
On the complexity of validity degrees in  Lukasiewicz logic

Zuzana Haniková
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A semantics for  Lukasiewicz logic  Lω

MV-terms: function symbols {⊕,¬} on a countably infinite set of variables.

Domain: the interval [0, 1] of the reals.
Interpretation of symbols:

x ⊕ y = min(1, x + y)

¬x = 1− x

The algebra [0, 1] L = 〈[0, 1],⊕,¬〉 is an intended semantics of  Lω.
The only designated value is 1 (the top element).

The subalgebra on {0, 1} is (isomorphic to) the two-element Boolean algebra {0, 1}B.

Definable symbols:

x � y is ¬(¬x ⊕ ¬y);

x ∨ y is (x → y)→ y and x ∧ y is ¬(¬x ∨ ¬y);

x → y is ¬x ⊕ y ;

x ≡ y is (x → y)� (y → x).

xn is x � · · · � x︸ ︷︷ ︸
n times

and nx is x ⊕ · · · ⊕ x︸ ︷︷ ︸
n times

.

[ Lukasiewicz 1922;  Lukasiewicz and Tarski 1930]
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McNaughton functions

Denote fϕ the function defined by the term ϕ in [0, 1] L.

A function f : [0, 1]n → [0, 1] is a McNaughton function if

f is continuous

f is piecewise linear: there are finitely many linear polynomials {pi}i∈I ,
with pi (x̄) = Σn

j=1aij xj + bi ,
such that for any x̄ ∈ [0, 1]n there is an i ∈ I with f (x̄) = pi (x̄)

the polynomials pi have integer coefficients āi , bi .

Theorem [McNaughton 1951]

Term-definable functions of [0, 1] L coincide with McNaughton functions.
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Completeness

Axioms for  Lω (with ¬ and →):
x → (y → x)
(x → y)→ ((y → z)→ (x → z))
(¬y → ¬x)→ (x → y)
((x → y)→ y)→ ((y → x)→ x)

Completeness of  Lω w.r.t. [0, 1] L:

tautologies of [0, 1] L coincide with theorems

finite consequence relation coincides with provability from finite theories

[Rose and Rosser 1958; Chang 1958–59]

[0, 1] L provides a semantic method of investigating complexity of  Lω.
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Rational constants

By McNaughton theorem, constant functions (bar 0 and 1) are not term-definable.

One can implicitly define any rational constant in [0, 1] L.

x = ¬x

has a unique solution 1/2, so under a theory with the schema x ≡ ¬x ,
the value of x is fixed at 1/2.

More generally, x ≡ (¬x)n−1 definex 1/n; then m/n becomes term definable as mx .

[Torrens 1994; Gispert 2002; Hájek 1998]

Expansion of language with constants

RMV-terms: MV-language expanded with constants for rationals in [0, 1].

[0, 1]Q
 L = 〈[0, 1],⊕,¬, {r | r ∈ Q ∩ [0, 1]}〉.

“Rational Pavelka Logic” (RPL) expands  Lω with some axioms for constants.

The algebra [0, 1]Q
 L captures theorems and provability from finite theories in RPL.

[Pavelka 1979; Hájek 1998]
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The validity degree

Let T = {ψ1, ... ,ψk} be a finite set of terms; write τ for ψ1 � · · · � ψk .
Let ϕ be a term.

The validity degree of ϕ under τ is

‖ϕ‖τ = min{e(ϕ) | e(τ) = 1}.

In other words, ‖ϕ‖T is the minimum of fϕ on the 1-set of fτ .

Instance: (R)MV-terms τ and ϕ.
Output: ‖ϕ‖τ in [0, 1] L.

Corresponding syntactic notion is the provability degree: |ϕ|τ = max{r | τ `RPL r → ϕ}
and one has Pavelka completeness:

|ϕ|T = ‖ϕ‖T

(also for infinite theories).

[Pavelka 1979; Hájek 1998]
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Complexity results for  Lω

Consider MV-term ϕ(x1, ... , xn).

fϕ introduces a polyhedral complex C on its domain (i.e.,
⋃

C = [0, 1]n)
s.t. restriction of fϕ to each (n-dimensional) cell of C is a linear polynomial.

MIN(ϕ), the minimum value of fϕ on [0, 1]n is attained at a vertex of a cell in C .

Vertices of cells of C occur as solutions of systems of linear equations,
with integer coefficient bounded by ]ϕ (the number of occurrences of variables in ϕ).

For a vertex p̄ of an n-dimensional cell of C ,

den(p̄) ≤ (
]ϕ

n
)n

where den(x̄) for a rational vector x̄ = (x1, ... , xn) is the least common denominator of
x1, ... , xn and ]ϕ is the length of ϕ.

Tautologous terms of the standard MV-algebra are in coNP.

[Mundici 1987; Aguzzoli and Ciabattoni 2000; Aguzzoli 2006]
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Non-approximability of minimum value

Theorem

Let δ < 1/2 be a positive real. Suppose ALG is a poly-time algorithm computing,
for MV-term ϕ, a real number ALG(ϕ) satisfying |ALG(ϕ)−MIN(ϕ)| ≤ δ.
Then P = NP.

