SAT and MaxSAT problems in Łukasiewicz logic

Zuzana Haniková

Institute of Computer Science, Czech Academy of Sciences

Nonclassical Logic Days, Barcelona, Oct 14, 2022

Decision problems & SAT

Fix the basic language of Lukasiewicz logic: \mathcal{L} as $\{\neg, \oplus\}$. This gives the set \mathcal{F} of (propositional) wff's. \mathbb{MV} is the class of MV-algebras.

Let $A \in \mathbb{MV}$.

$$SAT(\mathsf{A}) = \{\varphi \in \mathcal{F} \mid \exists v_\mathsf{A} (v_\mathsf{A}(\varphi) = 1^\mathsf{A})\}$$

Solvability of finite systems of MV-equations in A.

We use $[0, 1]_{L}$ for $\Gamma(\mathsf{R}, 1)$ (the "standard MV-algebra"). SAT($[0, 1]_{L}$) is in NP (in fact, NP-complete). [Mundici: SAT in many-valued sentential logic is NP-complete, 1987]

Let $\overline{\text{SAT}}(A)$ be the complement of SAT(A) in \mathcal{F} . Then $\varphi \in \overline{\text{SAT}}(A)$ iff $A \models \varphi \approx 1 \Rightarrow 0 \approx 1$. Thus $\overline{\text{SAT}}(A)$ is a fragment of the Q-theory of A. Let $\varphi_1, \ldots, \varphi_k$ be a list of formulas in \mathcal{F} .

$$\begin{aligned} \operatorname{MaxSAT}(\mathsf{A})(\varphi_1, \dots, \varphi_k) &= \\ &= \max\{ m \le k \mid \exists v_A \exists I \subseteq \{1, \dots, k\} \left[|I| = m \& \forall i \in I(v_{\mathsf{A}}(\varphi_i) = 1^A) \right] \& \\ &\quad \forall v_A \forall I \subseteq \{1, \dots, k\} \left[|I| > m \Rightarrow \exists i \in I(v_{\mathsf{A}}(\varphi_i) < 1^A) \right] \end{aligned}$$

Maximal number of (simultaneously!) satisfied formulas, over all assignments.

NB. $\varphi_{i_1}, \ldots, \varphi_{i_n}$ are simultaneously satisfiable in A iff $\wedge_{j=1}^n \varphi_{i_j} \in SAT(A)$.

Geometry and complexity

 $\varphi(x_1, \ldots, x_n)$ formula in \mathcal{F} ; f_{φ} its interpretation in $[0, 1]_{\mathrm{L}}$; $\sharp \varphi$ number of occurrences of variables in φ .

The function f_{φ} introduces a polyhedral complex $C(\varphi)$ on $[0,1]^n$ s.t.

- $[0,1]^n = \bigcup C(\varphi)$ and
- f_{φ} is linear over each *n*-dimensional cell of $C(\varphi)$.

The 1-region of φ is union of cells of $C(\varphi)$ such that f_{φ} attains the value 1 on all points in the cell. This is a compact subset of $[0, 1]^n$.

Vertices of C occur as solutions of systems of linear equations, with integer coefficient bounded by $\sharp \varphi$.

Theorem [A.–C. 2000]: For a vertex \bar{p} of an *n*-dimensional cell of C,

$$\operatorname{den}(\bar{p}) \le (\frac{\sharp\varphi}{n})^n$$

where $\operatorname{den}(\bar{p})$ for a rational vector $\bar{p} = (p_1, \ldots, p_n)$ is the least common denominator of p_1, \ldots, p_n .

Corollary: $SAT([0, 1]_L)$ is in NP.

[McNaughton 1951; Mundici 1987; Aguzzoli and Ciabattoni 2000; Aguzzoli 2006]

Geometry and complexity - cont'd

 $\varphi_1, \ldots, \varphi_k$ formulas of \mathcal{L} , with variables among x_1, \ldots, x_n .

The common refinement of $C(\varphi_1), \ldots, C(\varphi_k)$ (considered *n*-dimensional) is the polyhedral complex whose *n*-dimensional cells are precisely all (*n*-dimensional) intersections of *n*-dimensional cells of $C(\varphi_1), \ldots, C(\varphi_k)$.

