SAT and MaxSAT problems in Łukasiewicz logic

Zuzana Haniková
Institute of Computer Science, Czech Academy of Sciences

Nonclassical Logic Days, Barcelona, Oct 14, 2022

Decision problems \& SAT

Fix the basic language of Łukasiewicz logic: \mathcal{L} as $\{\neg, \oplus\}$. This gives the set \mathcal{F} of (propositional) wff's.
$\mathbb{M V}$ is the class of MV-algebras.
Let $A \in \mathbb{M} \mathbb{V}$.

$$
\operatorname{SAT}(\mathrm{A})=\left\{\varphi \in \mathcal{F} \mid \exists v_{\mathrm{A}}\left(v_{\mathrm{A}}(\varphi)=1^{\mathrm{A}}\right)\right\}
$$

Solvability of finite systems of MV-equations in A.
We use $[0,1]_{\mathrm{E}}$ for $\Gamma(\mathrm{R}, 1)$ (the "standard MV-algebra").
$\operatorname{SAT}\left([0,1]_{\mathrm{E}}\right)$ is in NP (in fact, NP-complete).
[Mundici: SAT in many-valued sentential logic is NP-complete, 1987]
Let $\overline{\operatorname{SAT}}(\mathrm{A})$ be the complement of $\operatorname{SAT}(\mathrm{A})$ in \mathcal{F}. Then $\varphi \in \overline{\operatorname{SAT}}(\mathrm{A})$ iff $\mathrm{A} \vDash \varphi \approx 1 \Rightarrow 0 \approx 1$.
Thus $\overline{\operatorname{SAT}}(A)$ is a fragment of the Q-theory of A.

Optimization tasks \& MaxSAT

Let $\varphi_{1}, \ldots, \varphi_{k}$ be a list of formulas in \mathcal{F}.

$$
\begin{aligned}
& \operatorname{MaxSAT}(\mathrm{A})\left(\varphi_{1}, \ldots, \varphi_{k}\right)= \\
&=\max \left\{m \leq k \mid \exists v_{A} \exists I \subseteq\{1, \ldots, k\}\left[|I|=m \& \forall i \in I\left(v_{\mathrm{A}}\left(\varphi_{i}\right)=1^{A}\right)\right] \&\right. \\
&\left.\forall v_{A} \forall I \subseteq\{1, \ldots, k\}\left[|I|>m \Rightarrow \exists i \in I\left(v_{\mathrm{A}}\left(\varphi_{i}\right)<1^{A}\right)\right]\right\}
\end{aligned}
$$

Maximal number of (simultaneously!) satisfied formulas, over all assignments.

NB. $\varphi_{i_{1}}, \ldots, \varphi_{i_{n}}$ are simultaneously satisfiable in A iff $\wedge_{j=1}^{n} \varphi_{i_{j}} \in \operatorname{SAT}(\mathrm{~A})$.

Geometry and complexity

$\varphi\left(x_{1}, \ldots, x_{n}\right)$ formula in $\mathcal{F} ; f_{\varphi}$ its interpretation in $[0,1]_{\mathrm{E}} ;$
$\sharp \varphi$ number of occurrences of variables in φ.
The function f_{φ} introduces a polyhedral complex $C(\varphi)$ on $[0,1]^{n}$ s.t.

- $[0,1]^{n}=\bigcup C(\varphi)$ and
- f_{φ} is linear over each n-dimensional cell of $C(\varphi)$.

The 1-region of φ is union of cells of $C(\varphi)$ such that f_{φ} attains the value 1 on all points in the cell. This is a compact subset of $[0,1]^{n}$.

Vertices of C occur as solutions of systems of linear equations, with integer coefficient bounded by $\sharp \varphi$.

Theorem [A.-C. 2000]: For a vertex \bar{p} of an n-dimensional cell of C,

$$
\operatorname{den}(\bar{p}) \leq\left(\frac{\sharp \varphi}{n}\right)^{n}
$$

where $\operatorname{den}(\bar{p})$ for a rational vector $\bar{p}=\left(p_{1}, \ldots, p_{n}\right)$ is the
least common denominator of p_{1}, \ldots, p_{n}.
Corollary: $\operatorname{SAT}\left([0,1]_{\mathrm{E}}\right)$ is in NP.
[McNaughton 1951; Mundici 1987; Aguzzoli and Ciabattoni 2000; Aguzzoli 20061

Geometry and complexity - cont'd

$\varphi_{1}, \ldots, \varphi_{k}$ formulas of \mathcal{L}, with variables among x_{1}, \ldots, x_{n}.
The common refinement of $C\left(\varphi_{1}\right), \ldots, C\left(\varphi_{k}\right)$
(considered n-dimensional) is the polyhedral complex
whose n-dimensional cells are precisely all (n-dimensional) intersections of n-dimensional cells of $C\left(\varphi_{1}\right), \ldots, C\left(\varphi_{k}\right)$.

