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I. INTRODUCTION

Characteristic features observed in temporal develop-
ment of slope movement activity had been proposed for
evaluation of rock slope stability in 1968 by Bjerrum &
Jorstadt [1] in order to overcome shortcomings of static
models. Since then this observational method has been
successfully applied for short term prediction of rock
slope collapses with prediction horizons ranging from
days to weeks (see [2] and references therein). Zvelebil
& Moser [2] have recently demonstrated a successful pre-
diction of a sandstone rock wall collapse two months be-
forehand. Moreover, they also show examples when slope
dynamics seems to bear predictive information about a
possible collapse one or more years in advance. This long
term prediction, however, was based on rather subjec-
tive, experienced experts’ evaluation of qualitative fea-
tures observed in long term monitoring of slope move-
ments. If such long term predictive information exists
in the slope movements records, it would be desirable
to find an objective, quantitative method for its extrac-
tion and evaluation. Zvelebil [3–5] had observed com-
plex hierarchical patterns in long term slope movement
records and has proposed to analyse them using modern
methods developed in the theory of nonlinear dynamics
and deterministic chaos. Qin et al. [6] have recently de-
scribed landslide evolution using a nonlinear dynamical
model exhibiting chaotic behavior. Lyapunov exponents,
predictable timescales and stability criteria are evaluated
using this model, which has been estimated from the ob-
served landslide data [6].

In this paper rock slope dynamics, registered as time
series of dilatometric measurement of relative displace-
ments on rock cracks, are analysed. A series of nonlin-

earity tests is performed using raw and preprocessed data
registered at stable and unstable sandstone slopes. Rela-
tions between slope movements and dynamics of meteoro-
logical variables are also tested. Atmospheric variability
and seasonality explain a large portion of slope move-
ment variance. The response to the atmospheric driving
as well as the inherent dynamics of rock slopes lack any
significant nonlinearity, so any hypothesis of the pres-
ence of chaotic dynamics would be unfounded. The in-
herent slope dynamics, however, are far from being triv-
ial noninformative noises. The residuals obtained from
the slope movement series by removing meteorological
influences are fat-tailed non-Gaussian fluctuations, with
short-range correlations in the case of stable slopes. The
fluctuations of unstable slopes exhibit self-affine dynam-
ics of fractional Brownian motions with power-law long-
range correlations and are characterized by an asymp-
totic power-law probability distribution with a decay co-
efficient outside the range of stable Lévy distributions.

The analysed data are described in Sec. II. Section III
describes the preprocessing of the data, separation of the
atmospheric variability reflected in the slope dynamics
and the nonlinearity tests used for testing the hypothe-
sized nonlinearity in the slope movement dynamics and
their relations to dynamics of meteorological variables.
Distribution and correlation properties of the residuals
after removal of atmospheric influences are analysed in
Sec. IV by using standard methods such as estimation
of histograms and periodograms, as well as by using the
detrended fluctuation analysis [17]. The results are dis-
cussed and conclusion given in Sec. V.
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II. DATA

Displacements of rock masses - mainly crack openings
- were measured by rod dilatometers on kinematically
and functionally defined key-sites of unstable and po-
tentially unstable rock objects and parts of sandstone
rock walls which heights range from 40 to 100 meters.
The sites form a safety monitoring net above the main
road to the Czech Republic – Germany border crossing
point Hřensko – Schmilka near the city of Děč́ın. The
total length of the net is over 12 kilometers, and, by
more than 400 measuring sites it covers 100 rock objects
[3–5]. Irregularly registered measurements form time se-
ries with sampling times ranging from a few days to ap-
proximately two weeks. The available time series span
the period from January 1984 (or November 1995) to
June 2000, thus producing series of lengths from 480 to
612 samples. An engineering geology expert divided the
available, large collection of time series into two groups.
“Stable series” were obtained from slopes where no pat-
terns signalling danger of a rapid slope collapse have been
identified, despite some of the monitored slopes exhibit-
ing irreversible, long-lasting movements. The “unstable
series” were recorded on slopes which recently either col-
lapsed or were blasted-down after being assessed as ap-
proaching a collapse stage. After careful sorting of the
data, the majority of recordings were excluded due to in-
completeness (large gaps in recordings) and the remain-
ing 4 unstable and 5 stable series have been analysed.
The examples of the raw data are presented in Fig. 1
(Fig. 1 a-c stable, d,e unstable series). Since most of
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FIG. 1. Time series of dilatometric measurements of rela-
tive displacements on rock cracks on stable (a–c) and unstable
(d, e) sandstone slopes.

time series analysis methods require a regular sampling,
the series were resampled by a linear interpolation using
a procedure in a time series software package [13]. The
obtained 1024 samples were used in further analyses. In
parallel, a nonlinearity test for unevenly sampled data
[14] was also applied to the raw data.

