On the complexity of validity degrees in Łukasiewicz logic

Zuzana Haniková

Institute of Computer Science of the Czech Academy of Sciences

Computability in Europe, Salerno (online), July 1, 2020

A semantics for Łukasiewicz logic L_{ω}

MV-terms: function symbols $\{\oplus, \neg\}$ on a countably infinite set of variables.

Domain: the interval [0, 1] of the reals. Interpretation of symbols:

$$x \oplus y = \min(1, x + y)$$
$$\neg x = 1 - x$$

The algebra $[0, 1]_{L} = \langle [0, 1], \oplus, \neg \rangle$ is an intended semantics of L_{ω} . The only designated value is 1 (the top element).

The subalgebra on $\{0,1\}$ is (isomorphic to) the two-element Boolean algebra $\{0,1\}_{\rm B}.$

Definable symbols:

•
$$x \odot y$$
 is $\neg(\neg x \oplus \neg y)$;
• $x \lor y$ is $(x \to y) \to y$ and $x \land y$ is $\neg(\neg x \lor \neg y)$;
• $x \to y$ is $\neg x \oplus y$;
• $x \equiv y$ is $(x \to y) \odot (y \to x)$.
• x^n is $\underbrace{x \odot \cdots \odot x}_{n \text{ times}}$ and nx is $\underbrace{x \oplus \cdots \oplus x}_{n \text{ times}}$.
• $\underbrace{x^n \text{ is } x \odot \cdots \odot x}_{n \text{ times}}$ and nx is $\underbrace{x \oplus \cdots \oplus x}_{n \text{ times}}$.

McNaughton functions

Denote f_{φ} the function defined by the term φ in $[0, 1]_{L}$.

A function $f: [0, 1]^n \rightarrow [0, 1]$ is a McNaughton function if

- f is continuous
- *f* is piecewise linear: there are finitely many linear polynomials {*p_i*}_{*i*∈*I*}, with *p_i*(*x̄*) = ∑ⁿ_{*j*=1}*a_{ij} x_j* + *b_i*, such that for any *x̄* ∈ [0, 1]ⁿ there is an *i* ∈ *I* with *f*(*x̄*) = *p_i*(*x̄*)
- the polynomials p_i have integer coefficients \bar{a}_i , b_i .

Theorem [McNaughton 1951]

Term-definable functions of $[0, 1]_{t}$ coincide with McNaughton functions.

Completeness

Axioms for L_{ω} (with \neg and \rightarrow): $x \rightarrow (y \rightarrow x)$ $(x \rightarrow y) \rightarrow ((y \rightarrow z) \rightarrow (x \rightarrow z))$ $(\neg y \rightarrow \neg x) \rightarrow (x \rightarrow y)$ $((x \rightarrow y) \rightarrow y) \rightarrow ((y \rightarrow x) \rightarrow x)$

Completeness of L_{ω} w.r.t. $[0, 1]_{L}$:

- tautologies of [0, 1]_L coincide with theorems
- finite consequence relation coincides with provability from finite theories

[Rose and Rosser 1958; Chang 1958-59]

 $[0, 1]_{L}$ provides a semantic method of investigating complexity of L_{ω} .

Rational constants

By McNaughton theorem, constant functions (bar 0 and 1) are not term-definable. One can implicitly define any rational constant in $[0, 1]_{L}$.

 $x = \neg x$

has a unique solution 1/2, so under a theory with the schema $x \equiv \neg x$, the value of x is fixed at 1/2.

More generally, $x \equiv (\neg x)^{n-1}$ definex 1/n; then m/n becomes term definable as mx. [Torrens 1994; Gispert 2002; Hájek 1998]

Expansion of language with constants

RMV-terms: MV-language expanded with constants for rationals in [0, 1].

