On the complexity of validity degrees in Łukasiewicz logic

Zuzana Haniková
Institute of Computer Science of the
Czech Academy of Sciences
Computability in Europe,
Salerno (online), July 1, 2020

A semantics for Łukasiewicz logic $\mathrm{Ł}_{\omega}$

MV-terms: function symbols $\{\oplus, \neg\}$ on a countably infinite set of variables.
Domain: the interval $[0,1]$ of the reals.
Interpretation of symbols:

$$
\begin{aligned}
x \oplus y & =\min (1, x+y) \\
\neg x & =1-x
\end{aligned}
$$

The algebra $[0,1]_{\llcorner }=\langle[0,1], \oplus, \neg\rangle$ is an intended semantics of E_{ω}.
The only designated value is 1 (the top element).
The subalgebra on $\{0,1\}$ is (isomorphic to) the two-element Boolean algebra $\{0,1\}_{B}$.
Definable symbols:

- $x \odot y$ is $\neg(\neg x \oplus \neg y)$;
- $x \vee y$ is $(x \rightarrow y) \rightarrow y$ and $x \wedge y$ is $\neg(\neg x \vee \neg y)$;
- $x \rightarrow y$ is $\neg x \oplus y$;
- $x \equiv y$ is $(x \rightarrow y) \odot(y \rightarrow x)$.
x^{n} is $\underbrace{x \odot \cdots \odot x}_{n \text { times }}$ and $n x$ is $\underbrace{x \oplus \cdots \oplus x}_{n \text { times }}$.
[Łukasiewicz 1922; Łukasiewicz and Tarski 1930]

McNaughton functions

Denote f_{φ} the function defined by the term φ in $[0,1]_{\mathrm{t}}$.
A function $f:[0,1]^{n} \rightarrow[0,1]$ is a McNaughton function if

- f is continuous
- f is piecewise linear: there are finitely many linear polynomials $\left\{p_{i}\right\}_{i \in 1}$, with $p_{i}(\bar{x})=\sum_{j=1}^{n} a_{i j} x_{j}+b_{i}$,
such that for any $\bar{x} \in[0,1]^{n}$ there is an $i \in I$ with $f(\bar{x})=p_{i}(\bar{x})$
- the polynomials p_{i} have integer coefficients \bar{a}_{i}, b_{i}.

Theorem [McNaughton 1951]

Term-definable functions of $[0,1]_{Ł}$ coincide with McNaughton functions.

Completeness

> Axioms for $\mathrm{L}_{\omega}($ with \neg and $\rightarrow)$:
> $x \rightarrow(y \rightarrow x)$
> $(x \rightarrow y) \rightarrow((y \rightarrow z) \rightarrow(x \rightarrow z))$
> $(\neg y \rightarrow \neg x) \rightarrow(x \rightarrow y)$
> $((x \rightarrow y) \rightarrow y) \rightarrow((y \rightarrow x) \rightarrow x)$

Completeness of E_{ω} w.r.t. $[0,1]_{\mathrm{t}}$:

- tautologies of $[0,1]_{\mathrm{t}}$ coincide with theorems
- finite consequence relation coincides with provability from finite theories
[Rose and Rosser 1958; Chang 1958-59]
$[0,1]_{\llcorner }$provides a semantic method of investigating complexity of E_{ω}.

Rational constants

By McNaughton theorem, constant functions (bar 0 and 1) are not term-definable. One can implicitly define any rational constant in $[0,1]_{\mathrm{t}}$.

$$
x=\neg x
$$

has a unique solution $1 / 2$, so under a theory with the schema $x \equiv \neg x$, the value of x is fixed at $1 / 2$.
More generally, $x \equiv(\neg x)^{n-1}$ definex $1 / n$; then m / n becomes term definable as $m x$.
[Torrens 1994; Gispert 2002; Hájek 1998]
Expansion of language with constants
RMV-terms: MV-language expanded with constants for rationals in $[0,1]$.
$[0,1]_{t}^{Q}=\langle[0,1], \oplus, \neg,\{r \mid r \in Q \cap[0,1]\}\rangle$.
"Rational Pavelka Logic" (RPL) expands E_{ω} with some axioms for constants.
The algebra $[0,1]_{t}^{Q}$ captures theorems and provability from finite theories in RPL.
[Pavelka 1979; Hájek 1998]