Proof: recognize Boolean non-tautologies using ALG.

Instance: Boolean formula ϕ, given as {⊕,∧}-combination of literals.

Then fϕ in [0, 1] L is a concave function. and MIN(ϕ) is either 0 or 1.

We have
ϕ 6∈ TAUT({0, 1}B) iff MIN(ϕ) = 0 iff ALG(ϕ) < 1/2.

[H., Savický 2016]
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Optimization problems

Consider optimization problems such as the TSP:
given a graph with integer weights on edges,

which is the roundtrip with a minimal cost? (optimization)

which is the minimal cost of a roundtrip? (cost)

given integer k, is there a roundtrip of cost at most k? (decision)

With validity degree, we are looking at a cost version of an optimization problem.

“Usual” binary search using the decision version as an oracle.

FPNP is the class of functions computable in poly-time with an NP oracle.
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Computing MIN(ϕ): oracle computation

MIN(ϕ) is attained at a vertex of a polyhedral decomposition of the domain
with rational coordinates p̄ with den(p̄) ≤ (]ϕ/n)n.

Oracle: given ϕ and a rational r ∈ [0, 1], is MIN(ϕ) ≤ r?)
This is clearly in NP.
(Actually NP-complete, cf. GenSAT problem in [Mundici and Olivetti, 1998])

Binary search within rationals on [0, 1] with denominators up to N = (]ϕ/n)n.

Minimal distance of any two such numbers:
∣∣∣ p1

q1
− p2

q2

∣∣∣ ≥ 1
N2

First, test MIN(ϕ) ≤ 0; if so, output 0.
Otherwise let a := 0 and b := 1 and k := 0.

Repeat ++k; MIN(ϕ) ≤ (a + b)/2?

{
Y b := (a + b)/2;

N a := (a + b)/2;
until 2k > N2.

This yields an interval [m/2k , (m + 1)/2k ) for some m, of length 1/2k ,
with exactly one rational with denominator up to N.

Pick a value in (m/2k , (m + 1)/2k ) and compute best rational approximations.

MAX value is in FPNP.
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Computing the Validity Degree: oracle computation

Instance: (R)MV-terms τ and ϕ.
Output: ‖ϕ‖τ .

To obtain upper bound for binary search, get rid of constants. (Implicit definability.)

The minimum of fϕ on the (compact) 1-region of fτ
is attained at a vertex of the common refinement of complexes
of fϕ and fτ .

Upper bounds on denominators: N = ((]τ + ]ϕ)/n)n

from [Aguzzoli and Ciabattoni, 2006].

Validity Degree in FPNP.
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Metric reductions, and a separation

[Krentel 1998]
Let f , g : Σ∗ → N.
A metric reduction of f to g is a pair (h1, h2) of p-time functions
(with h1 : Σ∗ → Σ∗ and h2 : Σ∗ × N → N)
such that f (x) = h2(x , g(h1(x))) for each x ∈ Σ∗.

Let z : N → N. FPNP[z(n)] is the class of functions
computable in P-time with NP oracle with at most z(|x |) oracle calls for input x .
(So FPNP = FPNP[nO(1)].)

Theorem [Krentel 1988]

Assume P 6= NP. Then FPNP[O(log log n)] 6= FPNP[O(log n)] 6= FPNP[nO(1)].

In particular, there are no metric reductions from FPNP-complete problems
to problems in FPNP[O(log n)].

[Krentel: Complexity of optimization problems, 1988]
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Weighted MaxSAT problem

• Weighted MaxSAT
Instance: Boolean CNF formula C1 ∧ · · · ∧ Cn (k variables) with weights w1, ... ,wn.
Output: maxe Σiwie(Ci )(max sum of weights of true clauses over all assignments to ϕ).

Theorem [Krentel 1988]

Weighted MaxSAT is complete in FPNP (under metric reductions).
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Validity Degree: lower bound

Theorem

Validity degree is FPNP-complete under metric reductions.

Proof: reduce weighted MaxSAT to Validity Degree.
Maximize Σiwie(Ci ) over all assigments e.

– Switch min and max (using ¬);
– scale weights: take w = Σiwi and replace wi with w ′i = wi/w (and de-scale again);

Build a theory T (or τ) to
– make assignments Boolean ( adding xi ∨ ¬xi for each i ∈ {1, ... , k})
– implicitly condition each w ′i with Ci under v :

b ≡ (¬b)w−1 (implicitly defines 1/w );

yi → b and wyi ≡ Ci for each i ∈ {1, ... , n}; then
v(Ci ) = 0 implies v(yi ) = 0
v(Ci ) = 1 implies v(yi ) ≥ 1/w

and so v(yi ) = v(Ci )1/w for any model e of T ;

zi ≡ wiyi ;

which yields v(zi ) = v(Ci )w
′
i for any model v of T and any i .

Finally, let Φ be ¬(z1 ⊕ z2 ⊕ · · · ⊕ zn). Compute m = ‖Φ‖T and return (1−m)w .
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End

Thank you!
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