 $[0,1]^Q_{\mathsf{L}} = \langle [0,1], \oplus, \neg, \{r \mid r \in Q \cap [0,1] \} \rangle.$

"Rational Pavelka Logic" (RPL) expands L_{ω} with some axioms for constants. The algebra $[0, 1]_{t}^{Q}$ captures theorems and provability from finite theories in RPL. [Pavelka 1979; Hájek 1998]

The validity degree

Let $T = \{\psi_1, \dots, \psi_k\}$ be a finite set of terms; write τ for $\psi_1 \odot \cdots \odot \psi_k$. Let φ be a term.

The validity degree of φ under τ is

```
\|\varphi\|_{\tau} = \min\{e(\varphi) \mid e(\tau) = 1\}.
```

In other words, $\|\varphi\|_{\mathcal{T}}$ is the minimum of f_{φ} on the 1-set of f_{τ} .

Instance: (R)MV-terms τ and φ . Output: $\|\varphi\|_{\tau}$ in $[0, 1]_{L}$.

Corresponding syntactic notion is the provability degree: $|\varphi|_{\tau} = \max\{r \mid \tau \vdash_{\mathsf{RPL}} r \to \varphi\}$ and one has Pavelka completeness:

$$|\varphi|_{\mathcal{T}} = \|\varphi\|_{\mathcal{T}}$$

(also for infinite theories).

[Pavelka 1979; Hájek 1998]

Complexity results for L_ω

Consider MV-term $\varphi(x_1, \ldots, x_n)$.

 f_{φ} introduces a polyhedral complex *C* on its domain (i.e., $\bigcup C = [0, 1]^n$) s.t. restriction of f_{φ} to each (*n*-dimensional) cell of *C* is a linear polynomial.

 $MIN(\varphi)$, the minimum value of f_{φ} on $[0, 1]^n$ is attained at a vertex of a cell in C.

Vertices of cells of C occur as solutions of systems of linear equations, with integer coefficient bounded by $\sharp \varphi$ (the number of occurrences of variables in φ).

For a vertex \bar{p} of an *n*-dimensional cell of *C*,

$$\mathrm{den}(\bar{p}) \leq (\frac{\sharp \varphi}{n})^n$$

where den(\bar{x}) for a rational vector $\bar{x} = (x_1, ..., x_n)$ is the least common denominator of $x_1, ..., x_n$ and $\sharp \varphi$ is the length of φ .

Tautologous terms of the standard MV-algebra are in coNP. [Mundici 1987; Aguzzoli and Ciabattoni 2000; Aguzzoli 2006]

Non-approximability of minimum value

Theorem

Let $\delta < 1/2$ be a positive real. Suppose ALG is a poly-time algorithm computing, for MV-term φ , a real number ALG(φ) satisfying $|ALG(\varphi) - MIN(\varphi)| \le \delta$. Then P = NP.

Proof: recognize Boolean non-tautologies using ALG.

Instance: Boolean formula φ , given as $\{\oplus, \wedge\}$ -combination of literals.

Then f_{φ} in $[0, 1]_{L}$ is a concave function. and MIN (φ) is either 0 or 1.

We have

 $\varphi \notin \text{TAUT}(\{0,1\}_{B}) \text{ iff } \mathsf{MIN}(\varphi) = 0 \text{ iff } \mathsf{ALG}(\varphi) < 1/2.$

[H., Savický 2016]

Optimization problems

Consider optimization problems such as the TSP: given a graph with integer weights on edges,

- which is the roundtrip with a minimal cost? (optimization)
- which is the minimal cost of a roundtrip? (cost)
- given integer k, is there a roundtrip of cost at most k? (decision)

With validity degree, we are looking at a cost version of an optimization problem.

"Usual" binary search using the decision version as an oracle.

 FP^{NP} is the class of functions computable in poly-time with an NP oracle.

Computing $MIN(\varphi)$: oracle computation

 $MIN(\varphi)$ is attained at a vertex of a polyhedral decomposition of the domain with rational coordinates \bar{p} with $den(\bar{p}) \leq (\sharp \varphi/n)^n$.

