
can be expressed by means of strong disjunction and involution, including the so-called
S-implication, Ig(x,y) = ~x @ y, often encountered in applied fuzzy logic, or the Q-
implication, Ig(z,y) = ~x & (r & y), related to the implication used in quantum logic.
De Morgan laws with ~ hold not only for & and & (by the definition of @), but also for
Aand Vin MTL...

36 This failure is obvious in the case of ¥.., where standard completeness would entail that ~ coincides with
residual negation, which clearly is not the case; the failure in IT~ is shown in [56].
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2.2.3 Fuzzy logics with intermediate truth constants

Another way of enriching the expressive power of a fuzzy logic is expansion by
truth constants (i.e., nullary connectives) other than 0 and 1. If a new truth constant is
intended to have a fixed standard semantics r € [0, 1], it is denoted by T; in this case,
Convention 2.0.2 is strengthened so as to admit as standard only those algebras that
indeed interpret 7 as 7.

EXAMPLE 2.2.4. Lukasiewicz logic can easily be expanded by a truth constant with
the standard semantics of one half: since —,0.5 = 0.5, the axiom —0.5 <> 0.5 enforces
that the truth constant 0.5 be interpreted by 0.5 in the standard MV -algebra [0, 1]f,. In
the general semantics, the constant 0.5 has to be interpreted by the fixed point of —.
Only those MV-algebras that do have this fixed point can be expanded to models of L.
with 0.5. The expansion therefore excludes, i.a., the two-element (Boolean) MV -algebra
{0, 1}, and so ensures the many-valuedness of the logic.

An important logic is the expansion of Lukasiewicz logic by truth constants for all
rational numbers in [0, 1]. The idea of using truth constants denoting truth degrees in
the language of fuzzy logic goes back to Pavelka [154], who used truth constants for all
reals from [0, 1]. Later it turned out, though, that for the main results to work well it is
sufficient to introduce truth constants just for the rational numbers of [0, 1], which does
not force the language to be uncountable.

DEFINITION 2.2.5 ([83]). The Rational Pavelka logic, denoted by RPL, is the expan-
sion of Lukasiewicz logic by the truth constants T for each rational r € [0, 1] and the
‘bookkeeping axioms’ for each rational r, s € [0, 1]:

T&S<Tr*s
(F—3) < r=s.

The standard RPL-algebra is the expansion of the standard MV -algebra [0, 1]y, with
each T interpreted as .

The logic RPL is a conservative extension of Lukasiewicz logic and possesses the
same deduction theorem. It has the finite strong standard completeness. Moreover,
RPL enjoys the following property called Pavelka-style completeness for arbitrary sets
of formulae:

THEOREM 2.2.6 (Pavelka-style completeness of RPL, [83]). Let T be a set of formulae
(possibly infinite) and ¢ a formula of RPL. Let the provability degree of ¢ in the theory
T be the real number

lelr = sup{r | T FrpL T — ¢}
and the truth degree ||¢|| of @ in T be the infimum of truth degrees of ¢ in all standard
models of T. Then
el = llellr-
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The continuity of — is essential for Pavelka-style completeness; in expansions by
rational truth constants of t-norm logics other than Lukasiewicz, additional infinitary
rules have to be added in order for these logics to enjoy this style of completeness (see
[33, 56, 57] for details). It is, nevertheless, possible to consider just the usual style
of completeness for these logics; see e.g. [51, 59, 167] or Chapter VIII for a detailed
exposition of known results.

Finally, Pavelka-style logics are closely related to the so-called fuzzy logics with
evaluated syntax, which also incorporate the truth values of formulae directly into the
syntax of the logic. An evaluated formula is a pair (r, ), which expresses the fact that
the truth value of ¢ is at least . The rules of fuzzy logics with evaluated syntax operate
on evaluated formulae: e.g., the evaluated rule of modus ponens has the form:

From (r, ) and (s, ¢ — ) infer (r =g, s, ¢).

The logic with evaluated syntax based on Lukasiewicz logic, denoted by L., can be in-
terpreted in RPL, by translating an evaluated formula (r, ©) as the RPL-formula 7 — ¢.
The variant L.IIg, based on the logic LII introduced below has also been considered.
See [150] for a comprehensive treatment of these logics and further references.

2.2.4 Fuzzy logics with multiple sets of t-norm connectives

As stated above, one of the main reasons for expanding t-norm logics by additional
connectives is the fact that only a limited set of truth functions is in general available in
the logic of any particular left-continuous t-norm (cf. Section 4.2). Thus, for example,
Lukasiewicz logic only possesses connectives interpreted by additive arithmetical oper-
ations, while in product logic we are only in possession of ‘multiplicative’ connectives.
A solution to the need of possessing a fuller arithmetic power over truth degrees is to
combine connectives pertaining to several left-continuous t-norms in one logic.

Several logics of this kind, differing in expressive power, have been described in the
literature. Most of them add connectives pertaining to the product t-norm to Lukasiewicz
logic. Adding just the product conjunction to L. or L. o, with various strength of axioms,
leads to logics PL. and PL.’ (possibly with A\, see [112])*” and the propositional logic
of Takeuti-Titani [171]. These logics have remarkable logical properties: the logic PL
is not even weakly standard complete (see Convention 2.0.3) w.r.t. the standard MV-
algebra expanded by the connective &1y interpreted as *7. The logic PY/, which ex-
tends PL by the deduction rule —(¢ &1 ) F —p does have the finite strong standard
completeness, but the additional rule cannot be replaced by axioms. Consequently, P¥/
lacks the deduction theorem (cf. Theorem 1.2.10) and the class of PL/-algebras is not a
variety of algebras.

Despite these interesting properties we will not describe these logics in detail here
and will rather concentrate on the (much better behaving) logic LII, which arises from
adding both product conjunction and implication to Lukasiewicz logic, and its expansion
LII3 by the truth constant % (cf. Example 2.2.4).3® The logic LII3 is one of the expres-

37The algebras for these logics are studied under the name PMV -algebras, see, e.g., [44, 137, 141].
38 A more systematic denotation for the connective represented by the value % in the standard semantics

would be 1,

however, we shall follow the tradition of denoting the constant simply by % and the logic by LIT5.

with the expansion of EII by this connective denoted by LITL. For typographical reasons,
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sively strongest fuzzy logics studied in the literature; it includes many other t-norm
fuzzy logics and contains a broad class of definable connectives, while still possessing
good metamathematical properties. In this sense, the logic LII3 can be viewed as an
over-arching system for a large class of t-norm fuzzy logics.

DEFINITION 2.2.7 ([31, 52, 57]). The primitive connectives of the logic LII are the
truth constant 0, Eukasiewicz implication —y,, product implication —;, and product
conjunction &11. Furthermore we define the following derived connectives of LII:

“Lp=¢ =0
“ng=¢ —u 0
1=-30
Ay = —mpy

&Y =—w(p = nyY)
PDY=rp LY
po=p&y
pAY =&y (p =1 1)
VY =(p—=ry) =Ly

oY =D 2 Y) VY

and ¢ <. P = (p =4 ) A (Y =« ) for x € {1, 11, G}. The axioms and rules of the
logic LII are the following:

(L) the axioms and rules of L (with L-subscripted connectives)
(IT) the axioms and rules of II (with II-subscripted connectives)
(A-Nec) from ¢ infer Ay

(—wm a,b) Alp =L ) 2w (e =u ), Ale =nv) =i (¢ =1 )
(Distr) p & (Y6 x) (vl y) S (¢ & x).

The standard EIT-algebra [0, 1]g1 is the standard MV-algebra [0, 1]y, expanded by
the product t-norm and its residuum.

In the standard LIT-algebra [0, 1]¢11, the connectives subscripted by ., TI, or G have
the standard semantics of the corresponding t-norm logics. The connectives ¢ and S,
definable already in L, have the standard semantics of bounded addition and subtraction.

The tautologicity and the (finitary) consequence relation are defined along the usual
lines (cf. Section 1.1), with 1 as the only designated truth value. The LII-algebras,
i.e., general algebras for which the logic LII is sound (see Convention 2.0.1), can be
characterized as M'V-algebras expanded by the product adjoint pair (so that the appro-
priate reduct is a [I-algebra) and satisfying the distributivity axiom (Distr). The logic
LIT enjoys only the finite strong standard completeness theorem [57].

Due to the presence of the basic connectives of all the three logics L, I, and G as
well as A and an involutive negation —g,, the logic L.II contains the logics f. A, I, and
G~ (thus also ITa, G, and all weaker logics). It can moreover be shown to extend G,
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¥, and II (both with or without A) conservatively. Several alternative axiomatizations
of LII are known; for instance, it can be viewed as an axiomatic extension of II by the
axiom (BL1) for Lukasiewicz implication defined as ¢ —y, ¥ = ~(p & ~(¢ — ¥))
[30], or by the axiom (BL3) for Lukasiewicz conjunction defined as ¢ &g, ¢ = ¢ &
~(p — ~1p) [174], where the connectives of TI.. are taken for the product connectives
and —y, of LII.

The logic LII can further be expanded by the truth constant % (see footnote 38 on
p. 41) satisfying the axiom % g7 —\L%, with the standard semantics 0.5 (cf. Exam-
ple 2.2.4). This not only excludes the two-valued LII-algebra, in which the connectives
coincide with the classical bivalent ones, but also increases significantly the expressive
power of the logic, as all rational truth constants 7 are definable and their bookkeeping
axioms are provable in EII3 (cf. Definition 2.2.5); LII3 thus contains the logic RPL.
The metamathematical properties of LII mentioned in the previous paragraphs hold for
LII3 as well.

The logic LII3 thus contains connectives corresponding in standard semantics to
all basic arithmetical operations (namely, A, V, @, ©, &1, and —7) and comparison
relations (namely, A(p —¢ 1) and A <5 1)) as well as all rational numbers in
[0,1]. Consequently, a broad class of truth functions on [0, 1] is representable in the
standard semantics of LIT3 (see Section 4.2). The LII3-representable functions include
not only the truth functions of basic connectives of the three salient continuous t-norms
L, II, and G, but also of all their finite ordinal sums:

THEOREM 2.2.8 ([32]). Let * be a finite ordinal sum of *y, 1, and *g on rational
subintervals of [0,1] and =, be its residuum. Then there are connectives &, and —
definable in LI13 with the standard semantics of * and = .. Moreover, if © is provable
in the logic L, of *, then the formula p, obtained by replacing the connectives & and
— of L. by the defined connectives &, and —, of L1z is provable in L113.

The logic L.IT3 thus contains the logics of all finite ordinal sums of the basic continuous
t-norms, and also many particular left-continuous t-norms (e.g., the nilpotent minimum
of Example 2.1.1) and uninorms (see [130] for details).

The logics L.II and EIT5 (as well as the logics PY. and PY. mentioned in the be-
ginning of this subsection, either with or without A\) can be extended by rational truth
constants (which in EII5 are already definable) and appropriate infinitary rules to ob-
tain their Pavelka-style extensions (containing RPL and contained in the Pavelka-style
extension RLII of LII) that enjoy Pavelka-style completeness (cf. Theorem 2.2.6).

2.3 Discarding connectives

Various fragments of fuzzy logics in restricted languages have been studied. The
most important ones are certain natural expansions of the logic BCK (for which see,
e.g., [116, 152] or [67, §2.3.2]). An extensive study of these fragments is given in [38].
In this subsection we restrict ourselves to the axiomatic extensions of M'TL introduced in
the previous sections and to languages containing implication (as implication-free frag-
ments of our fuzzy logics are essentially classical, see [1]) and a subset of the connec-
tives {&, A, V,0}.
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Figure 6. Relative positions of prominent logics introduced in Section 2.2. Thin lines
indicate extensions in the same language (or just with addition of definable connectives),
while thick lines indicate expansions by connectives not definable in the weaker logic.

Let £ be a sublanguage of {—, &, A, V,0} and L an axiomatic extension of MTL.
The £L-fragment of L, denoted by L[ L, is the logic in the language £ such that T FL VK2
iff T' by, o, for every ' U {¢} € Fm,. Algebraically speaking, the £-reduct of an
algebra A is the algebra A[L with the same domain and operations from L; i.e., we
just ‘forget’ the operations not in £. An L-subreduct of A is just a subalgebra of the
L-reduct of A. For alogic L in language £ and a connective ¢ € L, the logic L[(£\{c})
is sometimes called the c-free fragment of L, and an analogous convention is used for
(sub)reducts of algebras.

2.3.1 Falsity-free fuzzy logics

Here we shall briefly discuss O-free fragments of fuzzy logics. L-algebras for O-free
t-norm fuzzy logics L fall within the class of algebras known as hoops. Hoops were
introduced in [21] and studied, e.g., in [17, 61]. The seminal paper on hoops in the
context of fuzzy logic is [55], followed by [2]; see these two papers (where all results
mentioned in this section could be found) or Chapter V for detailed references.
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DEFINITION 2.3.1. A structure H = (H,&,—,1) is a hoop if & is a commutative
operation on H with the unit 1 and — is a binary operation satisfying

r—x = 1
z&(x—=y) = y&y—2x)
z—=(y—z2) = (z&y)—z

forallz,y,z € H. Definex <y iffv —y = 1. A hoop is
e Prelinear® if (v — y) = 2 < ((y = ) — 2) — 2) forallz,y,z € H.
e Wajsberg if (t - y) > y=(y > ) > xforallz,y € H.
e Cancellative if x &y < 2’ & y implies v < z’ forall x,z’,y € H.