Theorem [\sim A.-C. 2000]: For a vertex \bar{p} of an n-dimensional cell of the common refinement of $C\left(\varphi_{1}\right), \ldots, C\left(\varphi_{k}\right)$,

$$
\operatorname{den}(\bar{p}) \leq\left(\frac{\sum_{i=1}^{k} \sharp \varphi_{i}}{n}\right)^{n}
$$

[Aguzzoli and Ciabattoni 2000]
A decision version of MaxSAT for $[0,1]_{\mathrm{E}}\left(\mathrm{D}-\operatorname{MaxSAT}\left([0,1]_{\mathrm{E}}\right)\right)$:

$$
\left\{\left\langle\varphi_{1}, \ldots, \varphi_{k}\right\rangle, m \leq k \mid \operatorname{MaxSAT}\left([0,1]_{\mathrm{E}}\right)\left(\varphi_{1}, \ldots, \varphi_{k}\right) \geq m\right\}
$$

Corollary: D-MaxSAT $\left([0,1]_{\mathrm{E}}\right)$ is in NP.

Oracle computation for MaxSAT

Let $\varphi_{1}, \ldots, \varphi_{k}$ be given.
Assume an oracle for $\operatorname{D}-\operatorname{MaxSAT}\left([0,1]_{\mathrm{E}}\right)$.

Binary search on the interval of natural numbers $\{0, \ldots, k\}$.

Let $a:=0$ and $b:=k$.
While $a<b$ do \{
$m:=\lfloor a+b / 2\rfloor$;
$\operatorname{D-MaxSAT}\left([0,1]_{\mathrm{E}}\right)\left(\left\langle\varphi_{1}, \ldots, \varphi_{k}\right\rangle, m\right) ? \begin{cases}(\text { yes }) & a:=m+1 ; \\ (\text { no }) & b:=m ;\end{cases}$
\}
Return b.
Corollary: $\operatorname{MaxSAT}\left([0,1]_{\mathrm{E}}\right)$ is in $\mathrm{FP}^{\mathrm{NP}}$.

NB. Any NP-complete problem will do as oracle.

Tableau calculus for MaxSAT[L_{3}] [Li, Manyà, Vidal 2020]

Labelled formulas $\{r\}: \alpha$, where $r \in\{0,1 / 2,1\}$ and $\alpha \in \mathcal{F}$.
A labelled formula $\{r\}: \alpha$ is satisfied by an assignment v iff $v(\alpha)=r$.
Given a multiset of labelled formulas $\{1\}: \alpha_{1}, \ldots,\{1\}: \alpha_{k}$, with $\alpha_{i} \in \mathcal{F}$, the calculus computes the minimal number of unsatisfied formulas.
strong disjunction

$$
\begin{aligned}
& \quad \begin{array}{ll|l|l}
\\
\hline
\end{array} \\
& \\
& \text { negation } \\
& \begin{array}{ll}
\{0\}: \neg \phi \\
\{1\}: \phi & \left\{\frac{1}{2}\right\}: \neg \phi \\
\left\{\frac{1}{2}\right\}: \phi & \{1\}: \neg \phi \\
\{0\}: \phi
\end{array}
\end{aligned}
$$

For a variable x_{i}, list its labels $\left(r_{i, 1}, \ldots, r_{i, m}\right)$ in decreasing frequency. Append \square for each occurrence of a label distinct from $r_{i, 1}$.

Finite-valued reduction for $\operatorname{MaxSAT}[0,1]_{\mathrm{L}}$

Work in $[0,1]_{\mathrm{E}}$.

Consider $\varphi_{1}, \ldots, \varphi_{k} \in \mathcal{F}$.
Assume that the intersection of 1-regions of $\left\{\varphi_{i}\right\}_{i \in I}$, for some $I \subseteq\{1, \ldots, k\}$, is nonempty.

Then there is at least one vertex p of a cell in the intersection, namely, of the common refinement of $C\left(\varphi_{i}\right), i \in I$.

We have

$$
\operatorname{den}(\bar{p}) \leq\left(\frac{\sum_{i \in I} \sharp \varphi_{i}}{n}\right)^{n} \leq\left(\frac{\sum_{i=1}^{k} \sharp \varphi_{i}}{n}\right)
$$

Hence, the coordinates of \bar{p} belong to $\mathrm{Ł}_{N}$ with

$$
N=\operatorname{lcm}\left\{1,2, \ldots,\left(\frac{\sum_{i=1}^{k} \sharp \varphi_{i}}{n}\right)^{n}\right\} \approx \exp \left(\left(\frac{\sum_{i=1}^{k} \sharp \varphi_{i}}{n}\right)^{n}\right)
$$