Oracle: given φ and a rational $r \in [0, 1]$, is $MIN(\varphi) \le r$?) This is clearly in NP. (Actually NP-complete, cf. GenSAT problem in [Mundici and Olivetti, 1998])

Binary search within rationals on [0, 1] with denominators up to $N = (\sharp \varphi/n)^n$. Minimal distance of any two such numbers: $\left|\frac{p_1}{q_1} - \frac{p_2}{q_2}\right| \ge \frac{1}{N^2}$

First, test MIN(φ) \leq 0; if so, output 0. Otherwise let a := 0 and b := 1 and k := 0. Repeat ++k; MIN(φ) \leq (a + b)/2? $\begin{cases} Y \ b \ := (a + b)/2; \\ N \ a \ := (a + b)/2; \end{cases}$ until $2^k > N^2$.

This yields an interval $[m/2^k, (m+1)/2^k)$ for some *m*, of length $1/2^k$, with exactly one rational with denominator up to *N*.

Pick a value in $(m/2^k, (m+1)/2^k)$ and compute best rational approximations. MAX value is in FP^{NP}.

Computing the Validity Degree: oracle computation

```
Instance: (R)MV-terms \tau and \varphi.
Output: \|\varphi\|_{\tau}.
```

To obtain upper bound for binary search, get rid of constants. (Implicit definability.)

```
The minimum of f_{\varphi} on the (compact) 1-region of f_{\tau} is attained at a vertex of the common refinement of complexes of f_{\varphi} and f_{\tau}.
```

Upper bounds on denominators: $N = ((\sharp \tau + \sharp \varphi)/n)^n$ from [Aguzzoli and Ciabattoni, 2006].

Validity Degree in FP^{NP}.

Metric reductions, and a separation

[Krentel 1998] Let $f, g: \Sigma^* \to N$. A metric reduction of f to g is a pair (h_1, h_2) of p-time functions (with $h_1: \Sigma^* \to \Sigma^*$ and $h_2: \Sigma^* \times N \to N$) such that $f(x) = h_2(x, g(h_1(x)))$ for each $x \in \Sigma^*$.

Let $z : N \to N$. $\mathsf{FP}^{\mathsf{NP}}[z(n)]$ is the class of functions computable in P-time with NP oracle with at most z(|x|) oracle calls for input x. (So $\mathsf{FP}^{\mathsf{NP}} = \mathsf{FP}^{\mathsf{NP}}[n^{O(1)}]$.)

Theorem [Krentel 1988]

Assume $P \neq NP$. Then $FP^{NP}[O(\log \log n)] \neq FP^{NP}[O(\log n)] \neq FP^{NP}[n^{O(1)}]$.

In particular, there are no metric reductions from FP^{NP} -complete problems to problems in $FP^{NP}[O(\log n)]$.

[Krentel: Complexity of optimization problems, 1988]

Weighted MaxSAT

Instance: Boolean CNF formula $C_1 \land \dots \land C_n$ (k variables) with weights w_1, \dots, w_n . Output: $\max_e \sum_i w_i e(C_i)$ (max sum of weights of true clauses over all assignments to φ).

Theorem [Krentel 1988]

Weighted MaxSAT is complete in FP^{NP} (under metric reductions).

Validity Degree: lower bound

Theorem

Validity degree is FP^{NP}-complete under metric reductions.

Proof: reduce weighted MaxSAT to Validity Degree. Maximize $\sum_i w_i e(C_i)$ over all assignments e.

- Switch min and max (using \neg);
- scale weights: take $w = \sum_i w_i$ and replace w_i with $w'_i = w_i/w$ (and de-scale again);
- Build a theory T (or τ) to
- make assignments Boolean (adding $x_i \lor \neg x_i$ for each $i \in \{1, ..., k\}$)

- implicitly condition each w'_i with C_i under v:

which yields $v(z_i) = v(C_i)w'_i$ for any model v of T and any i. Finally, let Φ be $\neg(z_1 \oplus z_2 \oplus \cdots \oplus z_n)$. Compute $m = \|\Phi\|_T$ and return (1 - m)w. Thank you!