One can prove that, in each hoop, < is an ordering, & is associative and non-decreasing,
— is the residuum of &, and 1 is the largest element. Hoops can be characterized as
divisible integral commutative residuated lattices (see Definition 1.3.1).

Prelinear hoops are precisely the O-free (or falsity-free) subreducts (i.e., subalgebras
of O-free reducts) of BL-algebras, and Wajsberg hoops are falsity-free subreducts of
Wajsberg algebras.*’ Note that each cancellative hoop is Wajsberg and each Wajsberg
hoop is prelinear. On the other hand, each unbounded Wajsberg hoop is cancellative
and bounded Wajsberg hoops are O-free reducts of Wajsberg algebras. Linearly ordered
Wajsberg hoops play an important role in the description of the structure of BL-chains,
which can be decomposed into an ordinal sum of linearly ordered Wajsberg hoops in
a similar (though slightly different) manner as can continuous t-norms be decomposed
into an ordinal sum of the three basic continuous t-norms by Theorem 1.1.7(5); see
Chapter V for details.

The logic BLH of prelinear hoops, or basic hoop logic, has the axioms (BL1)-
(BL6) of the logic BL and the rule of modus ponens; thus only the last axiom (BL7)
which speaks of 0 is deleted (see Section 1.2). Similarly the logic MTLH is the logic
with the axioms of MTL except the last one (speaking of 0) and modus ponens. The
logic GH extends BLH by the axiom (G) of Godel logic. The logic LH of Wajsberg
hoops extends BLH by the axiom

(WH) (¢ =) =) = (¥ = ¢) = ¢).

The logic ITH extends BLH by the following three axioms:

(IH1) (g = &p) = (YA —9) = @)
(ITH2)  ((x—=v) =) & (x&p = x&V)&(v&p = v&Y) = (0 — 1)
(IH3) (Y —=x) = (¥ —=9) =) = (((p—=1) =) = (V= 9) = @)

3The term ‘basic hoop’ has been used in the literature instead [55]. However, that terminology is rather
confusing, as the condition is equivalent to the prelinearity condition from the definition of BL- and MTL-
algebras, while the divisibility condition (which needs to be added to MTL-algebras to obtain BL-algebras—
the algebras for basic logic) is in fact satisfied in all hoops.

40Recall that Wajsberg algebras are termwise equivalent to M'V-algebras, see footnote 19 on p. 23.
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The logic of cancellative hoops, or cancellative hoop logic CHL, extends the logic BLH
by the following axiom:

(CH) (¢ = o&y) =

The logic CHL is not a O-free fragment of any logic that proves 0 — ¢, since expanding
CHL by 0 and the axiom 0 — ¢ makes the resulting logic, BL + (CH), inconsistent (as
easily shown by instantiating (CH) by 0 for ¢ and ). Product logic is not an extension
of CHL, as (CH) is not valid in IT (one cannot cancel by 0); however, there is the
following connection between CHL and II:

THEOREM 2.3.2. Let all propositional variables occurring in p be among p1, . . . , Pn.
Then CHL proves ¢ iff 11 proves —=—p1 A -+ A =—p, — .

Moreover it can be shown that:
e The logic BLH is the 0-free fragment of both BL and SBL.

e The logic MTLH is the 0-free fragment of MTL, IMTL, and SMTL (introduced
below in Section 2.4.1).

e The logic LH (or GH or IIH, resp.) is the O-free fragment of L. (or G or II, resp.).

The first two claims are perhaps surprising, as we have different logics which share the
same 0-free fragment; this shows that these logics really differ only in the properties of
negation.

The algebras for the logics MTLH, GH, and IIH are respectively called prelinear
semihoops, Gédel hoops, and product hoops, and they are O-free subreducts of the cor-
responding MTL-, G-, and II-algebras. Standard (semi-)hoops are just all real-valued
(semi-)hoops.*! The definition of standard hoops for stronger hoop logics is more com-
plex:

o The standard cancellative hoop is the positive part of the standard product algebra
(i.e., the half-open interval (0, 1] with the standard product operations).

o The standard Godel, Wajsberg, and product hoop is just the O-free reduct of
[0,1]g, [0,1]g, and [0, 1]y, respectively.

The logics MTLH and GH enjoy strong standard completeness, whereas the logic BLH,
LH, ITH, and CHL only enjoy finite strong standard completeness.

What about deleting both the truth constant for falsity and the commutativity of
conjunction from a t-norm fuzzy logic? Algebras of this kind have been studied under
the name pseudohoops. A logic generalizing both the logic psMTL and the hoop logic
MTLH was introduced under the name flea logic. See [70] for pseudohoops and [91]
for fleas.

41Recall that in Convention 2.0.1 we allowed the real-unit interval to be half-open.
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2.3.2 Discarding other connectives

In this subsection we deal with the remaining fragments of prominent axiomatic ex-
tensions of MTL. All results of this subsection appear in [38], where further references
to the original sources of some particular results can be found. Our first goal is to present
explicit axiomatic systems for these fragments. In order to be able to formulate many
such results at once we introduce the following notion (particularized to our setting).

DEFINITION 2.3.3. Let L be an axiomatic extension of MTL and let A be an axiomatic
system for L. We say that A is strongly separable if for each propositional language
{=} C L C{=,&,A,V,0}, the L-fragment of L is axiomatized by the axioms and
rules from A that contain the connectives from L only.

The axiomatic system MTLg, with modus ponens as the only deduction rule and
axioms listed below, is a strongly separable axiomatic system of MTL:*

M
MTLg4b) CAY =
MTLg4c) CANY =P Ap

MTLg4Va) (p—=x) = (= x) = (pVY—x))
MTLg4Vb) o= eV
MTLg4Ve) eV =PV

(MTL,1) (=)= (¥ = x) = (¢ = X))
(MTL,2) o= (=)

(MTL,3) (o= W —=x) = @ —=(¢—=x)
(MTL,6) ((p—=1) = x) = (¥ =) = x) = X)
(MTLs5a) (o= (¥ —=x) = (P&t — x)
(MTLg5b) (P&t = x) = (¢ — (¥ = X))
(MTL,7) 0=

(MTLg4a) x—=0) = (x=v) = x—=eAy)
(

(

(

(

(

To obtain strongly separable axiomatic systems for prominent axiomatic extensions
of MTL, we need ‘implicational’ forms of their characteristic axioms:

(Div) ((p=v) = (p—=x) = (¥ —=¢) = ¥ —X) divisibility
(Waj) (g =)= ¢) = (Y= ¢) =) Wajsberg axiom
(Contr) (p—=(p =)= (p =) contraction
(SBL) (o = ~p) = —p. strictness

42The numbering of axioms follows the numbers of corresponding axioms in the axiomatic systems of BL
and MTL introduced in Section 1.2 and 2.1; the axioms are grouped according to the connectives involved.
Note that the first three axioms with modus ponens constitute the axiomatic system of the well-known purely
implicational logic BCK (see, e.g., [67, §2.3.2]). Its extension by the axiom (MTLg6) is the implicational
fragment of MTL, called ‘fuzzy BCK’, or FBCK, in [38].
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’ Logic \ Axioms added to MTLg

BL | (Div)
SBL | (Div), (SBL)
L (Div), (Waj)
G (Div), (Contr)
T | (Div), (SBL), (ITH1)—(ITH3)

Table 1. Strongly separable axiomatic systems for some prominent extensions of MTL

| Fragment: [ > [ >, A [ 25V AV ] =& | &V [ =& A |
MTL \Y, A V
BL, SBL, 11 v AV A v
G &,V & AV A v
i VA Y, AV A v

Table 2. Definability of connectives in fragments without 0

Also recall the axioms (ITH1)—(ITH3) of product hoop logic from Section 2.3.1. We list
strongly separable axiomatic systems for prominent extensions of M'TL in Table 1.

We define standard L[ £-algebras as just the £-reducts of standard L-algebras. Stan-
dard completeness theorems are then obviously inherited by the fragments: if L enjoys
strong (resp., finite strong) standard completeness, then also L[L enjoys strong (resp.,
finite strong) standard completeness. Thus, for instance, FBCK = MTL [ {—} is the
logic of the residua of left-continuous t-norms.

Next let us present some results on the definability of connectives in prominent
fragments. We say that a connective c is definable in L[ L if there is an L-formula ¢
such that ¢(p1,...,pn) < ©(p1,...,Pm) is a theorem of L. Note that the defining
formula can have a different number of variables, as witnessed, e.g., by the definability
of 1 in the {— }-fragment of MTL: indeed 1 <+ (p — p) is a theorem of MTL. Let us
list some known positive results:

e Aisdefinable in MTL [ {—, &, V} by (0 & (¢ = ¥)) V (¥ & (¥ — ¢))
e Visdefinable in MTL [ {—, A} by (¢ = ) = ) A (( = ») = @)
e Aisdefinable in BL [ {—, &} by 0 & (¢ — 1))

e VisdefinableinL [ {—} by (¢ = ¢) = ¢

e &isdefinable in L [ {—,0} by =(¢ — =)

& is definable in G [ {—, A} by p A 1.

Of course a connective definable in a logic in a certain language is definable in all
stronger logics and/or bigger languages. The definability of connectives in fragments
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[ Fragment: 0, | — [ A V] =2 AV ] & 2. &V ][ =& A ]
MTL \Y, A \Y,
BL, SBL, 11 v Y A v
G &,V & AV A v
7 T AV &V [ LA & AV A v

Table 3. Definability of connectives in fragments with 0

of prominent extensions of MTL is summarized in Tables 2 and 3, which list all of the
connectives &, A, V, 0 that are definable in each fragment (omitting those which are al-
ready present in the fragment’s language). The constant 0 is not definable in any of the
fragments listed (the empty column for the language —, &, A, V is therefore omitted in
Table 2).

2.4 Adding axioms or rules

Another way of varying a fuzzy logic is by strengthening it by additional axioms or
rules, thereby narrowing down the class of its algebraic models. In some cases, adding
an axiom or rule leads to a previously introduced logic (e.g., MTL plus the axiom of
idempotence of conjunction yields the same logic as BL plus the same axiom, namely
Godel logic). In other cases, however, a new fuzzy logic is obtained (e.g., MTL plus the
axiom of double negation yields the logic IMTL, which is weaker than an analogous
extension of BL, i.e., Lukasiewicz logic).

We shall discuss two main kinds of such axiomatic strengthening, namely imposing
some restrictions on the behavior of logical connectives (esp. negation or conjunction)
and limiting the set of truth values to finite cardinalities. We shall introduce main fuzzy
logics arising by these kinds of strengthening, and briefly discuss their properties and
mutual relationships.

2.4.1 Special properties of negation

Axioms or rules added to a given fuzzy logic can enforce special properties of resid-
ual negation. Prominent extensions of this kind are the logics IMTL, IUL, SMTL,
and SBL, which enforce either involutiveness or strictness (see Example 1.1.11) of resid-
ual negation.

The involutiveness of residual negation can be ensured in any extension of the uni-
norm logic by adding the axiom of double negation

(=) e

The converse implication o — ——p is provable in all extensions of UL (in fact, in all
logics of pointed commutative residuated lattices, as ¢ — ((¢ — 0) — 0) follows by
modus ponens from residuation). Adding this axiom to BL yields Lukasiewicz logic
(see Section 1.2). The extensions by (——) of MTL and UL are called, respectively,
IMTL [53] and TUL [133] (where the ‘I’ stands for ‘involutive’).*> The logic IMTL en-

43The logic IMTL and its algebras were implicitly studied already in [23] (called there m-z-pregroups).
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joys strong standard completeness, i.e., completeness w.r.t. all standard MTL-algebras
[0, 1] with involutive residual negation [50]; the standard completeness of IUL is an
open problem.

Like in &, and the logics L., a strong disjunction & is definable in IMTL, by @y =
—(—p & —p). Notice, however, that only a limited set of t-conorms is obtained by this
definition as the standard semantics of @ in IMTL, since the t-norm in standard IMTL-
algebras has to be such as to yield involutive residual negation.

The logic IMTL shares many features with Lukasiewicz logic, which is its exten-
sion by the divisibility axiom (BL4). Like in Lukasiewicz logic (see Theorem 1.2.8),
the implication and strong conjunction are mutually interdefinable and the contraposi-
tion law holds in IMTL. It can be shown that IMTL is equivalently axiomatized by
adding any of the following IMTL-provable formulae to MTL: (Tg1), (T13), (Tr4),
(T4g5), or (Tr6) of Theorem 1.2.8. Note, however, that the Wajsberg axiom (T42) is
not provable in IMTL, and adding it to MTL in fact yields Lukasiewicz logic.

The strictness of residual negation (i.e., the fact that — is a pseudocomplement) can
be enforced in any extension of MTL by adding the axiom

) ~ler-p).

