
A Development of Set Theory in Fuzzy LogicPetr H�ajek and Zuzana Hanikov�aInstitute of Computer Science182 07 Praha 8Czech RepublicAbstract. This paper presents an axiomatic set theory FST (`FuzzySet Theory'), as a �rst-order theory within the framework of fuzzy logicin the style of [4]. In the classical ZFC, we use a construction similar tothat of a Boolean-valued universe|over an algebra of truth values of thelogic we use|to show the nontriviality of FST. We give the axioms ofFST. Finally we show that FST interprets ZF.1 IntroductionIf anything comes to people's minds on the term `fuzzy set theory' being used, itusually is the theory (or theories) handling fuzzy sets as real-valued functions ona �xed universe within the classical set-theoretic universe. However, as \fuzzy"or \many-valued" logic has been evolving into a formal axiomatic theory, a fewexceptions from this general expectation have emerged: these are formal \set"theories within the respective many-valued logics, i.e., theories whose underlyinglogic is governed by a many-valued semantics.We rely especially on those works which develop a theory in the language andstyle of the classical Zermelo-Fraenkel set theory (ZF). We have been inspiredby a series of papers developing a theory generalizing ZF in a formally weakerlogic|intuitionistic ([7], [2]) and later its strengthening commonly referred toas G�odel logic ([9], [10], [11]); some results and proofs carry over to our system.For an important example, the axiom of foundation, together with a very weakfragment of ZF, implies the law of the excluded middle, which yields the fullclassical logic (both in G�odel logic and in the logic we use in this paper), andthus the theory developed becomes crisp. For this reason we start with buildinga non-crisp universe in which we verify our axioms.However, all these papers fall short in tackling one of the distinguishing traitsof many-valued logic, which is the general non-idempotence of the conjunction(conjunction is idempotent in G�odel logic). The non-idempotence of conjunctiona�ects the resulting theory considerably (cf. [3]); in coping with some of thedi�culties we appreciated an elegant solution found in [8]. The author worksover the so-called phase spaces as algebras of truth values and builds, using ananalogy of the construction of a Boolean-valued universe (over a phase-spaceinstead of a Boolean algebra), a class, with class operations evaluating formulasin the language f2;�;=g, in which he veri�es the chosen axioms of his settheory. Having observed that the standard  Lukasiewicz algebra enriched with



the � operator is a particular phase space, we have studied this paper thinkingof a more general approach employing (linearly ordered) BL-algebras with �;this should form a common generalization of the approach of [9] and [10] andthat of [8].This paper is an extension of [6]; it brings in a simpli�ed de�nition of theinitial universe, and an inner model of ZF in FST. Regarding the nature of thispaper we omit most of the logical background, which is to be found mainly in[4], as well as some technical details and some proofs.The authors acknowledge gratefully a partial support from the grant IAA103 0004, Grant Agency of the Academy of Sciences, Czech Republic.2 PrerequisitesDe�nition1. BL8� is a formal logical system with basic connectives &, !,0 and �, de�ned connectives :, ^, _ and �|where :' is ' ! 0, ' ^  is'&(' !  ), ' _  is ((' !  ) !  ) ^ (( ! ') ! '), and ' �  is(' !  )&( ! ')|and with two quanti�ers 8 and 9. The axioms are asfollows:(A1) ('!  ) ! (( ! �) ! ('! �))(A2) ('& ) ! '(A3) ('& ) ! ( &')(A4) ('&(' !  )) ! ( &( ! '))(A5a) ('! ( ! �)) ! (('& ) ! �)(A5b) (('& ) ! �) ! ('! ( ! �))(A6) (('!  ) ! �) ! ((( ! ') ! �) ! �)(A7) 0 ! '(�1) �' _ :�'(�2) �(' _  ) ! (�' _� )(�3) �'! '(�4) �'! ��'(�5) �('!  ) ! (�'! � )(81) 8x'(x) ! '(t) (t substitutable for x in ')(91) '(t) ! 9x'(x) (t substitutable for x in ')(82) 8x(�! ') ! (�! 8x') (x not free in �)(92) 8x('! �) ! (9x'! �) (x not free in �)(83) 8x(' _ �) ! (8x' _ �) (x not free in �).The deduction rules of BL8� are modus ponens, generalization, and f'=�'g.De�nition2. Let C be an arbitrary schematic extension of BL8�. A C-algebrais a BL�-algebra L in which all the axioms of C are L-tautologies.Theorem3. (Strong completeness)Let C be a schematic extension of BL8�,let T be a theory over C, and let ' be a formula of the language of T . Then Tproves ' i� ' holds in any safe modelM of T over any linearly ordered C-algebra.