The validity degree

Let $T=\left\{\psi_{1}, \ldots, \psi_{k}\right\}$ be a finite set of terms; write τ for $\psi_{1} \odot \cdots \odot \psi_{k}$. Let φ be a term.
The validity degree of φ under τ is

$$
\|\varphi\|_{\tau}=\min \{e(\varphi) \mid e(\tau)=1\} .
$$

In other words, $\|\varphi\|_{T}$ is the minimum of f_{φ} on the 1-set of f_{T}.
Instance: (R)MV-terms τ and φ.
Output: $\|\varphi\|_{\tau}$ in $[0,1]_{t}$.
Corresponding syntactic notion is the provability degree: $|\varphi|_{\tau}=\max \left\{r \mid \tau \vdash_{\mathrm{RPL}} r \rightarrow \varphi\right\}$ and one has Pavelka completeness:

$$
|\varphi|_{T}=\|\varphi\|_{T}
$$

(also for infinite theories).
[Pavelka 1979; Hájek 1998]

Complexity results for E_{ω}

Consider MV-term $\varphi\left(x_{1}, \ldots, x_{n}\right)$.
f_{φ} introduces a polyhedral complex C on its domain (i.e., $\cup C=[0,1]^{n}$)
s.t. restriction of f_{φ} to each (n-dimensional) cell of C is a linear polynomial.
$\operatorname{MIN}(\varphi)$, the minimum value of f_{φ} on $[0,1]^{n}$ is attained at a vertex of a cell in C.

Vertices of cells of C occur as solutions of systems of linear equations, with integer coefficient bounded by $\sharp \varphi$ (the number of occurrences of variables in φ).

For a vertex \bar{p} of an n-dimensional cell of C,

$$
\operatorname{den}(\bar{p}) \leq\left(\frac{\sharp \varphi}{n}\right)^{n}
$$

where $\operatorname{den}(\bar{x})$ for a rational vector $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ is the least common denominator of x_{1}, \ldots, x_{n} and $\sharp \varphi$ is the length of φ.

Tautologous terms of the standard MV-algebra are in coNP.
[Mundici 1987; Aguzzoli and Ciabattoni 2000; Aguzzoli 2006]

Non-approximability of minimum value

Theorem

Let $\delta<1 / 2$ be a positive real. Suppose $A L G$ is a poly-time algorithm computing, for $M V$-term φ, a real number $\operatorname{ALG}(\varphi)$ satisfying $|A L G(\varphi)-\operatorname{MIN}(\varphi)| \leq \delta$. Then $P=N P$.

Proof: recognize Boolean non-tautologies using ALG.
Instance: Boolean formula φ, given as $\{\oplus, \wedge\}$-combination of literals.
Then f_{φ} in $[0,1]_{\mathrm{t}}$ is a concave function. and $\operatorname{MIN}(\varphi)$ is either 0 or 1 .
We have

$$
\varphi \notin \operatorname{TAUT}\left(\{0,1\}_{\mathrm{B}}\right) \text { iff } \operatorname{MIN}(\varphi)=0 \text { iff } \operatorname{ALG}(\varphi)<1 / 2
$$

[H., Savický 2016]

Optimization problems

Consider optimization problems such as the TSP:
given a graph with integer weights on edges,

- which is the roundtrip with a minimal cost? (optimization)
- which is the minimal cost of a roundtrip? (cost)
- given integer k, is there a roundtrip of cost at most k ? (decision)

With validity degree, we are looking at a cost version of an optimization problem.
"Usual" binary search using the decision version as an oracle.

FP ${ }^{N P}$ is the class of functions computable in poly-time with an NP oracle.

Computing $\operatorname{MIN}(\varphi)$: oracle computation

$\operatorname{MIN}(\varphi)$ is attained at a vertex of a polyhedral decomposition of the domain with rational coordinates \bar{p} with $\operatorname{den}(\bar{p}) \leq(\sharp \varphi / n)^{n}$.

Oracle: given φ and a rational $r \in[0,1]$, is $\operatorname{MIN}(\varphi) \leq r$?)
This is clearly in NP.
(Actually NP-complete, cf. GenSAT problem in [Mundici and Olivetti, 1998])

Binary search within rationals on $[0,1]$ with denominators up to $N=(\sharp \varphi / n)^{n}$.
Minimal distance of any two such numbers: $\left|\frac{p_{1}}{q_{1}}-\frac{p_{2}}{q_{2}}\right| \geq \frac{1}{N^{2}}$
First, test $\operatorname{MIN}(\varphi) \leq 0$; if so, output 0 .
Otherwise let $a:=0$ and $b:=1$ and $k:=0$.
Repeat $++k ; \operatorname{MIN}(\varphi) \leq(a+b) / 2 ?\left\{\begin{aligned} \mathrm{Y} b & :=(a+b) / 2 ; \\ \mathrm{N} a & :=(a+b) / 2 ;\end{aligned}\right.$ until $2^{k}>N^{2}$.
This yields an interval $\left[m / 2^{k},(m+1) / 2^{k}\right)$ for some m, of length $1 / 2^{k}$, with exactly one rational with denominator up to N.