Analogously to the logic SBL = BL + (S) introduced in Section 1, we can define
the logic SMTL as the extension of MTL by (S). Like SBL (which extends SMTL by
the divisibility axiom (BL4)), also SMTL can equivalently be axiomatized by any of the
formulae (Tspr.1), (Tspr2), or (Tspr3) of Theorem 1.2.6. These theorems restrict
the behavior of negation and conjunction in SMTL-chains. In particular, the theorem
(TspLl), —p V == or the weak law of excluded middle, expresses the bivalence of
negation—i.e., the fact that —¢ is in each SMTL-chain evaluated either to 0 or 1. The
theorem (Tspr.3), ~(p & ¥) — —(p A 1), entails that SMTL-chains are exactly those
MTL-chains that have no zero divisors (i.e., non-zero elements x, i such that x xy = 0).

Adding the axiom (S) to IMTL or the axiom (——) to SMTL, already makes the
logic classical. Recall, however, from Section 2.2.2 that an additional involutive nega-
tion ~ can be naturally added to any logic containing SMTL, by the axioms (——),
(Rev-S1), (Rev-S2), and (Rev-S3), and that A is definable in SMTL.. by Ay = —~p.
Strict negation —g is, on the other hand, definable already in MTL A by —gp = A-p.
Both strict and involutive negations are also present in logics containing SMTL., or
IMTLA (incl., e.g., L.a or LII). Thus, although it is not possible to have a fuzzy nega-
tion that is both involutive and strict, one can have both negations in richer fuzzy logics.

2.4.2 Special properties of conjunction

Various properties of conjunction & correspond to special axioms added to usual
systems of fuzzy logics. For instance, the idempotence of & corresponds to the validity
of the axiom

(C) perp&e

in any extension of the uninorm logic UL. Adding the axiom (C) to MTL (or any logic
between MTL and G, e.g., BL, SBL, or SMTL) yields Godel logic; adding (C) to
IMTL makes the logic classical. Adding the axiom to the uninorm logic UL yields the



Chapter I: Introduction to Mathematical Fuzzy Logic 51

logic called UML, or uninorm mingle logic. UML is the logic of idempotent residuated
uninorms, characterized by Theorem 2.1.4. Extending the logic UML further by the
axioms —=—0 — 0 and 0 «+> 1 yields the logic TUML of the single idempotent uninorm
xu introduced in Theorem 2.1.4; in both cases, strong standard completeness of the
logic can be proved [133]. Notice that while (C) entails the coincidence of & and A in
all t-norm logics, this is not in general so in uninorm logics, as idempotent residuated
uninorms need not coincide with the minimum.

The axiom (C) can be called the axiom of contraction, as it expresses the fact that
any conjunction ¢ & - - - & ¢ of the same conjuncts ¢ can be contracted to a single ¢.*
Writing the axiom (C) as p? ¢ ¢ suggests a natural generalization

(Cn) (pn o (,0"_1

for any n > 2, called n-contraction.* Semantically, the validity of (C,,) is equivalent
to the condition that 2! is an idempotent element of & for each . For any axiomatic
extension L of MTL we define the logic C,,L as L + (C,,). Clearly, (C,,) implies (C,,)
in MTL for all m > n; thus C,, L. C C,,L if m > n. In the logic C,,L, a global bound
can obviously be given in the deduction theorem:

DyobFont iff Thep "t — .

Since CoMTL is Godel logic, the logics C,,MTL are intermediary between MTL and G.
It can be proved that C,,, ;MTL C C,MTL and that MTL = ﬂn C,MTL, and simi-
larly for C,,IMTL, C,,BL, and C,,L.. For each n, the logics C,, MTL and C,,IMTL are
strong standard complete [27]. This is not the case with C,,BL and C,, L, though, as the
only standard C,,BL-chain is [0, 1] and the only C,,E-chains are MV-chains with less
than n elements.

Let us say that an MTL-algebra A is n-contractive if (C,,) is valid in A. It can be
observed that, for instance, every finite M'TL-algebra is n-contractive for some n. All
weak nilpotent minimum t-algebras (see Example 2.1.1) are 3-contractive and standard
Godel algebra is clearly a weak nilpotent minimum t-algebra. Therefore the logic WNM
of weak nilpotent minima, introduced in [53], is intermediary between C3MTL and
CoMTL = G; it can be easily shown that both inclusions are proper. The logic WNM
can be axiomatized by adding the axiom®*®

(WNM) (&) V(pAY = &)

to MTL. The strong standard completeness of WNM can be proved [53].

#1In substructural logics, usually (e.g., in [67]) just the implication ¢ — o & ¢ is called the axiom of
contraction (as it corresponds to the structural rule of contraction, cf. Section 3.1), while the converse impli-
cation o & ¢ —  is called the axiom of expansion. Nevertheless, since the latter is a theorem of MTL, the
distinction does not matter in M'TL or stronger logics.

45 Again, in substructural logics the term n-contraction is used just for the implication o™t — ™ and the
property (Cy,) is (e.g., in [67]) called n-potence. In the context of Lukasiewicz logic, n-contraction has been
studied in [158]; the systematic study of n-contraction in mathematical fuzzy logic has originated with [27].

46QObserve that its first disjunct represents the nilpotent part and the second disjunct the idempotent part of
a weak nilpotent minimum t-norm.
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The logic NM of nilpotent minima (i.e., weak nilpotent minima given by an invo-
lutive negation, see Example 2.1.1), introduced in [53], can be shown to extend WNM
by the axiom (——), =@ — ¢; thus NM is an extension (also proper) of CsIMTL. All
NM-algebras on the real unit interval [0, 1] are mutually isomorphic. Because of this
fact, only the t-algebra [0, 1]nn of the standard nilpotent minimum t-norm #xy; (given
by the standard involution 1 — x) is called the standard NM-algebra.*’ The strong stan-
dard completeness theorem can be proved for the logic NM [53].

The logic NM expanded by A is in a close relationship to Godel logic with involu-
tion, as the standard connectives of NM A and G, turn out to be definable in each other
by mutually inverse translations. Thus, due to the standard completeness of both logics,
NM, and G.. have the same logical strength and can be considered notational variants
of each other.

Another property of & that can be axiomatically enforced in extensions of MTL
is m-nilpotence, i.e., the identity x” = 0 for each x # 1. For any given n > 2,
the (n — 1)-nilpotence of & is ensured by the axiom

(Sn) "IV

For any extension L of MTL, the logic L + (S,,) is denoted by S,,L. These logics
were studied in [113]; the axioms (S,,) were studied under the name n-excluded middle
in [124] in the context of substructural logics, and first brought to mathematical fuzzy
logic in [73]). The name (unrelated to SBL and SMTL) and the numbering of the
axioms (S,,) is motivated by the relation (described below) between the logics S, MTL
and C,, MTL. Clearly S,,L. C S,,L form > n, as MTL proves (S,,) — (S;,) if n < m.
The axiom (S3) is the law of excluded middle, thus all logics SoL coincide with classical
logic.

Recall that an algebra A is simple if it has only trivial congruences (i.e., its only
congruences are A2 and the identity on A), and semisimple if it is a subdirect product
of simple algebras. S,,MTL-algebras can be characterized as n-contractive semisimple
MTL-algebras. Consequently, S,,L extends C,, L for each n; it can be shown that for
L = MTL the inclusions are strict for any n > 3, but on the other hand, S,¥. = C,L
for all n.

It can be observed that S3MTL-chains are just those in which & is the so-called
drastic product, i.e., x & y = 0 for all z,y < 1. Since the drastic product on [0, 1] is not
left-continuous, there are no standard S3MTL-algebras. Generally it can be shown that
every simple n-contractive MTL-chain must have a co-atom (i.e., the largest element
smaller than 1); thus there are no standard S,, MTL-algebras for any n. Consequently,
none of the logics S,, MTL (nor S,,IMTL) can enjoy any kind of standard completeness.

Earlier we have seen that the logic IMTL arises by adding to MTL the characteristic
axiom (——) of Lukasiewicz logic over BL (cf. Section 1.2), while extending MTL by
the characteristic axiom (G) = (Cz) of Gddel logic over BL already yields Gédel logic
itself. We can now ask what logic arises by adding the characteristic axiom of product
logic over BL,

I V(¥ =e&y) =),

41Cf. the similarly motivated departure from Convention 2.0.2 in the cases of Fukasiewicz and product
logic.
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to MTL. The resulting logic IMTL = MTL + (II) is the logic of cancellative MTL-
algebras (i.e., those validating cancellation by non-zero elements: if z # 0 and z *
z = y* z, then ¢ = y, for all z, y, and z), just like II = BL + (II) is the logic of
cancellative BL-algebras. This logic was introduced in [86]. Also just like over BL (see
Section 1.2), the axiom (IT) can equivalently be replaced by the two axioms (S) and
(ITg); thus IIMTL = MTL + (S) + (Ilg), too, and the logic is intermediary between
SMTL and II (both inclusions are strict). The logic IIMTL is finitely strong standard
complete [108] (though not strong standard complete [110]).

The logic SBL contains both G and II, since it is based on a common property of
*@g and 77, namely the strictness of their residual negation (see Example 1.1.11), but it
turns out to be strictly weaker that the intersection of these two logics. Similarly there is
a common property of xg, and xpy, related to the fact that xg, is isomorphic to truncated g
(see Theorem 1.1.7(4)), namely their cancellativity restricted to elements with non-zero
conjunction. This property is called weak cancellativity:

DEFINITION 2.4.1. An MTL-chain A = (L, *,=,A,V, 0, 1) is weakly cancellative if
x*xz=1yx*z#0impliesx =y forall x,y,z € A.

Weak cancellativity is in MTL characterized by the following axiom:

(WC)  ~(p&d) V([ = &) =)

For any extension of MTL, the logic L. + (WC) is denoted by WCL; the logics WCBL
and WCMTL were introduced in [140]. The following facts about the logics WCL can
be shown [140, 145]:

e The logic WCBL is exactly the intersection of ¥, and II.

e S, L = C,L for any axiomatic extension L. of WCMTL.

e Adding (WC) to IMTL already yields f.ukasiewicz logic.

e The logics WCBL and WCMTL enjoy finite strong standard completeness.

Note that the first two claims entail the already mentioned fact that S,,. = C,, 1.

2.4.3 Finitely-valued fuzzy logics

Let the logic L be an axiomatic extension of MTL and n > 1 a natural number. We
define the logic L<,, as the extension of L by the axiom

n

<n) \(picr = @)

i=1

It can be easily demonstrated that an L-chain A is an L<,,-chain if and only if A has at
most n elements: just observe that the axiom (<n) is not satisfied by an A-evaluation e
iff e(po) > e(p1) > -+ > e(py), thus it holds for all evaluations and all formulae ¢;
iff there are at most n values in A.
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Figure 7. Relative positions of prominent logics introduced in Section 2.4

Clearly L<,, cannot enjoy standard completeness, but it satisfies a bunch of other
interesting properties [35]:

e Strong finiteness: There is a finite set K of finite algebras (namely, the set of all
L<,-chains on subsets of {1,...,n}) such that {F_ } = Fk.

e Tabularity: There is a finite L<,,-algebra F such that {F1_ } = FF.

e Finite embeddability property: Every finite subset of any L, -algebra can be
partially embedded into a finite L<,,-algebra.

Note that L<,, extends C,,L (see Section 2.4.2). Let us now briefly discuss the situation
in particular logics. First let us note that the only finite IIMTL-chains (so a fortiori
the only finite product chains) are two-element Boolean algebras. Consequently, the
only finite [IMTL-algebras are finite Boolean algebras, and so there are no non-trivial
(i.e., non-classical) finitely-valued IIMTL (nor product) logics. Actually even more can
be shown: the only proper extensions (not necessarily axiomatic!) of product logic are
either classical or inconsistent.

Further let us observe that for each n there is only one (up to isomorphism) n-valued
MYV and G-chain. Let t,,, and G,, denote the corresponding logics semantically induced
by these algebras.

First let us describe the situation in finitely-valued Godel logics [76]:

¢ G, =G<cr,andG=", G,
e G, CG,iff m<n

e For each proper axiomatic extension L of G there is n such that L = G,,.
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Figure 8. Relative positions of further prominent logics of Section 2.4

The situation in finitely-valued Lukasiewicz logics is more complex. While it is
still true that ¥, = ﬂzo:l t.,, it is not true that ¥.,, C L, iff m < n. For instance,
(2p)* « 4(p?) and —((p « —p)?3) are tautologies of t.4, though not of ¥.3 (where
p" = &, p as usual and np = @._, p). Therefore clearly L,, # L<,, forn > 4,
although for n < 4 they coincide. The (non-linear) ordering by strength of the logics

L., is described by the following theorem which in [129] is attributed to Lindenbaum:
THEOREM 2.4.2. t.,, C L, iff n — 1 divides m — 1, for any m,n > 2.

Unlike in Godel logic, there are proper axiomatic extensions of Lukasiewicz logic that
differ from =k for any set K of finite M'V-chains (e.g., the logic of the so-called Chang
MV-algebra, see Chapter VI).