Theorem [~A.–C. 2000]: For a vertex \bar{p} of an *n*-dimensional cell of the common refinement of $C(\varphi_1), \ldots, C(\varphi_k)$,

$$\operatorname{den}(\bar{p}) \le \left(\frac{\sum_{i=1}^{k} \sharp \varphi_i}{n}\right)^n$$

[Aguzzoli and Ciabattoni 2000]

A decision version of MaxSAT for $[0, 1]_{L}$ (D-MaxSAT($[0, 1]_{L}$)):

 $\{\langle \varphi_1, \ldots, \varphi_k \rangle, m \leq k \mid \text{MaxSAT}([0, 1]_{\mathrm{L}})(\varphi_1, \ldots, \varphi_k) \geq m\}$

Corollary: D-MaxSAT($[0, 1]_{L}$) is in NP.

Oracle computation for MaxSAT

Let $\varphi_1, \ldots, \varphi_k$ be given.

Assume an oracle for $D-MaxSAT([0, 1]_L)$.

Binary search on the interval of natural numbers $\{0, \ldots, k\}$.

Let
$$a := 0$$
 and $b := k$.
While $a < b$ do {
 $m := \lfloor a+b/2 \rfloor$;
D-MaxSAT($[0,1]_{L}$)($\langle \varphi_1, \dots, \varphi_k \rangle, m$)?
 $\begin{cases} (yes) & a := m + 1, \\ (no) & b := m; \end{cases}$
Return b .

Corollary: $MaxSAT([0, 1]_L)$ is in FP^{NP}.

NB. Any NP-complete problem will do as oracle.

Tableau calculus for MaxSAT[L₃] [Li, Manyà, Vidal 2020]

Labelled formulas $\{r\} : \alpha$, where $r \in \{0, 1/2, 1\}$ and $\alpha \in \mathcal{F}$.

A labelled formula $\{r\} : \alpha$ is satisfied by an assignment v iff $v(\alpha) = r$.

Given a multiset of labelled formulas $\{1\}: \alpha_1, \ldots, \{1\}: \alpha_k$, with $\alpha_i \in \mathcal{F}$, the calculus computes the minimal number of unsatisfied formulas.

strong disjunction

	0 0
$\{0\}\!:\!(\phi_1\oplus\phi_2)$	$\{1\}$: $(\phi_1 \oplus \phi_2)$
$\Box = \{0\}: \phi_1$	$\Box \{1\} : \phi_1 \{1\} : \phi_2 \{\frac{1}{2}\} : \phi_1$
$\{0\}:\phi_2$	$\{\frac{1}{2}\}:\phi_2$
$\begin{array}{c c} & \{\frac{1}{2}\} : (\phi_1 \oplus \phi_2) \\ \hline \Box & \{0\} : \phi_1 & \{\frac{1}{2}\} : \phi_1 \\ & \{\frac{1}{2}\} : \phi_2 & \{0\} : \phi_2 \end{array}$	
	negation
$\{0\}: \neg \phi$	$\{\frac{1}{2}\}:\neg\phi$ $\{1\}:\neg\phi$
$\{1\}:\phi$	$\{\frac{1}{2}\}:\phi$ $\{0\}:\phi$

For a variable x_i , list its labels $(r_{i,1}, \ldots, r_{i,m})$ in decreasing frequency. Append \Box for each occurrence of a label distinct from $r_{i,1}$.

Zuzana Haniková SAT and MaxSAT problems in Lukasiewicz logic

Finite-valued reduction for $MaxSAT[0, 1]_{L}$

Work in $[0, 1]_{\text{L}}$.

Consider $\varphi_1, \ldots, \varphi_k \in \mathcal{F}$.

Assume that the intersection of 1-regions of $\{\varphi_i\}_{i \in I}$, for some $I \subseteq \{1, \ldots, k\}$, is nonempty.

Then there is at least one vertex p of a cell in the intersection, namely, of the common refinement of $C(\varphi_i)$, $i \in I$.

We have

$$\operatorname{den}(\bar{p}) \le \left(\frac{\sum_{i \in I} \sharp \varphi_i}{n}\right)^n \le \left(\frac{\sum_{i=1}^k \sharp \varphi_i}{n}\right)$$

Hence, the coordinates of \bar{p} belong to L_N with

$$N = \operatorname{lcm}\{1, 2, \dots, \left(\frac{\sum_{i=1}^{k} \sharp \varphi_i}{n}\right)^n\} \approx \exp\left(\left(\frac{\sum_{i=1}^{k} \sharp \varphi_i}{n}\right)^n\right)$$