Some of the time series (both stable – Fig. 1c – and
unstable – Fig. 1d) contain a long-term linear trend.
Such a clear nonstationarity could influence analyses and
therefore the series were linearly detrended [13]. The
linearly detrended time series (Fig. 2a,b) can still contain
slow nonlinear trends. It is not clear a priory, however,
whether such nonlinear trends are a part of the dynamics
under interest, or should be also removed. Therefore two
versions of detrended time series were used in subsequent
analysis: linearly detrended, such as the examples in Fig.
2a,b; and high-pass filtered series in which frequencies
over 1.3 cycle/year were removed. Spectral as well as
time-domain filters [13] were tested and similar results
were obtained.
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FIG. 2. Linearly detrended time series of dilatometric mea-
surements of relative displacements on rock cracks on stable
(a) and unstable (b) sandstone slopes. Time series of atmo-
spheric temperature (c), humidity (d) and precipitation (e) in
the region.

The dynamics of the series are dominated by an annual
cycle probably caused by atmospheric influences, mainly
by the temperature [3]. Thus the atmospheric variables
should be considered in the analyses. Since time series
of meteorological data (atmospheric temperature, Fig.
2c, humidity, Fig. 2d, and precipitation, Fig. 2e) were
not measured simultaneously on the same sites as the
dilatometric data, they were obtained by concatenating
records from the two nearest meteorological stations in
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the region: Děč́ın and Úst́ı nad Labem. Thus we have
obtained complete daily data spanning the studied pe-
riod. For each dilatometric record, time series of the
meteorological data with the same sampling were con-
structed and resampled by the same way as the dilato-
metric data. We realize that the meteorological data, es-
pecially the amounts of precipitation, are characterized
by a high spatial variability, so we should use these data
cautiously.
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FIG. 3. Testing for nonlinearity in the relationship between
atmospheric temperature and the detrended unstable dilato-
metric time series using mutual information I(X(t); Y (t+ τ))
(b,d) and the check of the surrogate data using linear mu-
tual information L(X(t); Y (t + τ)) (a,c). The values of mu-
tual information (a,b) from the tested data (solid line), mean
(dash-and-dotted line) and mean±SD (dashed lines) of a set
of 30 realizations of the surrogate data. The statistics – differ-
ences in number of standard deviations (SD) of the surrogates
(c,d).

III. TESTING FOR NONLINEARITY

The test for nonlinearity in univariate [7] and mul-
tivariate data [8] operates with information-theoretic
tools [11] such as the well-known mutual information
I(X; Y ) of two random variables X and Y , given as
I(X; Y ) = H(X)+H(Y )−H(X, Y ), where the entropies
H(X), H(Y ), H(X,Y ) are given in the usual Shannon-
ian sense [11]. Now, let the variables X and Y have zero
means, unit variances and correlation matrix C. Then,
we define a linear version of the mutual information as
L(X; Y ) = −1/2 log(σ1 + σ2), where σi are the eigenval-
ues of the correlation matrix C.

If the variables X, Y have a 2-dimensional Gaussian
distribution, then L(X; Y ) and I(X;Y ) are theoretically
equivalent. The general mutual information I detects
all dependences in data under study, while the linear L
is sensitive only to linear structures (see [7] and refer-
ences therein). The used test is based on the so-called
surrogate-data [9] approach, in which one computes a
nonlinear statistic (here I) from data under study and
from an ensemble of realizations of a linear stochastic
process, which mimics “linear properties” of the studied
data. If the computed statistic for the original data is
significantly different from the values obtained for the
surrogate set, one can infer that the data were not gen-
erated by a linear process. For the purpose of such tests
the surrogate data must preserve the spectrum and con-
sequently, the autocorrelation function of the series under
study [9]. (Also, preservation of histogram is usually re-
quired. A histogram transformation used for this purpose
is described in [7] and references within.) In the multi-
variate case also cross-correlations between all pairs of
variables must be preserved. [10].