3 Families of fuzzy logics in the logical landscape

In previous sections we introduced numerous prominent members of the broad fam-
ily of logical systems studied in mathematical fuzzy logic, their axiomatic systems, and
their general, linear, and standard algebraic semantics. The multitude of fuzzy logics
calls for a general unifying (meta)theory. Indeed, many metamathematical properties,
such as general and linear completeness theorems or the linear subdirect representation
theorem, can be proved generally for large classes of logics delimited by simple (e.g.,
syntactic) criteria.

In this section we shall study the position of fuzzy logics in the logical landscape—
i.e., their relationship to well-known broader families of propositional logics (such as
substructural or algebraizable) as well as to particular prominent non-classical logics.
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We shall briefly survey characteristic properties of fuzzy logics, both those shared with
the mentioned broad classes of logics and those particular to fuzzy logic.

In the first subsection we show the position of fuzzy logics among substructural
logics. Then, in Section 3.2, we shall describe two important classes of fuzzy logics,
namely the core and A-core fuzzy logics. These classes will play an important role
in the remaining sections of this chapter as well as in some subsequent chapters. Fi-
nally, in Section 3.3, we shall recall some basic notions of Abstract Algebraic Logic,
particularized for our needs (this theory is covered in much more detail in Chapter II).

3.1 Fuzzy logics among substructural logics

In this subsection we observe that fuzzy logics introduced in Section 2.1 can be
seen as the logics of (suitable classes of) FL-algebras (or pointed residuated lattices, see
Definitions 1.3.1, 2.1.5, and 2.1.6).

(Pointed) residuated lattices form the algebraic semantics for so-called (intuitionis-
tic) substructural logics. Substructural logics provide a unifying framework for several
kinds of logics, such as relevance logics, variants of Girard’s linear logic, the Lambek
calculus, the logic BCK, etc. In a specific sense (suggested by Ono in [151]), substruc-
tural logics can be delimited as the logics of varieties of (pointed) residuated lattices.
As we have seen, many fuzzy logics fall within this delimitation, and can thus be seen
as a special kind of substructural logics. Substructural logics thus form a neighborhood
of fuzzy logics in the landscape of non-classical logics. In this section we shall briefly
introduce the class of (intuitionistic) substructural logics, indicate the position of fuzzy
logics within this family, and describe the relationship of fuzzy logics to other sub-
structural logics. For details on substructural logics, including the relationship of some
prominent fuzzy logics to this class, see esp. [54, 67, 151, 161].

The logic of all (pointed) residuated lattices (with elements x > 1 taken as desig-
nated in the definition of logical consequence) is called the full Lambek calculus FL.
The name comes from the fact that its conjunction—implication fragment is the well-
known Lambek calculus (an important tool in the study of categorial grammars). The
full Lambek calculus is an expansion of the Lambek calculus to the ‘full’ language, con-
taining also the lattice connectives, the defined connectives of negation and equivalence,
and the propositional constants for truth and falsity.

Proof-theoretically, the logic F'L arises by removing the structural rules of exchange,
weakening, and contraction from the Gentzen-style calculus LJ of intuitionistic logic.*®
In the absence of structural rules, certain equally well motivated variants of the opera-
tional rules for propositional connectives become non-equivalent, and thus define differ-
ent connectives. This explains why in substructural logics (and consequently in fuzzy
logics as their special kind) propositional connectives known from intuitionistic or clas-
sical logic naturally split into pairs of different connectives (that have to be included in

48Recall that Gentzen-style sequent calculi have two kinds of rules: operational rules for introduction
of propositional connectives, and structural rules for manipulation with whole formulae in sequents. The
Gentzen-style calculi LJ and LK for intuitionistic resp. classical logic have (besides the indispensable rule
introducing the axiom sequents and the eliminable rule of cut) exactly the structural rules of exchange, weak-
ening, and contraction; the logic FL is obtained by removing all these three structural rules from LJ. For
more details on Gentzen-style calculi LJ and LK, their structural rules, and substructural logics in general,
see, e.g., [67, 151, 153, 161].
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the general signature of a pointed residuated lattice). In particular, implication and nega-
tion split into two variants (left and right) in the absence of exchange (cf. the connectives
/ and \, in the non-commutative fuzzy logics of Section 2.1.3, and the corresponding
negations 0 / ¢ and ¢\, 0); the constants for truth and falsity split each into two in the ab-
sence of weakening (cf. the distinction between 1,0 and T, L in uninorm fuzzy logics,
Section 2.1.2); and conjunction splits into two in the absence of contraction or weak-
ening (cf. the presence of lattice conjunction A and residuated conjunction & in t-norm
fuzzy logics), as does disjunction (V vs. @) in contraction-free logics with involutive
negation.** The full propositional language of the logics of residuated lattices (includ-
ing fuzzy logics) is therefore assumed to contain all of these connectives.”® Under the
presence of the appropriate structural rules (or the equivalent axioms), these connectives
collapse into the single variants known from classical (or intuitionistic) logic.

The basic substructural logics are obtained by extending FL by a subset of the fol-
lowing Hilbert-style axioms, which correspond to the Gentzen-style structural rules of
exchange, weakening, and contraction of LJ (so the resulting logics arise by removing
just some of the three structural rules from LJ), and the law of double negation (which
corresponds to starting from the calculus LK for classical logic instead of LJ for intu-
itionistic logic):

(E) p&p\ &y

(W) P\ A0\ )

(€) e\ p&yp

(=) ((0/e) W (e\0)A(((e\0)\0)\ o).

The algebraic properties of pointed residuated lattices corresponding to these axioms
are, respectively: commutativity, boundedness and integrality,’! square-increasingness
(also know as superidempotence), and the ‘classicality’ of residual negation®? (see Def-
initions 1.3.1, 2.1.5, and 2.1.6).

49The rules for disjunction affected by the absence of contraction operate with two or more formulae on the
right-hand side of the sequent, which is forbidden in the calculus LJ. The split of disjunction thus does not
occur in contraction-free logics based on LJ, and only occurs in contraction-free logics based on the calculus
LK for classical logic (or equivalently, if the double negation law is added to LJ). The corresponding rules
for A, on the other hand, operate on the left-hand side, upon which no restriction is imposed in LJ; the split of
conjunction thus occurs in all contraction-free logics of residuated lattices, including all t-norm and uninorm
fuzzy logics (except for Godel logic, which is contractive).

501n the context of substructural logics, the residual conjunction & and its dual disjunction @ are often called
fusion and fission, respectively, or alternatively, multiplicative, group, parallel, or intensional conjunction
and disjunction. The connectives A and V are often called additive, lattice, comparative, or extensional
conjunction and disjunction. The names ‘strong’ and ‘weak’ conjunction or disjunction, common in t-norm
fuzzy logics, are not suitable in the absence of weakening, since & is not generally stronger than A without
weakening.

SIThe first conjunct of (W) corresponds algebraically to the integrality of a pointed residuated lattice and
proof-theoretically to the rule of weakening on the left-hand side of sequents; similarly the second corresponds
to boundedness and the weakening on the right (restricted to a single formula in LJ). Often (see, e.g., [68]),
the conjuncts are discussed separately and denoted by ‘i” and ‘o’ in the subscripts indicating extensions of FL.

52The first conjunct of (——) corresponds algebraically to the cyclicity of residual negation (ie., 0 / x =
2 \ 0), and the second to its involutiveness (which in general needs to be formulated as 0 / (z \ 0) = =
and (0 / z) \ 0 = z, but in the presence of the first condition can be formulated in our way). Note that in
commutative substructural logics, (——) can be replaced by ((¢ — 0) — 0) — ¢.
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Figure 9. Basic intuitionistic and classical substructural logics

The logic CFL = FL +(——) is called the classical full Lambek calculus. The name
refers to the fact that proof-theoretically it can be defined by removing the three struc-
tural rules from the calculus LK of classical logic. Extending FL. or CFL by a subset of
the axioms {(E), (W), (C)} yields the basic (intuitionistic or classical, resp.) substruc-
tural logics, systematically denoted by subscripting FL resp. CFL by corresponding
lowercase letters. The logic FLy, is also known as Hohle’s monoidal logic [107]; CFL
as Girard’s (multiplicative—additive) linear logic [72] (without exponentials and additive
constants), LL; CFLe,, as affine linear logic [173], or Grishin’s logic [80]; FLe(w) as
intuitionistic (affine) linear logic I(A)LL; and CFL,. as Meyer’s relevance logic RNP
(or “R minus distribution”) or LR (for “lattice R”) [48]. Since (E) is provable in FL,
the logics FL.w = FLecyw coincide with intuitionistic logic Int and CFL.y, = CFLegcy
with classical logic Bool; all other logics FLy and CFLy are mutually different. The
relationships between the 14 basic substructural logics are depicted in Figure 9.

Among the logics of residuated lattices, fuzzy logics introduced in Section 2 are
distinguished by the property of semilinearity, i.e., completeness w.r.t. a class of linearly
ordered residuated lattices. The main scope of mathematical fuzzy logic thus can be
delimited as the study of intuitionistic substructural semilinear logics, or the logics of
linearly ordered residuated lattices.>

Indeed, many important fuzzy logics arise as semilinear extensions of basic sub-
structural logics, i.e., as the logics of linearly ordered FL- or CFL-algebras [54, 133].
For instance, the logic MTL turns out to be the logic of linear FL-algebras; UL of
linear FL,-algebras; psMTL" of linear FL,,-algebras; IMTL of linear CFL,,,-algebras;

53The name deductive fuzzy logics was proposed for this class of logics in [10], based on Ono’s formulation
in [151] suggesting that residuation gives logics a ‘deductive face’. The connection of Lukasiewicz logic
to other prominent substructural logics has first been pointed out in [23], and fuzzy logics have been firmly
established as members of the family of substructural logics in [54, 153]. A formal delimitation of the class of
fuzzy logics by the semilinearity property was proposed and advocated in [14]; cf. Section 3.3.
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and G of linear FL,,-algebras (i.e., linear Heyting algebras). The restriction of the al-
gebraic semantics to linear algebras will systematically be denoted by the superscript £.
We thus have the following identities:

FL!, = psMTL*

FL! =UL CFL! =1UL
FL!. = UML

FL!, = MTL CFLf, = IMTL
FL., =C CFL{, = Bool.

Other important fuzzy logics arise as extensions of these ‘fundamental’ fuzzy logics by
special axioms or rules (e.g., SMTL = FL., + (S), TUML = CFLc. + (0 <> 1), etc.),
expansions by additional connectives with appropriate axioms and rules (e.g., .11, log-
ics with A or ~ etc.), fragments discarding some connectives (e.g., hoop fuzzy logics),
logics defined by a combination of these methods, and similar modifications. More-
over, several fuzzy logics that have not yet been thoroughly investigated are obtained
in this way, e.g., FL or FLﬁ. Also the well-known substructural logic RM (relevance
with mingle) is itself semilinear (i.e., complete w.r.t. linearly ordered algebras), and so
belongs to the family of fuzzy logics in this sense.

Most prototypical fuzzy logics (including all t-norm fuzzy logics) are semilinear ex-
tensions of FL.y,. The position of these fuzzy logics among other substructural logics is
indicated in Figure 10. For axiomatic extensions of FL,,,, semilinearity is equivalent to
the axiom (p — ¥)V (¥ — ). In axiomatic extensions of FL. (which include uninorm
logics), semilinearity is equivalent to ((¢ — ¥) A1) V ((» — ¢) A 1). More details on
the relationship between fuzzy and substructural logics can be found in Section 4.3 and
Chapters II, III, and IV.

3.2 Core and A-core fuzzy logics

The two classes of fuzzy logics we are going to introduce in this subsection are
not very broad from the general perspective of the whole logical landscape: in fact,
they do not even cover the majority of fuzzy logics introduced in the previous section.
Nevertheless, they do cover the most studied ones: the absolute majority of papers on
mathematical fuzzy logic actually study logics from these two classes, and the study
of other fuzzy logics has started only recently. The classes of logics were introduced
in [98] in order to provide a common framework to the study of first-order fuzzy logics;
later they played a similar r6le in the general study of completeness of fuzzy logics w.r.t.
distinguished semantics in [35] (see Sections 5 and 4.1). The rough idea is to define
a class of logics that share most desirable properties with MTL, and which could be
delimited in a simple syntactic way.

As we have seen in the previous section, we need some flexibility as regards both
propositional languages and logics. Therefore, for the sake of reference and in order to
fix terminology in a way convenient for this section, we shall start with some standard
general definitions and conventions. (For a detailed treatment of the general theory of
logical calculi see, e.g., [42, 179].)
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Figure 10. The position of t-norm fuzzy logics among substructural logics

DEFINITION 3.2.1. A (propositional) language is a pair L = (Conng, Arr), where
Conng is a well-ordered countable set of (propositional) connectives and Ar, is a
function assigning a natural number to each element of Conng. The number Arz(c) is
called the arity of c € Conn,. We shall write (c,n) € L as a shorthand for c € Conn
and Arr(c) = n. Nullary connectives are also called truth-constants.

