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Decision problems & SAT

Fix the basic language of  Lukasiewicz logic: L as {¬,⊕}.
This gives the set F of (propositional) wff’s.
MV is the class of MV-algebras.

Let A ∈MV.

SAT(A) = {ϕ ∈ F | ∃vA (vA(ϕ) = 1A)}

Solvability of finite systems of MV-equations in A.

We use [0, 1] L for Γ(R, 1) (the “standard MV-algebra”).

SAT([0, 1] L) is in NP (in fact, NP-complete).
[Mundici: SAT in many-valued sentential logic is NP-complete, 1987]

Let SAT(A) be the complement of SAT(A) in F .
Then ϕ ∈ SAT(A) iff A |= ϕ ≈ 1⇒ 0 ≈ 1.

Thus SAT(A) is a fragment of the Q-theory of A.
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Optimization tasks & MaxSAT

Let ϕ1, . . . , ϕk be a list of formulas in F .

MaxSAT(A)(ϕ1, . . . , ϕk) =

= max{m ≤ k | ∃vA ∃I ⊆ {1, ..., k} [ |I| = m& ∀i ∈ I(vA(ϕi) = 1A) ] &

∀vA∀I ⊆ {1, ..., k} [ |I| > m⇒ ∃i ∈ I(vA(ϕi) < 1A) ] }

Maximal number of (simultaneously!) satisfied formulas,
over all assignments.

NB. ϕi1 , . . . , ϕin are simultaneously satisfiable in A iff ∧n
j=1ϕij ∈ SAT(A).
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Geometry and complexity

ϕ(x1, . . . , xn) formula in F ; fϕ its interpretation in [0, 1] L;
]ϕ number of occurrences of variables in ϕ.

The function fϕ introduces a polyhedral complex C(ϕ) on [0, 1]n s.t.

[0, 1]n =
⋃
C(ϕ) and

fϕ is linear over each n-dimensional cell of C(ϕ).

The 1-region of ϕ is union of cells of C(ϕ)
such that fϕ attains the value 1 on all points in the cell.
This is a compact subset of [0, 1]n.

Vertices of C occur as solutions of systems of linear equations,
with integer coefficient bounded by ]ϕ.

Theorem [A.–C. 2000]: For a vertex p̄ of an n-dimensional cell of C,

den(p̄) ≤ (
]ϕ

n
)n

where den(p̄) for a rational vector p̄ = (p1, . . . , pn) is the
least common denominator of p1, . . . , pn.

Corollary: SAT([0, 1] L) is in NP.

[McNaughton 1951; Mundici 1987; Aguzzoli and Ciabattoni 2000; Aguzzoli
2006]
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Geometry and complexity – cont’d

ϕ1, . . . , ϕk formulas of L, with variables among x1, . . . , xn.

The common refinement of C(ϕ1), . . . , C(ϕk)
(considered n-dimensional) is the polyhedral complex
whose n-dimensional cells are precisely all (n-dimensional) intersections
of n-dimensional cells of C(ϕ1), . . . , C(ϕk).

Theorem [∼A.–C. 2000]: For a vertex p̄ of an n-dimensional cell of the
common refinement of C(ϕ1), . . . , C(ϕk),

den(p̄) ≤
(Σk

i=1]ϕi

n

)n
[Aguzzoli and Ciabattoni 2000]

A decision version of MaxSAT for [0, 1] L (D-MaxSAT([0, 1] L)):

{〈ϕ1, . . . , ϕk〉,m ≤ k | MaxSAT([0, 1] L)(ϕ1, . . . , ϕk) ≥ m}

Corollary: D-MaxSAT([0, 1] L) is in NP.

Zuzana Haniková SAT and MaxSAT problems in  Lukasiewicz logic



Oracle computation for MaxSAT

Let ϕ1, . . . , ϕk be given.

Assume an oracle for D-MaxSAT([0, 1] L).

Binary search on the interval of natural numbers {0, . . . , k}.

Let a := 0 and b := k.
While a < b do {
m := ba+b/2c;

D-MaxSAT([0, 1] L)(〈ϕ1, . . . , ϕk〉,m)?

{
(yes) a := m+ 1;

(no) b := m;

}
Return b.

Corollary: MaxSAT([0, 1] L) is in FPNP.

NB. Any NP-complete problem will do as oracle.
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Tableau calculus for MaxSAT[ L3] [Li, Manyà, Vidal 2020]

Labelled formulas {r} : α, where r ∈ {0, 1/2, 1} and α ∈ F .

A labelled formula {r} : α is satisfied by an assignment v iff v(α) = r.

Given a multiset of labelled formulas {1} : α1, . . . , {1} : αk, with αi ∈ F ,
the calculus computes the minimal number of unsatisfied formulas.

. . . . . . . . .
For a variable xi, list its labels (ri,1,. . . ,ri,m) in decreasing frequency.

Append � for each occurrence of a label distinct from ri,1.
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Finite-valued reduction for MaxSAT[0, 1] L

Work in [0, 1] L.

Consider ϕ1, . . . , ϕk ∈ F .

Assume that the intersection of 1-regions of {ϕi}i∈I ,
for some I ⊆ {1, . . . , k}, is nonempty.

Then there is at least one vertex p of a cell in the intersection,
namely, of the common refinement of C(ϕi), i ∈ I.

We have

den(p̄) ≤
(Σi∈I]ϕi

n

)n ≤ (Σk
i=1]ϕi

n

)
Hence, the coordinates of p̄ belong to  LN with

N = lcm{1, 2, . . . ,
(Σk

i=1]ϕi

n

)n} ≈ exp(
(Σk

i=1]ϕi

n

)n
)

Zuzana Haniková SAT and MaxSAT problems in  Lukasiewicz logic