Like in [7] we define the test statistic as the difference
between the mutual information I(X; Y ) obtained for the
original data and the mean I(X; Y ) of a set of surrogates,
in the number of standard deviations (SD’s) of the lat-
ter. The result is considered significant if the difference is
clearly larger than 2 SD. In this study we apply the uni-
variate version I(X(t); X(t+τ)) when dynamical proper-
ties and nonlinearity of individual series (variables) were
studied, and the bivariate version I(X(t); Y (t+τ)) when
dynamical relations between two variables were investi-
gated. The mutual information I(X; Y )[o] from the scru-
tinized data and the mean mutual information I(X; Y )[s]
from the surrogates, as well as the test statistics, defined
above, were plotted as functions of lag τ . Significant dif-
ferences found between I(X;Y )[o] and I(X;Y )[s] were
used to infer nonlinearity in dynamics of a variable (in
the univariate case), or in a relation between two vari-
ables (in the bivariate case). The same tests as using
the (nonlinear) mutual information I(X;Y ) have been
done with its linear version L(X; Y ). Since the latter
measures only linear relations in the data, any signifi-
cance obtained using L(X; Y ) indicates imperfect surro-
gate data. In such cases the significant results obtained
using I(X; Y ) should be assessed carefully, since they can
reflect just a flaw in the surrogates and the tested data
could be linear.

A typical result of the above described testing ap-
proach can be seen in Fig. 3, where the relation be-
tween the atmospheric temperature and the detrended
unstable dilatometric time series is studied. The mutual
information I(X(t); Y (t + τ)) detects a strong periodi-
cally changing dependence which seems to be stronger
in the data than it is in the linear surrogates (Fig.
3b). This deviation is reflected in statistically signifi-
cant differences reaching over 4SD (Fig. 3d). Conclud-
ing that the data are nonlinear is prevented by the results
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from the linear statistic based on the linear redundancy
L(X(t); Y (t+ τ)). It also discovers significant differences
between the data and the surrogates, i.e., the surrogates
do not exactly preserve the linear properties of the data.
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FIG. 4. Testing for nonlinearity in the relationship between
atmospheric temperature and the residuals of the multilin-
ear regression of the detrended unstable dilatometric time se-
ries on the meteorological variables, using mutual information
I(X(t); Y (t + τ)) (b,d) and the check of the surrogate data
using linear mutual information L(X(t); Y (t + τ)) (a,c). See
caption of Fig. 3 for the line codes.

Similar results have also been obtained in tests for non-
linearity in relations between the other meteorological
variables and the dilatometric data and in testing the
dilatometric data themselves.

The fact that surrogates of strongly cyclic data can
be flawed has been observed and described (see, e.g., [7]
and references therein). One can use more sophisticated
(and computationally costly) methods for construction
of better surrogate data [12], or try to remove the cyclic
component from the studied data. Since the atmospheric
source of this annual cyclicity in the studied data can
be expected, in the following we fit a multivariate lin-
ear regression [13] using the meteorological data as in-
dependent variables and the dilatometric series as the
dependent variable. The maxima of mutual information
between the atmospheric variables and the dilatometric
series are located in zero lag, so series without lagging
are used in this first series of regressions. The regres-
sion residuals are used in further analyses. The results of
nonlinearity tests of the residuals are similar to those in
Fig. 3, but the dependence is weaker, i.e., the annual cy-
cle was removed only partially. The relation between the
residuals and the atmospheric temperature can be seen
in Fig. 4. Practically, all the above conclusions hold,
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FIG. 5. Testing for nonlinearity in the residuals of the
triple linear regression of the detrended unstable dilatomet-
ric time series on the meteorological variables, using mutual
information I(X(t); X(t + τ)) (b,d) and the check of the sur-
rogate data using linear mutual information L(X(t); X(t+τ))
(a,c). See caption of Fig. 3 for the line codes.

only the maximum of I(X(t); Y (t + τ)) is now in lag 17
samples. Therefore another linear regression, now with
lagged temperature series was performed twice - first with
the lag 17 samples and then with the lag 21 samples.
Residuals of all dilatometric series regressed on meteo-
rological variables were twice more regressed on lagged
temperature series with lags determined from such analy-
ses as presented in Fig. 4. These triple regressions finally
removed the annual cycle and in a majority of the stable
dilatometric series also any formal nonlinearity (signifi-
cance in the nonlinearity tests). The results of nonlin-
earity analysis of the residuals from the triple regression
for one of the unstable dilatometric series are presented
in Fig. 5. The annual cycle is removed and there is a
weak, however, long-term dependence apparent between
the present (X(t)) and the future values (X(t+τ)) of the
studied series. Again, both linear and nonlinear statistics
bring significant differences from the surrogate data. It
is time to consider a more sophisticated construction of
surrogate data than just the simple phase randomization
and FFT as above. In order to avoid possible problems
due to resampling we have returned to the raw data and
applied the method of Schreiber & Schmitz [14]. In this
approach, surrogate data of unevenly sampled series are
constructed using the Lomb periodogram and a combi-
natorial optimization for its inversion. No significant re-
sults, i.e., no evidence for nonlinearity have been found
in the studied data.