The set Form, of (propositional) formulae in the language L over the fixed de-
numerable set Var of (propositional) variables is the smallest set containing Var, the
truth constants of L, and closed under the connectives from L (that is, c(¢1, ..., pn) €
Form whenever @1, ..., on € Formg and (c,n) € L).

An L-substitution is a mapping o : Form; — Form g commuting with the connec-
tives of L (i.e., o(c(@1,...,0n)) = clo(p1),...,0(pn)) for each (c,n) € L).

By alogic (in the language L) we mean a substitution-invariant Tarski consequence
relation over L; i.e., arelationt-1, C P(Form ) x Form that satisfies, for eachT'y A C
Formg, each p,v € Form,, and each L-substitution o, the following conditions:

1. If p €T, thenT k1, .
2. If T' by @ foreach i € A, and A 1, @, then T F1, .
3. If Tk o theno(T) Fr, o(p).
We shall often use just L as a synonym for 1. A logic L is finitary if for each I' C

Formg and ¢ € Formg such that T' ‘1, o there exists a finite I C T such that
F/ l_L ®.
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Note that the cardinality restrictions on the sets £ and Var are assumed just for
simplicity. Clearly for each finitary>* logic in the sense of this definition there is a
Hilbert-style calculus (cf. Definition 1.2.1) such that the relation of provability (cf. Def-
inition 1.2.2) in this calculus coincides with the logic; all such calculi will be called
axiomatic systems (or presentations) of the logic in question.

EXAMPLE 3.2.2. All logics of (sets of) continuous t-norms (see Definition 1.1.19) are
finitary logics in the sense of Definition 3.2.1. The infinitary logics of (sets of) contin-
uous t-norms (i.e., the semantical consequence relations =g of Definition 1.1.15) are
also logics in the sense of this definition, but they are not finitary (with the exception of
K = {*g}, see Theorem 1.1.18). Also all logics introduced in Section 2 are examples
of finitary logics.

DEFINITION 3.2.3. We say that a logic L' in the language L' is an expansion of a logic
L in the language L C L' if T' b1, @ implies T by @ for each T'U {p} C Form,. We
say that the expansion is conservative if the converse implication holds as well. We say
that the expansion is axiomatic if L can be axiomatized by adding some axioms (but no
rules) to some axiomatic system of L. We use the term extension instead of expansion if

L=1rL.
Now we are able to define the core and A-core fuzzy logics.

DEFINITION 3.2.4. A finitary logic L in a language L is a core fuzzy logic, if:
1. L expands MTL.
2. For all L-formulae v, 1), x the following holds:

L x <X, (Cong)

where X' is a formula resulting from x by replacing some occurrences of its sub-
formula ¢ by a formula 1.

3. L has the Local Deduction Theorem, i.e., for each set of L-formulae T U {p, ¢}
holds:

T, o FL ¢ iff there is n € N such that T -y, " — ). (LDT)

EXAMPLE 3.2.5. The following logics introduced in the previous sections are core
fuzzy logics: BL, MTL, IMTL, IIMTL, NM, WNM, WCMTL, SBL, Lukasiewicz,
product, and Godel logic; the n-valued variants of these logics; extensions of these
logics by the axiom (C,,) or (S,); and some logics in expanded languages: the logic
PL, Rational Pavelka logic, and expansions of all mentioned logics by truth constants.

Note that classical logic is a core fuzzy logic as well, but intuitionistic logic is not.
Many important fuzzy logics, including, e.g., the logics MTL A and LII, however, fall
outside the class of core fuzzy logics. Therefore we introduce a second, analogously
defined, class.

34The definition of a Hilbert-style calculus can be modified to cover infinitary logics as well, but we shall
not need it in this chapter.
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DEFINITION 3.2.6. A finitary logic L in a language L is a A-core fuzzy logic, if:

1. L expands MTLA.

2. For all L-formulae o, 1), x the following holds:
p L x o X (Cong)

where X' is a formula resulting from x by replacing some occurrences of its sub-
formula ¢ by a formula 1.

3. L satisfies the /\-Deduction Theorem, i.e., for each set of L-formulae T U {p, 1}
holds:

ToplLy iff Thy Ap— . DTn)

EXAMPLE 3.2.7. The following logics introduced in the previous sections are A-core
fuzzy logics: extensions of all core fuzzy logics by A; some fuzzy logics with additional
involutive negation (SMTL.., SBL.., II, G.); and the logics L.IT and L.IT5.

The only consistent logic which is both core and A-core is classical logic. There-
fore all A-core logics are examples of logics which are not core fuzzy logics. Of course
all logics weaker than MTL are neither core nor A-core (including, e.g., fragments of
MTL, the uninorm logic UL, the non-commutative fuzzy logic psMTL", etc.). How-
ever, there are natural examples of such logics even among expansions of MTL:%

EXAMPLE 3.2.8. The following expansions of MTL introduced in the previous sec-
tions are neither core nor A-core fuzzy logics (because they neither enjoy LDT nor
expand MTLA): some fuzzy logics with additional involutive negation (MTL.., BL..,
L..); and the logic PL/.

The following theorem gives an alternative definition of (A-)core fuzzy logics. (It is
a direct consequence of [34, Corollary 8 and Theorem 6].)

THEOREM 3.2.9. Let L be an expansion of MTL (respectively, of MTL ) that satis-
fies the condition (Cong). Then L is a core (resp., /\-core) fuzzy logic if and only if it is
an axiomatic expansion of MTL (MTLa, resp.).

The notion of L-algebra can be generally defined for (A\-)core fuzzy logics as fol-
lows:

DEFINITION 3.2.10. Let L be a core fuzzy logic and let C be the set of connec-
tives of L that are not present in MTL. An L-algebra is a structure A = (A, &, —,
AV, 0,1, (€)eec) such that (A, &, —, A, V, 0, 1) is an MTL-algebra, and for every ax-
iom @ of L, the identity e(p) = 1 holds under all A-evaluations e.

Analogously we define L-algebras for /\-core fuzzy logics. An L-algebra is called
an L-chain if its MTL-reduct is an MTL-chain. The class of all L-algebras is denoted
by L.

55We have not seen (and will not see) any logic that does not satisfy (Cong).



Chapter I: Introduction to Mathematical Fuzzy Logic 63

The following theorem collects the basic properties of (A-)core fuzzy logics. We
can see that these logics share many important logical and algebraic properties with the
logics BL and MTL.

THEOREM 3.2.11 ([35, 98]). Let L be a (/\-)core fuzzy logic. Then:

1.
2.

L is a variety of algebras.

The lattice of finitary extensions of L is dually isomorphic to the lattice of sub-
quasivarieties of L.

The lattice of axiomatic extensions of L is dually isomorphic to the lattice of
subvarieties of L.

L satisfies the proof by cases property PCP (cf. Theorem 1.2.11): for each theory
I and formulae ¢, 1, x,

oV by x whenever Iy o b1, x and T, ¢ Fr, x.

L satisfies the semilinearity property SLP (c¢f. Theorem 1.2.11): for each theory I'
and formulae @, 1, x,

'y, x whenever I'; o — Y by, x and ', o — ¥ 1, .

For each theory I' and each formula o such that T ¥y, x there is a linear (or
equivalently, prime) theory I'" D T such that T’ ¥, x (cf. Theorem 1.2.13).

Every L-algebra is representable as a subdirect product of L-chains (cf. Theo-
rem 1.3.11).

The class of finitely subdirectly irreducible L-algebras coincides with the class of
L-chains (c¢f. Theorem 1.3.13).

The following conditions (cf. Theorems 1.3.7 and 1.3.12) are equivalent for every
theory I" and a formula ¢:

o [ }_L ®.

e ¢(p) =1 for each L-algebra A and any A-model e of T.

e ¢(p) =1 for each L-chain A and any A-model e of T.

Using the axioms of A, we can determine the semantics of A in L-chains:

THEOREM 3.2.12. Let L be a \-core fuzzy logic and A an L-chain. Then Nz = T4
ifr= T4, and NAx = 04 otherwise.

For each core fuzzy logic L. we can define the corresponding A-fuzzy logic La
resulting from L in the same way as MTLa from MTL. The following two results are
straightforward corollaries of the previous two theorems.
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THEOREM 3.2.13. For every core fuzzy logic L, the logic LA is a conservative expan-
sion of L.

THEOREM 3.2.14. Let L be a finitary expansion of MTL satisfying (Cong). Then L
is a A-core fuzzy logic if and only if L is strongly complete w.r.t. L-chains (see the last
condition in Theorem 3.2.11).

3.3 Fuzzy logics as algebraically implicative semilinear logics

The class of core fuzzy logics is quite broad, but it still does not cover all fuzzy
logics mentioned in the Section 2, mainly because these logics are weaker than MTL.
As we have seen in the previous subsection, there is a large family of such logics that
is extensively studied in the literature. Here we shall briefly introduce fundamentals of
an abstract theory of propositional fuzzy logics; for a detailed exposition and references
see Chapter II of this Handbook.

DEFINITION 3.3.1 ([34, 159]). A logic L in the language L is a weakly implicative
logic if L contains a binary connective — such that:

e L=
® oL
e o=, = xFLY =X

e o= = phL (Xt Xis s Xn) = C(XTs - Xy Vs Xn)
forevery (c,n) € Land i < n.

A weakly implicative logic is Rasiowa-implicative if
o iy Y — .

Note that the last condition in the definition of weakly implicative logics gives us
that for each set of formulae 7" U {(, v, x} it holds:

o =P, = oL x(e) = x(¥). (Cong)

EXAMPLE 3.3.2. All logics mentioned so far in this chapter are weakly implicative,
including all substructural logics. (In non-commutative logics, the role of — can be
played by both \ and /.)

The logic FL,, and all its extensions, including all logics of (sets of) (left-)continuous
t-norms, as well as all (A\)-core fuzzy logics are Rasiowa-implicative, and so are all frag-
ments of these logics that contain implication (see Section 2.3).

It can be shown that Rasiowa-implicative logics share an important common feature
of core fuzzy logics: namely that in their natural algebraic semantics there is always just
a single element which is designated (i.e., is regarded as ‘fully true’ in the definition
of the logic’s consequence relation), and this element can be defined as the one satis-
fying the equation & = 1. This is no longer true in UL (which is clearly not Rasiowa-
implicative), where the designated truth values are those bigger than 1; nevertheless, we
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can still define these truth values as those satisfying the equation x A 1 = 1. To en-
compass also logics like UL together with their ‘natural’ algebraic semantics we define
a broader class of algebraically implicative logics where the designated truth values are
equationally definable. Let us note here that finitary algebraically implicative logics
are exactly those weakly implicative logics which are algebraizable in the sense of Blok
and Pigozzi [18].

Let us now formalize this condition and express it in a purely syntactic way.® Ob-
serve that the logics and their algebraic semantics we have studied throughout this chap-
ter have the following two properties: (i) if the logic proves ¢ - ¢ and ¢ is designated,
then so is ¢, and (ii) ¢ — y and y — x are both designated iff x = y.

DEFINITION 3.3.3. A weakly implicative logic L is algebraically implicative if there is
a pair of formulae oy, (p), B (p) of single variable p such that for each formula x holds:

e x kL awL(x) = Br(x)
o x L AL(x) — aL(x)

e ar(x) — Br(x), fr(x) — an(x) FL x-

EXAMPLE 3.3.4. Every Rasiowa-implicative logic is algebraically implicative, via the
pair oy, (p) = p and By, (p) = p — p. (In fact, any theorem of L with at most one variable
can play the rdle of 3;,—e.g., the truth constant 1).

The full Lambek logic FL and all its extensions (including, e.g., the uninorm logic
UL) are algebraically implicative, via the pair oy, (p) = pAland St (p) = 1 (or ar,(p) =
pV 1and fi(p) = p).

DEFINITION 3.3.5 (L-algebras). Let L be a propositional language. An L-algebra is
an algebra A = (A, (¢*) (c.nyec) with the signature (n) (e pye -

An A-evaluation is a mapping e: Form, — A that commutes with the connectives
from L (i.e., e(ca(pi, ..., 0n)) = cale(p1),...,e(pn)) foreach (c,n) € L.

The next definition embodies the slogan that oy, (p) = Br(p) defines the designated
(fully true) truth values (cf. also Example 3.3.4).

DEFINITION 3.3.6 (Designated elements and models). Let L be an algebraically im-
plicative logic and A an L-algebra. We define the set DA of designated elements
in A as:

D* = {z | ar(z) = Bu(2)}.
We say that an A-evaluation e is an A-model of a theory T if e(v)) € DA for each
P el

Note that e(¢)) € DA iff e(ar, (1)) = e(BL(¢)). In a more general setting there is
an abstract notion of logical matrix consisting of an algebra with a set of designated ele-
ments. In algebraically implicative logics we assume that the designated set is uniquely
determined by an equation in the algebra; in the general setting, the situation is more
complex and we leave its study to Chapter II.

S6We provide a simplified account, assuming definability by a single pair of formulae. For the ‘proper’
definition see [41] or Chapter II.
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DEFINITION 3.3.7 (Algebraic semantics). Let L be an algebraically implicative logic
and A an L-algebra. We say that A is an L-algebra if for each theory T, formula ¢, and
elements x,y € A it holds that:

o [f T 1, then any A-model of T is also an A-model of .
o Ifx A ycDAandy - x € DA, thenx = y.
The class of all L.-algebras will be denoted by 1.