Pick a value in $\left(m / 2^{k},(m+1) / 2^{k}\right)$ and compute best rational approximations.
MAX value is in $\mathrm{FP}^{N P}$.

Computing the Validity Degree: oracle computation

Instance: (R)MV-terms τ and φ.
Output: $\|\varphi\|_{\tau}$.

To obtain upper bound for binary search, get rid of constants. (Implicit definability.)

The minimum of f_{φ} on the (compact) 1-region of f_{τ} is attained at a vertex of the common refinement of complexes of f_{φ} and f_{τ}.
Upper bounds on denominators: $N=((\sharp \tau+\sharp \varphi) / n)^{n}$ from [Aguzzoli and Ciabattoni, 2006].

Validity Degree in FPNP.

Metric reductions, and a separation

[Krentel 1998]
Let $f, g: \Sigma^{*} \rightarrow N$.
A metric reduction of f to g is a pair $\left(h_{1}, h_{2}\right)$ of p-time functions (with $h_{1}: \Sigma^{*} \rightarrow \Sigma^{*}$ and $h_{2}: \Sigma^{*} \times N \rightarrow N$)
such that $f(x)=h_{2}\left(x, g\left(h_{1}(x)\right)\right)$ for each $x \in \Sigma^{*}$.
Let $z: N \rightarrow N . \operatorname{FP}^{N P}[z(n)]$ is the class of functions computable in P-time with NP oracle with at most $z(x \mid)$ oracle calls for input x. (So FP ${ }^{N P}=\mathrm{FP}^{N P}\left[n^{O(1)}\right]$.)

Theorem [Krentel 1988]

Assume $P \neq N P$. Then $F P^{N P}[O(\log \log n)] \neq F P^{N P}[O(\log n)] \neq F P^{N P}\left[n^{O(1)}\right]$.
In particular, there are no metric reductions from $\mathrm{FP}^{N P}$-complete problems to problems in $\mathrm{FP}^{N P}[O(\log n)]$.
[Krentel: Complexity of optimization problems, 1988]

Weighted MaxSAT problem

- Weighted MaxSAT

Instance: Boolean CNF formula $C_{1} \wedge \cdots \wedge C_{n}$ (k variables) with weights w_{1}, \ldots, w_{n}. Output: $\max _{e} \Sigma_{i} w_{i} e\left(C_{i}\right)$ (max sum of weights of true clauses over all assignments to φ).

Theorem [Krentel 1988]

Weighted MaxSAT is complete in FP ${ }^{N P}$ (under metric reductions).

Validity Degree: lower bound

Theorem

Validity degree is $F P^{N P}$-complete under metric reductions.

Proof: reduce weighted MaxSAT to Validity Degree.
Maximize $\Sigma_{i} w_{i} e\left(C_{i}\right)$ over all assigments e.

- Switch min and max (using \neg);
- scale weights: take $w=\Sigma_{i} w_{i}$ and replace w_{i} with $w_{i}^{\prime}=w_{i} / w$ (and de-scale again);

Build a theory T (or τ) to

- make assignments Boolean (adding $x_{i} \vee \neg x_{i}$ for each $i \in\{1, \ldots, k\}$)
- implicitly condition each w_{i}^{\prime} with C_{i} under v :
- $b \equiv(\neg b)^{w-1}$ (implicitly defines $1 / w$);
- $y_{i} \rightarrow b$ and $w y_{i} \equiv C_{i}$ for each $i \in\{1, \ldots, n\}$; then
- $v\left(C_{i}\right)=0$ implies $v\left(y_{i}\right)=0$
- $v\left(C_{i}\right)=1$ implies $v\left(y_{i}\right) \geq 1 / w$
and so $v\left(y_{i}\right)=v\left(C_{i}\right) 1 / w$ for any model e of T;
- $z_{i} \equiv w_{i} y_{i}$;
which yields $v\left(z_{i}\right)=v\left(C_{i}\right) w_{i}^{\prime}$ for any model v of T and any i.
Finally, let Φ be $\neg\left(z_{1} \oplus z_{2} \oplus \cdots \oplus z_{n}\right)$. Compute $m=\|\Phi\|_{T}$ and return $(1-m) w$.

End

Thank you!