Summing up the above results we can see that the dy-
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namics of the dilatometric measurements of relative dis-
placements on rock cracks is strongly modulated by the
meteorological variables. Their influence, namely that of
the atmospheric temperature is reflected in a complex,
but linear way. The inherent dynamics of the rock slopes,
reflected in the residuals of the triple regressions is prob-
ably linear, but, especially in the cases of unstable slopes,
cannot be explained by a (transformed) linear Gaussian
process, used as the null hypothesis in the above nonlin-
earity tests. In the next section we will analyse properties
of these residuals.

IV. DISTRIBUTIONS AND TEMPORAL
CORRELATIONS

In order to study distributions of the residuals (ob-
tained by the above-described multiple linear regressions)
we first bin the data into 64 bins and construct their
histograms. Then, by summing the bins from the tail
to the mean value we obtain the empirical probability
P (|x| > X) to observe amplitudes larger than a given
value X (where x is a deviation from the mean value).
The examples of P (|x| > X) for a stable and unstable
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FIG. 6. The empirical probability P (|x| > X) to observe
amplitudes larger than a given value X (where x is a deviation
from the mean value) for the triple regression residuals of
an example of a stable (a) and unstable (b) time series of
dilatometric measurements. Diamonds and squares illustrate
left and right sides of the distribution. The solid line shows
the average distribution of 105 realizations of 1024-sample
time series randomly drawn from the Gaussian distribution
with the same mean and variance as the residuals under study.

dilatometric series are presented in Figs. 6a and 6b,
respectively. The distributions are asymmetric, with a
small digression from the Gaussian distribution in the
stable case (Fig. 6a). For the unstable series (Fig. 6b)
one tail is much “fatter” than the Gaussian distribution,
i.e., large fluctuations are more likely to occur than the
Gaussian distribution would predict. Moreover, this tail

is consistent with a power law P (|x| > X) ≈ X−µ show-
ing the increasing reduction of probability for increasing
amplitude of the fluctuations. The robust linear regres-
sion [15] fit yields an estimate µ = 4.8, which is well out-
side the range for stable Lévy distributions (0 < µ < 2)
[16].
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FIG. 7. Power spectra of regression residuals of an example
of stable (a,b) and of unstable (c,d) time series of dilatomet-
ric measurements. Single (a,c) and double (b,d) logarithmic
plots.

In order to study the dynamics and temporal corre-
lations of the residuals we calculate their power spectra
[13]. The examples for stable (Figs. 7a,b) and unstable
(Figs. 7c,d) dilatometric data are plotted in single (log-
arithm of power against frequency, Figs. 7a, c) and dou-
ble (logarithm of power against logarithms of frequency,
Figs. 7b,d) logarithmic plots. The power spectrum of
the stable series (Figs. 7a,b) decays in a linear fashion
in the case of the single logarithmic plot (Fig. 7a), i.e.,
the spectral power S(f) as a function of the frequency
f is best described by an exponentially decreasing curve
S(f) ≈ exp(−γf). Such a power spectrum is typical
for series with short-range correlations, i.e., the corre-
lation function exponentially decreases with increasing
time lags. The behavior of the spectrum of the unstable
series is different – now an approximately linear decrease
can be seen in the double logarithmic plot (Fig. 7d).
This spectrum is best approximated by a power law de-
cay S(f) ≈ f−β . The robust linear regression fit over the
whole spectrum yields an estimate β = 1.5 ± 0.6. Such
a power spectrum is a characteristic of fractal Brownian
motion with long-term power-law correlations.

In addition to scaling of the distribution of fluctuations
and of the distribution of energy over the power spec-
trum, we also study a possible scaling of fluctuations in
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their temporal evolution using so-called detrended fluc-
tuation analysis (DFA, [17]).