We could easily show that our general definition of IL for logics studied in this
chapter coincides with the particular explicit definitions provided while defining those
logics in the previous sections. It can be shown that it is sufficient to check the first
condition for axioms and deduction rules of some (any) presentation of L. Let us now
sample some abstract variants of theorems shown for particular logics in the previous
sections. We start with results valid for all algebraically implicative logics, fuzzy or not.

THEOREM 3.3.8 ([18, 41]). Let L be an algebraically implicative logic. Then:
1. Every extension of L is an algebraically implicative logic.
2. The following conditions are equivalent for every theory I' and formula :

oI }_L ®.
e For each Li-algebra A and each A-model e of T, e is an A-model of .

3. If L is finitary, then L is a quasivariety of algebras.

4. If L is finitary, then the lattice of finitary extensions of L is dually isomorphic to
the lattice of subquasivarieties of L.

5. The lattice of axiomatic extensions of L is dually isomorphic to the lattice of
relative subvarieties of L.

6. The relation < defined as x <? y iff v =4 y € DA (i.e., x is less than or
equal to y whenever the implication x —* vy is fully true) is an ordering on A.

Note that the antisymmetry of <“ follows from the second condition in the defini-
tion of L-algebras. Also note that the majority of algebras related to logics introduced in
the previous sections were ordered (usually lattice-ordered) and that this order coincides
with the just defined order <“. We say that an L-algebra is linearly ordered (or that it
is an L-chain) if <4 is a total order.

Let us now focus on fuzzy logics. Observe all logics that we have called ‘fuzzy’ in
this chapter are complete w.r.t. their linearly ordered algebras.>’ Following the tradition
of Universal Algebra to call a class of algebras ‘semi-X" if its subdirectly irreducible
members have the property X (see the next theorem), we shall call such logics semi-
linear.

ST1n [14] it is argued that all and only such logics should be called ‘fuzzy logics’, since this property is
shared by a vast majority of logics studied in the literature under this name and does not apply to most logics
that are generally not labeled as ‘fuzzy’ (e.g., intuitionistic logic); here we opt for a more neutral stance.
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DEFINITION 3.3.9 (Semilinear logics, [41]). An algebraically implicative logic L is
semilinear if the following conditions are equivalent for each theory I' and each for-
mula @:

oI |_L ®.
e For each L-chain A and each A-model e of T holds that e is an A-model of .

A theory T is linear in L if for each pair of formulae ¢, holds T 1, o — 9 or
T b1, v — . Inlogic with V in the language we also define: a theory T is prime in L
if for each pair of formulae o, holds T 1, o V4 implies T b1, @ or T F1, 1.

The next central theorem shows that many properties proved separately in the liter-
ature on mathematical fuzzy logic are in fact instances of a general theorem.

THEOREM 3.3.10 ([41]). Let L be a finitary algebraically implicative logic. Then the
following conditions are equivalent:

o L is semilinear.

o L has SLP, i.e., for each theory ' and formulae @, ), x holds:

fl,o—=>vbFy xandU,y — oty x, thenT Fy, x.

o For every theory I' and every formula ¢ such that I ¥1, , there is a linear theory
IV DT such that T" ¥, .

e Fach L-algebra is a subdirect product of Li-chains.
o L-chains are exactly the relatively finitely subdirectly irreducible L-algebras.”®

If the language of L contains a connective \/ such that

=Y, oV bLYand o =, h Vo,
we can equivalently add:>°

o L proves (¢ — ) V (¥ — @) and has PCP, i.e., for each theory I' and formulae
p, 1, x holds:

if Tyl xand Ty by x, then T, o Vb b x.

e Lproves (p — ¥) V (¢ — ), and for every theory T and every formula o such
that T ¥1, , there is a prime theory I D T such that T t/y, ¢.

581.e., they cannot be decomposed into a non-trivial subdirect product of L-algebras. The restriction to
L-algebras holds automatically if IL is a variety, because in that case each component of a subdirect product is
a homomorphic image of an L-algebra, and therefore an L-algebra.

The validity of the two rules required of V is only necessary for proving that semilinearity implies the
following three notions; the converse direction holds generally.
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o L proves (p — ¥) V (¢ — @), and for every finite theory T, a formula ¢ such
that T F1, ¢, and a propositional variable p not occurring in I' and ¢ we have:

{vvplyelirLeVp.
One of the problems frequently studied in the literature is how, given a substructural
logic L, to axiomatize the logic given by L-chains (see Section 3.2 in Chapter II).

THEOREM 3.3.11 ([41]). Let L be a finitary algebraically implicative logic. Let fur-
thermore the logic L be defined as: T ‘1 o iff for each L-chain and each A-model e
of T holds that e is an A-model of . Then L' is the least semilinear logic extending L.

The next theorem shows that if the language of L contains V, we can easily find an
axiomatization of the logic L*.

THEOREM 3.3.12 ([41]). Let L be a finitary algebraically implicative logic in a lan-
guage containing V, and let A be one of its axiomatic systems. Assume further that
o= oV b b and g — 0,V @b .

Then the logic LY is axiomatized by A plus the axiom (¢ — 1) V (1 — @) plus the
rules of the form {¢) V p | » € T} & ¢ V p, for each rule T + ¢ from A, where p is a
variable that does not occur in T and .

4 Metamathematics of propositional fuzzy logics

In this section we survey the basic metamathematical properties of fuzzy logics.
We restrict ourselves to (A-)core fuzzy logics (see Section 3.2), even though most of
the definitions can be formulated and most of the results proven in weaker logics (e.g.,
non-commutative, non-integral, with restricted language, etc.).

The first subsection deals with (different) forms of completeness theorems with re-
spect to some distinguished semantics. Note that we have already seen real-chain and
standard semantics; besides those, we will also study hyperreal-, rational-, and finite-
chain semantics of fuzzy logics. The results in this subsection are of two kinds: (i) gen-
eral, i.e., for arbitrary semantics and/or arbitrary (A-)core fuzzy logic; and (ii) particular,
for concrete semantics and/or (A-)core fuzzy logic. The general results are from [35];
see Chapter II for generalization of these results to a much wider context. Known par-
ticular results are also summarized in [35]; see the corresponding chapters of this Hand-
book for proofs of some of these results and detailed references.

The second subsection deals with functional representation, i.e., the question as to
which real-valued functions are expressible by formulae of prominent (A-)core fuzzy
logic. This question is connected to a prominent algebraic question regarding the de-
scription of the free algebra in a given variety. We will not go into details here; see
Chapter IX for a detailed exposition, proofs, and references.

The third subsection briefly introduces the proof theory of certain fuzzy logics, by
means of (hyper)-sequent Gentzen systems. The whole Chapter III of this Handbook
is dedicated to elaboration of this important aspect of mathematical fuzzy logic. The
final subsection studies fuzzy logics from the viewpoint of computational complexity.
In particular, the complexity of important sets of formulae (tautologies, satisfiable for-
mulae) given by prominent (A-)core fuzzy logic is determined in the subsection. Again,
the whole Chapter X is dedicated to this topic; an interested reader can find detailed
exposition, proofs, and references there.
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4.1 Completeness theorems

Let us fix a (A-)core logic L. For a class K of L-chains we define the seman-
tical consequence w.r.t. K analogously to the case of continuous t-norms (cf. Defini-
tion 1.1.15):

I' =k ¢ iff e(p) =1foreach A € K and each A-model e of T

DEFINITION 4.1.1 (Completeness properties). Let K be a class of L-chains. We say
that L has the property of:

o Strong K-completeness, SKC for short, if for every set of formulae T U{p} holds:
Ik pifandonly if T Ex .

o Finite strong K-completeness, FSKC for short, if for every finite set of formulae
T'U {p} holds: T\, g ifand only if T =k .

o (Weak) K-completeness, KC for short, if for every formula @ holds: 1, ¢ if and
only if Fk ¢.
Now we give three theorems characterizing the just defined properties in a purely

algebraic fashion. First we need one important definition.

DEFINITION 4.1.2 (Partial embeddability). Given two algebras A and B of the same
language L, we say that a finite subset X of A is partially embeddable into B if there is a
one-to-one mapping f: X — B such that for each {c,n) € L and each aq,...,a, € X

satisfying c(aq, ..., a,) € X, f(c?(ay,...,an)) = cB(f(ar),..., f(an)).
A class K of algebras is partially embeddable into a class K’ if every finite subset of
every member of K is partially embeddable into a member of K'.

THEOREM 4.1.3. Let K be a class of L-chains. Then:

1. L has KC if and only if L = V(K), where V (K) is the variety generated by K.

2. L has FSKC if and only if L = Q(K), where Q(K) is the quasi-variety generated
by K.

3. L has SKC if and only if L. = ISP ,¢(K), where ISPt denotes the closure
under isomorphic images, subalgebras, and the operator of reduced products over
countably complete filters.

THEOREM 4.1.4. Let K be a class of L-chains. Then the following conditions are
equivalent:

1. L has SKC.
2. Every countable Li-chain is embeddable into a member of K.

3. Every countable subdirectly irreducible L-chain is embeddable into a member
of K.
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THEOREM 4.1.5. Let K be a class of L-chains. Then the following conditions are
equivalent:

1. L has FSKC.
2. Every L-chain is embeddable into an ultraproduct of members of K.
If furthermore the language of L is finite, we can equivalently add:
3. Every L-chain is partially embeddable into K.
4. Every countable subdirectly irreducible L-chain is partially embeddable into K.

The condition 4 is a sufficient condition for the FSKC of L, but is not necessary, as
shown in [35, Example 3.10]. Next we shall give some relationships between strong and
finite strong K-completeness:

THEOREM 4.1.6. Let K be a class of L-chains. Assume that L has FSKC. Then:
1. L has SKC iff =k is finitary.
2. L has SKC if K is closed under ultraproducts.
3. L has SPy (K)C, where Py denotes the closure under ultraproducts.

We can also prove that a A-core fuzzy logic has KC if and only if it has FSKC.
Also for a core fuzzy logic L it can be shown that: L has the SKC (resp. FSKC) with
respect to a class of Li-chains K if and only if Lo has the SKAC (resp. FSKAC), where
K is the class of A-expansions of chains in K.

Now we move to particular distinguished semantics. Let us fix a (A-)core logic L.
We define the following classes of L-chains:

o Real-valued L-chains, R: those whose lattice reduct is [0, 1] with the usual order.

e Rational-valued L-chains, Q: those whose lattice reduct is [0, 1] with the usual
order.

e Hyperreal-valued L-chains, R*: those whose lattice reduct is any ultrapower of
[0, 1] with the usual order.

e Finite-valued L-chains, F: those chains which are finite.

Recall that by conventions of Section 2, standard L-chains are usually a (conven-
tionally distinguished) subclass of real-valued L-chains (often all of them, cf. Conven-
tion 2.0.2). Note also that the class of hyperreal-valued L-chains R* contains the class
of real-valued L-chains R (just take the ultrapower over a principal ultrafilter). We
could furthermore consider strict hyperreal-valued L-chains, which arise by removing
the real-valued ones from R*; however, it can be shown that all the three complete-
ness properties remain unchanged by this modification. In fact, even the rational-valued
and hyperreal-valued completeness properties coincide: all known relationships of these
properties are depicted in Figure 11.
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SR*C — FSR*C — R*C

i | |

SQC — FSQC —_— QQ
1 1 1
SRC —= FSRC — RC

Figure 11. Real-chain, rational-chain, and hyperreal-chain completeness properties

The completeness w.r.t. finite chains has already been mentioned in Section 2.4.3,
where we have defined the n-valued extension of a given fuzzy logic by means of the
axiom (<n). This axiom in fact characterizes the strong finite-chain completeness, as
the following can be proved to be equivalent:

1. L enjoys SFC.
2. All L-chains are finite.

3. There is a natural number n such that the length of each L-chain is less or equal
than n.

4. There is a natural number n such that b, \/, _, (z; — Z441).

The weaker forms of completeness w.r.t. finite chains correspond to some well-
known algebraic properties, namely:

e L enjoys FC if and only if the variety of L-algebras enjoys FMP (the finite model
property).

e L enjoys FSFC if and only if the variety of L-algebras enjoys SEFMP (the strong
finite model property). Moreover, if the language of L is finite, these properties
are also equivalent to FEP (the finite embeddability property) for the variety of
L-algebras.

The known completeness results for fuzzy logics introduced in this chapter can be
summarized as follows:

e The following logics enjoy SRC (and thus also SQC and SR*C): MTL, IMTL,
SMTL, G, WNM, NM, C,MTL, and C,,IMTL.

e The following logics enjoy FSRC (and thus also SQC and SR*C), but not SRC:
WCMTL, IIMTL, BL, SBL, L, and II.

e The logic IT* introduced in [45] is an example of logic enjoying SQC but not even
RC. IT* is the axiomatic extension of BL by the axiom

(P A=) A((p = p& @)= —p V).
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e The only logics enjoying SFC introduced in this chapter are the finite-valued
logics G, and L,,.

e The following logics enjoy FSFC, but not SFC: MTL, IMTL, SMTL, WNM,
C,MTL, C,IMTL, BL, SBL, L., G, and NM.

e The following logics do not enjoy FC: WCMTL, IIMTL, and II.