Briefly, for performing the DFA, the time series
{x(i), i = 1, . . . , N} is centered by subtracting its mean
value x̄ and integrated. The integrated time series y(k) =∑k

i=1[x(i) − x̄] is divided into boxes of equal length, L.
In each box of length L, a least squares line is fitted to
the data (representing the trend in that box). The y
coordinate of the straight line segments is denoted by
yL(k). Next, we detrend the integrated time series, y(k),
by subtracting the local trend, yL(k), in each box. The
root-mean-square fluctuation of this integrated and de-
trended time series is calculated by

F (L) =

√√√√ 1
N

N∑

k=1

[y(k)− yL(k)]2 (1)

This computation is repeated over all time scales (box
sizes L) to characterize the average fluctuation F (L) as
a function of box size L. Typically, F (L) will increase
with box size L. A linear relationship on a double loga-
rithmic plot indicates the presence of power law (fractal)
scaling. Under such conditions, the fluctuations can be
characterized by a scaling exponent α, the slope of the
line relating log F (L) to log L.
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FIG. 8. Power spectra (a,b) and results of the detrended
fluctuation analysis (c–e) for the residuals of the single (c) and
triple (a,d) regression of the linearly detrended time series of
dilatometric measurements on an unstable slope; and of the
triple regression of the high-pass filtered unstable dilatometric
series (b,e).

The DFA results obtained for the residuals of the lin-
early detrended unstable dilatometric series, obtained

from the single multivariate linear regression on the me-
teorological variables, are presented in Fig. 8c. (The
related power spectrum was illustrated in Fig. 7d). The
long range of a linearly increasing dependence in the dou-
ble logarithmic plot (Fig. 8c) confirms the presence of
nontrivial long-term correlations and scaling of the fluc-
tuation variance as F (L) ≈ Lα. In order to test this
behavior also in the residuals of the dilatometric data af-
ter further processing we apply both the spectral analy-
sis and DFA to the residuals after triple regressions with
lagged temperatures (Fig. 8a – power spectrum, 8d –
DFA) and to the triple regression residuals obtained from
the high-pass filtered dilatometric series (Fig. 8b – power
spectrum, 8e – DFA). The triple regression only removed
the rest of the annual peak (located at position about -4
in the logarithmic frequency scale, cf. Figs. 7d and 8a),
and the high-pass filtering removed all slow frequencies
well over the annual peak (Fig. 8b), otherwise the scaling
behavior did not changed. Looking at these results it is
probable that the slow fluctuations (“nonlinear trends”
with periods larger than 1 year) are not caused by exter-
nal forces, but are a part of the same fractal fluctuations
as those on higher frequencies.

Our main interest in this study is a distinction between
the stable and unstable slopes, which has been found to
be on a qualitative level. Thus, at this stage we do not
need to obtain estimates of the scaling exponents α and
β. It is appropriate, however, to check their consistency
using their relation [18]

β = 2α− 1. (2)

Estimates of the fluctuation coefficient α range between
0.9 and 1.1, while the spectral decay coefficient β from
the whole spectrum is approximately 1.5 with a large
variance leading to the standard deviation equal to 0.6.
More detailed study can find two different scaling regions
in the power spectra (Figs. 7d, 8a,b), with scaling β ≈ 2
and β between 1.3 and 1.7 in the high and low frequency
bands, respectively. Similarly, the DFA plots yield the
scaling coefficients α = 0.9 and α = 1.1 for the low and
high frequency regions, respectively. Although the vari-
ance of the spectral estimates is very high, there seems
to be an inconsistency with respect to relation (2). It
can, however, be related to the finding of Malamud and
Turcotte [19] that for time series of limited length, as in
our case, the relation (2) holds only for −1 < β < 1.
Still we have a possibility to check the consistency of the
scaling exponents using the knowledge that for self-affine
series, their integration increases the spectral decay coef-
ficient by 2. And vice versa, derivation shifts β to β − 2
[19]. Therefore we construct differenced series from the
both types of residuals (of the single multivariate regres-
sion and the triple regression with the lagged temper-
atures) and plot their power spectra and DFA results
in Fig. 9. This operation also made a sharp distinc-
tion between the two different scaling regions in both the
power spectra (Figs. 9a,b) and the DFA results (Figs.
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FIG. 9. Power spectra (a,b) and results of the detrended
fluctuation analysis (c,d) for the differenced residuals of the
single (a,c) and triple (b,d) regression of the linearly de-
trended time series of dilatometric measurements on an un-
stable slope. Thin curves in (a,b) and points in (c,d) are the
results of the respective methods, thick solid lines in all fig-
ures are fitted robust linear regressions in particular scaling
regions.

9c,d). The high-frequency scaling region starts at peri-
ods of approximately four weeks (29.5 days; 0.699 in the
decadic logarithmic (log10) scale, which corresponds to
value L = 5 samples. The irregularly sampled series rep-
resenting 6026 days was regularly resampled into 1024
samples, thus giving the time 5.885 days per sample.)
The region ends at the period of 11 weeks (76.5 days, 13
samples, or 1.114 in the DFA log10 scale in Figs. 9c,d).
This is consistent with the finding in the power spectra
(Figs. 9a,b) where the scaling changes at the point -2.549
(natural logarithm (loge) scale). This gives the frequency
0.078 cycle/sample, or a period of 12.79 samples. The
low-frequency scaling region spans to periods of about
580 days (ending shortly before 2 in the log10 DFA scale
or about -4.6 in the loge frequency scale). The scaling
exponents, obtained by the robust linear regression are
β1 = −0.57± 0.5 and β2 = −0.07± 0.5; α1 = 0.28± 0.01
and α2 = 0.55 ± 0.01, for the low and high frequency
regions, respectively, for the differenced residuals of the
single multivariate linear regression (Fig. 9a,c). The re-
sults for the differenced residuals of the triple regression
(Fig. 9b,d) are β1 = −0.8 ± 0.4 and β2 = −0.09 ± 0.6;
α1 = 0.22 ± 0.01 and α2 = 0.49 ± 0.01. The results
from other dilatometric series from unstable slopes are
very similar. The related scaling exponents α and β are,
within the variance of their estimates, consistent accord-
ing to relation (2).

V. DISCUSSION AND CONCLUSION

Complex hierarchical patterns observed in long term
slope movement monitoring records [3–5] might resem-
ble an evolution of a nonlinear system with a chaotic
attractor. The necessary condition for the hypothesis of
deterministic chaos is nonlinearity of the system under
study. Our thorough analysis of time series of dilato-
metric measurements on rock cracks, representing the
slope movements did not, however, bring any evidence
for nonlinearity neither in the intrinsic slope dynamics
nor in their relations to the dynamics of meteorological
variables (atmospheric temperature, humidity and pre-
cipitation). The atmospheric variability and seasonal-
ity has a strong influence on the slope dynamics and is
reflected in the dilatometric series by a nontrivial, but
linear way. In particular, at least two delay mecha-
nisms are present, that is, the temperature annual cycle
can be regressed onto the dilatometric series with one
zero and two nonzero time lags. The residuals obtained
from the dilatometric series by removing the meteorolog-
ical influences are asymmetrically distributed fat-tailed
non-Gaussian fluctuations with short-range correlations
in the case of stable slopes. The distributions of the
residuals obtained from the dilatometric measurements
on unstable slopes are, on their “fatter” side, character-
ized by an asymptotic power-law distribution with decay
coefficients between 4 and 5, i.e., outside the range of
the stable Lévy distributions (0 < µ < 2) [16]. When the
fluctuations are of this type, the dynamics is intermittent
and high order moments diverge. Further, the dynamics
of the unstable slopes possesses persistent long-range cor-
relations of self-affine processes. Two scaling regions have
been identified consistently by both the spectral analysis
and the detrended fluctuation analysis. On time-scales
between 4 and 11 weeks the persistence is characterized
by the spectral decay coefficient β ≈ 2 which corresponds
to a Brownian motion. Time scales from 11 weeks to al-
most two years are described by the spectral decay coeffi-
cient β ≈ 1.5 which corresponds to a fractional Brownian
motion.

Fluctuations with hyperbolic intermittency and scal-
ing spectra are expected to occur due to the action of
cascade processes transferring energy from large to small
scales [16]. This finding could support the proposal of
Zvelebil [4,5] to model the dynamics of a rock slope col-
lapse preparation by a hierarchically structured, com-
plex non-equilibrium system which might show at least
two different types of behavior on two different scaling
ranges. From the practical point of view, however, the
most promising result is the qualitative difference found
between the way of correlation decay in the dynamics
of stable and unstable slopes (Fig. 7). Nevertheless,
the preliminary character of this result should not be
neglected and further studies are necessary before any
generalization. It should be established how a particular
geometry and geology of a slope determine the slope dy-
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namics and under which conditions the fractal dynamics
can serve as a precursor of unstability. The other interest-
ing question is whether the observed scaling propagates
also into shorter time scales. Therefore, it is desirable
to analyse higher-frequency data than those used in this
study. In the case of a positive answer, engineering geol-
ogy could obtain a powerful tool for assessing the stability
of rock slopes from a relatively short-term monitoring of
the slope dynamics.
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