4.2 Functional representation

It is well known that all Boolean functions (i.e., functions from {0, 1}" to {0, 1}) are
expressible by formulae of classical logic. If we replace the set {0, 1} by [0, 1], we are
in the realm of fuzzy logic and a natural question is which functions from [0, 1]™ to [0, 1]
are expressible by a formula of a particular fuzzy logic. Clearly, due to the cardinality
reasons we cannot expect the analog of the classical results (there are uncountably many
functions and only countably many formulae).

We shall restrict ourselves to (A-)core fuzzy logics that enjoy standard complete-
ness w.r.t. a unique standard algebra. For this section let L be one of the following logics:
L, G, II, RPL, PL/, their extensions by A\, and the logics LII and EIT3. By [0, 1];, we
denote the corresponding standard algebra.

DEFINITION 4.2.1. Let f be a function f: [0,1]™ — [0,1] and ¢(v1,...,v,) a for-
mula of a logic L. We say that the function f is represented by the formula ¢ in L (or
that ¢ is a representation of f) if e(p) = f(e(v1),e(v2),...,e(v,)) for each [0, 1]L-
evaluation e.

The functional representation of the logic L is the class of all functions from any
power of [0, 1] into [0, 1] that are representable by some formula of L.

The goal of this subsection is to summarize known characterizations of functional
representation of aforementioned logics.®® See Chapter IX of this Handbook for detailed
exposition of this area, including more results, proofs, and references.

The first theorem of this kind is McNaughton’s celebrated result:

THEOREM 4.2.2 ([131, 144]). The functional representation of Lukasiewicz logic is the
class of McNaughton functions, i.e., continuous piecewise linear functions with integer
coefficients.

Moving to the logic RPL would change little—only the absolute coefficients of
the linear functions could now be rational. The description for product logic is more
complex. First let us define:

DEFINITION 4.2.3. Let n be a natural number. Then a set S C [0,1]™ is a region of
positivity if there is M C {i | 1 < i < n} such that S = {{(z1,...,z,) € [0,1]" |
x; > 0iff i € M}.

THEOREM 4.2.4 ([36]). The functional representation of product logic is the class of
functions which, restricted to any region of positivity are either identically equal to 0 or
continuous piecewise monomial.

%00ne can observe that functional representation is not (strictly speaking) a property of a logic, but of an
algebra; standard completeness allows us to perform this slight abuse of language.
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’ Logic ‘ Contin. ‘ Domains | Pieces

L yes linear linear functions with integer coefficients

LN no linear linear functions with integer coefficients

RPL yes linear linear integer coefficients and a rational shift

PL’ yes ? 762

PE/\ no all polynomials with integer coefficients

LII no all fractions of polynomials with integer coefficients
LIT3 no all fractions of polyn. w. int. coeff., f[{0,1}"] C {0,1}

Table 4. Functional representations of prominent fuzzy logics

For a (rather complex) characterization of the functional representation of Godel
logic we refer the reader to Chapter IX.

DEFINITION 4.2.5. A subset S of [0,1]™ is Q-semialgebraic if it is a Boolean combi-
nation of sets of the form

{z1, ... xn) € 10,1]" | P((z1,...,24)) > 0}

for polynomials P with integer coefficients. If all of the polynomials are linear, then S
is linear Q-semialgebraic.

It can be easily shown that the domain of each linear piece in a McNaughton func-
tion is linear Q-semialgebraic. In Theorem 4.2.2, the latter property was ensured by the
continuity; however, if the non-continuous Baaz Delta operation is added, the condition
has to be explicitly stated.

THEOREM 4.2.6. The functional representation of La is the set of piecewise linear

functions with integer coefficients, with the pieces having linear Q-semialgebraic do-
P 6l

mains.

As we have seen, the functions expressible in expansions of Lukasiewicz logic
are piecewise functions determined by three parameters: (i) the requirement or non-
requirement of continuity, (ii) the form of functions describing the pieces, and (iii)
the description of domains of the pieces. Table 4 summarizes known results (mainly
from [141]). The column ‘Contin.” indicates whether the continuity of the functions
is required or not. The column ‘Domains’ indicates whether the domains are all Q-
semialgebraic sets, or just the linear ones.

1In more detail, the functions f: [0,1]™ — [0, 1] for which there is a finite partition of [0, 1]™ such that
each block of the partition is a linear Q-semi-algebraic set and f restricted to each block is a linear function
with integer coefficients.

%2The well-known Pierce-Birkhoff conjecture [120] is equivalent to the supposition that the functional
representation of PY./ is the set of continuous piecewise polynomial functions with integer coefficients.
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4.3 Proof theory

Proof theory is an important branch of mathematical logic (see [22] for a detailed
and representative introduction). It deals with analysis of proofs (in a given logic) and
the study of calculi designed to satisfy certain convenient properties. Such calculi (e.g.,
the Gentzen-style sequent calculi) are in many respects better behaved (e.g., as regards
the complexity of proofs) than the Hilbert-style calculi employed in this chapter so far.
Unlike general Hilbert-style calculi, which trivially exist for all logics (understood as
consequence relations), the construction of calculi satisfying some required properties
can be a non-trivial task, in many cases even demonstrably impossible.

Proof theory for fuzzy logics (with the exception of Godel logic, whose position as
both fuzzy and intermediate logic makes it a special case) has seen a rapid development
in recent years. The field has been started by Metcalfe [132] in the early 2000’s; a
milestone is the monograph [136]. In this Handbook, the proof theory of fuzzy logics is
treated in detail in Chapter III. Here we present just a basic idea and one motivational
example.

Recall that Gentzen-style calculi have two kinds of rules:

e Operational rules for introduction of propositional connectives (into formulae)

e Structural rules for manipulation with premises and conclusions (as whole for-
mulae).

The rules operate on sequents, which are pairs of sequences of formulae, usually written
as 1, ...,0n = Y1, ...,y Capital Greek letters (esp. I', A, II, X3) will represent se-
quences of formulae (including the empty sequence) in sequent schemata. The rule (R)
indicating the possibility of deriving a sequent S from sequents S1, .. ., Sj is written in
the following form:
S1 ... Sk

5 .

A sequent calculus is a set of (schematic) rules. A derivation in the calculus is a (finite)
tree with nodes evaluated by sequents which are derived by the rules of the calculus from
their immediate predecessors. We say that the sequent S is derivable from S1,...,.5,
in the calculus if there is a derivation with leaves evaluated by St, . .., S, and the root
by .S; if moreover n = 0, we say that .S is provable in the calculus.

Recall the full Lambek logic with exchange and weakening, FL..,, and its ‘classical’
(i.e., involutive) version CF L.y, introduced in Section 3.1. The following example gives
Gentzen-style calculi for these logics.

(R)

EXAMPLE 4.3.1. The calculus GCFLe,, has the following operational rules for the
connectives A, &, V, @, —, 0, and 1:

(0L) —— IR) ———
0, =11 T =111

CI'=A
e AP, T = A

I'=10¢ =1Ly

(AL) e

JorCe{p, v} (AR)
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(er) ﬂ—gzi (1) Fll—? ?21:‘: H171_I£22, j&HZ’w
vy B = () ooy forC e e}
SR nees LS = 1)

R R ey = s

Moreover, the calculus GCFL,, has the following structural rules:

I'=10,¢ o, A=3

(Ax) (Cut)

=0 IA=ILY
Lo, A =11 I'= 1L, ¢, %
E-L ER) -~ @ W2
EL) Ty oA ER) T ST 00,
I'=11 I'=11
W-L) ————— W-R) —————
( ) p,I'=11 ( ) I'=1Le

The abbreviated labels of the structural rules stand for Axiom, Exchange, and Weakening,
(left or right). Note that the structural rules of Contraction
o, 0, I'=10
o, ' =11

I'=1Lp, e

(GL) =1L

(C-R)
are missing as CF L. is a substructural logic. By removing further structural rules of
Exchange and Weakening we would obtain calculi for the weaker logics CFL ) (w)-

The calculus GFL,,, has the same rules as GCFL,,,, with the restriction that the
length of the right-hand sequence of any sequent in a derivation is at most 1. (Conse-
quently of the structural rules, only (E-L), (W-L), and (C-L), and the rule (W-R) for
sequents of the form I" = occur in GFLy,.)

GCFLgy is a calculus for the logic CFLe,, in the following sense: a sequent
D1,y Pn = W1, ..., Uy is provable in GCFL,, iff its interpretation 1 & - - - &, —
Y1 @® -+ D1y, is a theorem of CFLe,,. Analogously, GFL,,, is a calculus for FLe,.%

One of the central topics in proof-theory is the question of redundance of the (Cut)
rule in a given Gentzen-style calculus. Note that all remaining rules enjoy the so-called
subformula property: i.e., the formulae in premises of rules are subformulae of those in
the conclusion (thus, roughly speaking, any ‘backward’ step in the proof-tree reduces
the complexity of formulae occurring in the labeling sequents in a very transparent way,
which often provides a decision procedure for a given logic). Cut-free calculi enjoying
subformula property are often called analytic.

63For m = 0, i.e., the empty right-hand side of the sequent, we use the interpretation 1 & - - - & @n, — 0;
analogously for n = 0 we use the interpretation 1 — 1 @ - - - @ ¥y,. Note that in the case of MTL each
sequent has at most one formula on the right-hand side, thus the connective @ is not needed in its interpretation.
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THEOREM 4.3.2 (Cut elimination). The calculi GFLey, and GCFLg,, enjoy cut elimi-
nation; i.e., removing the rule (Cut) does not change the set of provable sequents.

A natural question is whether we can ‘strengthen’ the two Gentzen-style calculi
(preferably preserving the cut elimination property) to obtain proof systems for the
semilinear versions of the logics FLcy, and CFLgy, i.e., the logics MTL and IMTL.
In Hilbert-style calculi, the transition is provided by adding the prelinearity axiom,
(¢ — ¥)V (v — ¢). However, for Gentzen-style calculi with the cut elimination
property (and the interpretation of sequents as above), this question was answered neg-
atively by Ciabattoni, Galatos, and Terui:

THEOREM 4.3.3 ([28]). If the sequents @1, ..., 0, = ¥1,...,Y,, are interpreted as
o1& & pp = Y1 D - @ Yy, then there is no Gentzen system for IMTL extending
GCFLgy with structural rules (analogously for MTL).

One way to overcome this problem is to change the syntactical framework from
sequents to the so-called hypersequents. Hypersequents were originally introduced by
Avron as a proof-theoretic framework for the Relevance-Mingle logic RM [3]. Later
the hypersequent calculi were generalized to Godel logic [4] and other fuzzy logics
[66, 133—-136]. As an example of a hypersequent calculi for fuzzy logics, we present
here a hypersequent Gentzen-style calculus for the logic IMTL (originally introduced
in [6]).

A hypersequent is a finite multiset of sequents written as:

H1:>21|H2=>22||Hn:>2n
A hypersequent version of the sequent rule (R) has the form

H|S ’

(H-R)

where S1, ..., Sk/S is an instance of (R), and H is a hypersequent variable.

DEFINITION 4.3.4. The hypersequent calculus GIMTL consists of the hypersequent
versions of all rules of GCFLey, plus the following rules:

H (EC)H|g|g (C )H|F1aH1:>217A1 H|F27H2:>Z27A2
e e — om .
H|G HI|G H| T, Ty = Ay, Ay | T, 1T = X4, 30

The abbreviated labels of these rules stand for External Weakening, External Contrac-
tion, and Communication.

THEOREM 4.3.5. For a sequent S = p1,...,0n = 1, ..., %, we set
IS)=pr1 & - &on =11 D DY
for a hypersequent H = Sy | --- | Sy, we set
I(H)=1(S1)VI(S2)V...VI(Sy).

Then the hypersequent H is derivable in GIMTL if and only if I(H) is a theorem of
IMTL. Furthermore, the (Cut) rule is eliminable from GIMTL.

(EW)
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4.4 Computational complexity

In this section we deal with computational complexity issues in (A-)core fuzzy
logics. Unlike in classical logic, the sets of tautologies and satisfiable formulae do not
in fuzzy logics determine each other. This is caused by the fact that e(—p) # 1 does not
imply e(p) = 1, but only e(¢) > 0. Consequently, in addition to the sets of tautologies
and 1-satisfiable formulae, also the sets of positive tautologies and positively satisfiable
set of formulae are studied. For simplicity, in this section we consider only the first four
notions and only with respect to the standard semantics. Furthermore we fix a (AA-)core
logic enjoying the finite strong standard completeness (thus in particular we have that
its standard tautologies coincide with its theorems). Chapter X studies these notions
relativized to other important classes of algebras and for logics other than (A-)core, and
also tackles other complexity problems encountered in mathematical fuzzy logic (e.g.,
the complexity of the provability relation of a propositional fuzzy logic, or even of the
universal fragment of the first-order theory of particular classes of algebras).

DEFINITION 4.4.1. Let L be a (/\-)core fuzzy logic enjoying the finite strong standard
completeness. Then we define the following sets of formulae:

o ¢ € SAT,os(L) if there is a standard L-algebra A and an A-evaluation e such
that e(p) > 0.

o p € SAT(L) if there is a standard L-algebra A and an A-evaluation e such that
e(p) =1

o ¢ € TAUT,os(L) if for each standard L-algebra A and each A-evaluation e
holds e(p) > 0.

e o € TAUT(L) if for each standard L-algebra A and each A-evaluation e holds
e(p) =1

Although these sets of formulae are not as tightly related as their classical analogs,
some interrelations can still be proved (especially for stronger fuzzy logics):

LEMMA 4.4.2. In general we can prove:
¢ € TAUT,os(L) iff —¢ & SAT(L)
¢ € SATos(L) iff —p & TAUT(L).

If the logic L expands IMTL, we can also prove the ‘converse’:%*

p €SAT(L)  iff —¢ ¢ TAUT (L)
¢ € TAUT(L) iff —¢ & SAT0s(L).

If the logic L extends SMTL, we can also prove:
¢ € SAT,s(L)  iff ¢ € SAT(L) iff s classically satisfiable

¢ € TAUT,os(L) iff ——p € TAUT(L) iff is classical tautology
¢ € TAUT,os(L) iff —¢ ¢ SAT,os(L) iff @ is classical tautology.

641t can also be proved in expansions of MTL.., for ~ instead of —.
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’ Logic \ SAT(L), SAT ,0s(L) \ TAUT(L), TAUT ,0s(L) \ reference ‘
BL NP-complete coNP-complete [8]
L NP-complete coNP-complete [143]
G NP-complete coNP-complete [7]
II NP-complete coNP-complete [7]
SMTL, IIMTL NP-complete decidable, coNP-hard | [109, 114]
MTL, IMTL NP-hard decidable, coNP-hard [19, 114]
LII, E113 PSPACE PSPACE [103]

Table 5. Standard computational complexity of prominent fuzzy logics

Finally, if the logic L is /\-core, then we can also prove:

@ € SAT(L) iff A¢p € SAT,os(L)
¢ € TAUT(L) iff Ap € TAUT,05(L).

Despite the more complex definitions involved, the computational complexity of
these problems for prominent fuzzy logics does not differ much from their classical
counterparts: see Table 5 for a selection of known and unknown results on standard
computational complexity.

S Predicate fuzzy logics

In this section we survey basic facts about predicate fuzzy logics. We restrict our-
selves to (A-)core fuzzy logics (see Section 3.2), even though most of the definitions
and theorems can be formulated and proven in weaker logics—e.g., non-commutative,
non-integral, with restricted language, etc.—as well: for more general formulations and
results see Chapter II. The text of this subsection is loosely based on the survey pa-
per [37]; basic information with full proofs for the logics of continuous t-norms is found
in the monograph [83].

5.1 Syntax

In the following let L be a fixed (A-)core fuzzy logic in a propositional language L.
The language of the first-order fuzzy logic is defined in the same way as in classical
first-order logic. In order to fix notation and terminology we give an explicit definition:

DEFINITION 5.1.1. A predicate language P is a triple (Predp, Funcp, Arp), where
Predp is a non-empty set of predicate symbols, Funcp is a set (disjoint with Predp) of
function symbols, and Arp is the arity function, assigning to each predicate or function
symbol a natural number called the arity of the symbol. The function symbols F with
Arp(F) = 0 are called object or individual constants. The predicates symbols P for
which Arp(P) = 0 are called truth constants.®

65The rdles of nullary predicates of 7 and nullary connectives of £ are analogous, even though the values
of the former are only fixed under a given interpretation of the predicate language, while the values of the
latter are fixed under all such interpretations. The ambiguity of the term truth constant (see Definition 3.2.1
and Section 2.2.3) is thus a harmless abuse of language.
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P-terms and (atomic) P-formulae of a given predicate language are defined as in
classical logic (note that the notion of formula also depends on propositional connectives
in £). A P-theory is a set of P-formulae. The notions of free occurrence of a variable,
substitutability, open formula, and closed formula (or, synonymously, sentence) are de-
fined in the same way as in classical logic. Unlike in classical logic, in fuzzy logics
without involutive negation the quantifiers V and 3 are not mutually definable, so the
primitive language of LV has to contain both of them.

There are several variants of a first-order extension of a propositional fuzzy logic L
that can be defined. Here we shall introduce the first-order logics LV™ and LV (of models
over general resp. linear algebras); later we shall extend the family by considering the
logics LYY and LV® of, respectively, witnessed and standard models. The axiomatic
systems of the logics LV™ and LV are defined as follows:

DEFINITION 5.1.2. Let L be a (/\-)core fuzzy logic and P a first-order language. The
logic LY™ has the following axioms:

(P) Instances of the axioms of L (with P-formulae substituted for
propositional variables)

(V1) (Vx)p(x) — ¢(t), where the P-term ¢ is substitutable for  in ¢
(31) o(t) = (Fz)p(x), where the P-term ¢ is substitutable for x in ¢
(V2) (Vx)(x = ¢) = (x — (Vx)p), where z is not free in x
(32) (Vz)(p — x) = ((3x)p — x), where z is not free in x.

The deduction rules of LN™ are those of L and the rule of generalization:
(Gen) From ¢ infer (V).

The logic LV is the extension of LV™ by the axiom:
(V3) (Vz)(x V@) = x V (Va)p, where z is not free in .

The notions of proof and provability are in first-order fuzzy logics defined in the
same way as in first-order classical logic. The fact that the formula p is provable in LY™
from a theory T will be denoted by T ‘-1 y= @, and analogously for LV, in a fixed context
we can write just T .

A general theory of first-order non-classical logics was first given by H. Rasiowa
in [159]. Her first-order extension of a given Rasiowa-implicative logic (see Defini-
tion 3.3.1) was axiomatized analogously to LV™, only the axioms (V2) and (32) were re-
placed by the corresponding rules. It can be shown that in the context of (A)-core fuzzy
logic these two axiomatizations coincide (for the proof of an even more general formu-
lation of this claim see Chapter II). The superscript ‘m’ stands for ‘minimal’, as LV™ is,
in a sense, the weakest first-order extension of L: as will be seen in Section 5.2, LY™
is sound and complete w.r.t. first-order models built over arbitrary L-algebras.

However, the axioms of LV™ are not strong enough to ensure the completeness
w.r.t. first-order models over linear L-algebras—i.e., the linear completeness theorem,
common to all fuzzy logics. This is why it is needed to add the axiom (¥3), which is
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| Logic | I-defin. [ (V3)-elim. |
G, II, WNM (and weaker logics) No No
IMTL, NM Yes No
G~,SBL. Yes ?
L. (and stronger logics) Yes Yes

Table 6. 3-definability and (V3)-eliminability in prominent first-order fuzzy logics LY

valid in all models over linear L-algebras (though not generally in models over arbitrary
L-algebras) and ensures the linear completeness theorem for the resulting logic LY.
This makes LV the ‘natural’ first-order extension of a given (A)-core fuzzy logic L.
Consequently, this first-order logic is denoted as LV with no superscript, though its
more systematic denotation would be L*. Finally let us note that in the context of
mathematical fuzzy logic, the logics Lv™ were rediscovered by P. Hajek in [84], denoted
there by LV ™.

The following two notions distinguish logics for which the axiomatic systems of
LV™ and LV can be simplified.

DEFINITION 5.1.3. Let L be a (A\-)core fuzzy logic. We say that:
o The logic LY has (¥3)-eliminability if axiom (V3) is redundant, i.e., if LV™ = LV.

o The logic LV has 3-definability if there is a (definable) unary connective ~ in the
language of L such that 1y (3x)p < ~(Va)~ep.

If a unary connective ~ such that ¢ — @ F1, ~ — ~p and F1, ¢ & ~~p
(i.e., ~ is an involutive negation) is definable in the language of a (A-)core logic L,
then LV has J-definability. If LV has 3-definability, then the axioms (31) and (32)
are redundant. Table 6 contains known facts on 3-definability and (¥3)-eliminability in
particular t-norm based logics.

Let us list some important theorems that are provable in all logics LV™. For their
proofs in MTL or BL see [53, 83]; their proofs in a weaker setting can be found in
Chapter II.

THEOREM 5.1.4. Let L be a (A-)core fuzzy logic and P a predicate language. Let o,
1, x be P-formulae, x a variable not free in x, and =’ a variable not occurring in .
The following P-formulae are then theorems of LV™:

(TV1) x < (Va)x
(Tv2) (Fz)x < x
(Tv3)  (Va)p(z) <> (Va')p(a’)
(Tv4)  (Bx)e(x) <> (32)p(z')

66The fact was first observed for Godel logic by Horn in [115].
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(Tvs) (Vo) (Vy)p < (Vy)(Va)p

(Tv6)  (Fz)(3y)e <> (Jy)(3z)p

(Tv7)  (V2)(p = ) = ((Vz)p — (Vo)1)
(TV8) (Vo) (¢ = ¢) = ((Bx)p — (Fz)Y)
(TV9)  (x = (Vo)p) < (Vz)(x = )
(TV10)  ((3z)p — x) ¢ (Vo) (¢ — X)
(TV11)  (32)(x = ») = (x = (F2)p)
(Tv12)  (3z)(¢ — x) = ((Va)¢ — X)
(TV13)  (Va)p A (Yo)Y < (Y2)(p A9)
(TV14)  (F2)(p VYY) < (Fz)p Vv (F2)¢
(TV15)  (Vz)e Vx — (Vz)(p V X)

(TV16)  (F2)(p AX) = (Fv)p A x
(TV17)  (F2)(p & x) ¢ Fr)p & x

(TV18)  (Jz)(¢™) < ((Bx)p)"

(TV19)  (Fz)p — -(Vz)—p

(TVv20) —(3Fz)p < (V).

The implication converse to (TV11) is provable in LNY™ and 11V, but not in GV. The
implications converse to (TV12) and (TV19) are provable in ¥N™, but neither in GY
nor 11v.

Finally, the formula (3x)p A x — (3z)(p A X) is a theorem of LY for any L.

Some syntactic metatheorems known from propositional fuzzy logics hold analo-
gously for first-order fuzzy logics:¢’

THEOREM 5.1.5. Let P be a predicate language.

1. Let L be a /\-core fuzzy logic, x a P-formula and X' a P-formula obtained from
X by replacing some occurrences o by 1. Then

peoyPExex.
(The intersubstitutivity for LY™ and LV)

2. Let T be a theory, p(x) a P-formula, and c a constant not occurring in T U {p}.
Then T+ o(c) if T + ¢(z). (The constants theorem for LY™ and 1Y)

3. Let L be a core fuzzy logic. Then for each theory T and sentences @,1), the
following holds: T, ¢ \= 1 iff there is natural n such that T = @™ — .
(The local deduction theorem for LV™ and LY)

87For details see Chapter II or [98].
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4. Let L be a A-core fuzzy logic. Then for each P-theory T and P-sentences @, ),
the following holds: T,p F Y iff T = AN — .
(The A-deduction theorem for LV™ and LV)

5. Consequently, let L. be (\-)core fuzzy logic, T a P-theory, and , 1), x P-senten-
ces. Then the following metatheorems hold for LV :

(a) If T, o xand T, v+ x, then T, o V 1 F x. (The proof by cases property)

b) If T,o =Yt xandT,yp — ot x, thenT F x.
(The semilinearity property)

The following theorem demonstrates that in (A-)core fuzzy logics one can conser-
vatively introduce Skolem functions in a similar manner as in classical logic. (The def-
inition of conservative extension in first-order fuzzy logics is analogous to the classical
definition.)

THEOREM 5.1.6. Let L be a core fuzzy logic, P a predicate language, o(y, x1, ..., %)
a P-formula, T a P-theory such that T Fry (3y)e(y,1,...,2xs), and F, a function
symbol of arity n not present in P. Then the (P U {F,})-theory

T =TU{o(Fp(z1,...,20n),T1,..., %)}
is a conservative extension of T over LV.

The analogous theorem holds, with one small modification, for A-core fuzzy logics.

THEOREM 5.1.7. Let L be a A-core fuzzy logic, P a predicate language, T a P-theory,
oy, 21, ..., 2n) a P-formula such that T by (3y)Ae(y, x1,...,2y), and Fy, a func-
tion symbol of arity n not present in P. Then the (P U {F,})-theory

T =TU{o(Fy(1,...,2n),1,...,%n)}
is a conservative extension of T over LV.

5.2 Semantics

In this subsection, we shall introduce the general and linear semantics of predi-
cate fuzzy logics, corresponding to the axiomatic systems LV™ and LV, as well as the
logics LV® and LYY, corresponding to the (more restrictive) semantics of standard and
witnessed predicate models.

5.2.1 Basic definitions and completeness theorems

Now we shall look at the semantics of first-order fuzzy logics. To simplify the for-
mulation of upcoming definitions let us fix: a (A\-)core fuzzy logic L in a propositional
language L, a predicate language P = (Pred, Func, Ar), and 