3 The Initial UniverseConsider the classical ZFC. Fix C as a schematic extension of BL8�, and �xa constant L for an arbitrary linearly ordered complete C-algebra; write L =(L; �;);^;_; 0;1) (as usual, L denotes both the algebra and its support). InZFC let us make the following construction: in analogy to the construction ofa Boolean-valued universe over a complete Boolean algebra, we build the classV L by ordinal induction. De�ne L+ = L� f0g.V L0 = f;gV L�+1 = ff : Fnc(f) &D(f) � V L� &R(f) � L+gfor any ordinal �, and for limit ordinals �V L� = [�<�V L�Here Fnc(x) is a unary predicate stating that x is a function, and D(x) and R(x)are unary functions assigning to x its domain and range, respectively.Note that functions taking the value 0 on any element of their domain arenot considered as elements of the universe.Finally we put V L = [�2On V L�Observe that for � � �, V L� � V L� .We de�ne two binary functions from V L into L, assigning to any tuple x; y 2V L the values jjx 2 yjj and jjx = yjj (representing the \truth values" of the twopredicates 2 and =):jjx 2 yjj = y(x) if x 2 D(y), otherwise 0,jjx = yjj = 1 if x = y, otherwise 0.We now use induction on the complexity of formulas to de�ne for any formula'(x1; : : : ; xn)|the free variables in ' being x1; : : : ; xn|a corresponding n-aryfunction from (V L)n into L. The induction steps admit the following cases (wejust write ' for short):' is 0: then jj'jj = 0;' is  &�; then jj'jj = jj jj � jj�jj;' is  ! �: then jj'jj = jj jj ) jj�jj;' is  ^ �: then jj'jj = jj jj ^ jj�jj;' is  _ �: then jj'jj = jj jj _ jj�jj;' is � ; then jj'jj = �jj jj:' is 8x : then jj'jj= Vu2V L  (x=u);' is 9x : then jj'jj= Wu2V L  (x=u).Here  (x=u) is the result of substituting u for the variable x in  . We use thesymbols ^, _, � for both logical connectives and operations in L.



De�nition4. Let ' be a closed formula. We say that ' is valid in V L i� jj' = 1jjis provable in ZFC.(As usual, we take closures of formulas containing free variables when consideringtheir validity.)Lemma5. (1) ZFC proves for u 2 V L:u(x) = jjx 2 ujj for x 2 D(u), jju = ujj = 1(2) ZFC proves for u; v; w 2 V L:(i)jju = vjj � jjv = wjj � jju = wjj(ii)jju 2 vjj � jjv = wjj � jju 2 wjj(iii)jju = vjj � jjv 2 wjj � jju 2 wjjProof. (1) immediate,(2) (i) immediate,(ii) if v = w, then jjv = wjj = 1, so jju 2 vjj = jju 2 vjj � jjv = wjj = jju 2wjj � jjv = wjj = jju 2 wjj; otherwise jjv = wjj = 0, in which case the statementholds trivially.(iii) analogously. utLemma6. (Substitution) For any formula ', ZFC proves: 8u; v 2 V L, jju =vjj � jj'(u)jj � jj'(v)jj.Lemma7. (Bounded quanti�ers) ZFC proves 8x 2 V L:(i) jj9y 2 x'(y)jj = jj9y(y 2 x&'(y))jj = Wy2D(x)(x(y) � jj'(y)jj)(ii) jj8y 2 x'(y)jj = jj8y(y 2 x! '(y))jj = Vy2D(x)(x(y) ) jj'(y)jj)Proof. (i) jj9y(y 2 x&'(y))jj = Wy2V L(jjy 2 xjj � jj'(y)jj) = Wy2D(x)(x(y) �jj'(y)jj) since jjy 2 xjj is nonzero only if y 2 D(x), and in that case it is x(y).(ii) analogously. utCorollary 8. jjx � yjj = jj8u 2 x(u 2 y)jj = jj8u(u 2 x! u 2 y)jj.4 The Theory FSTWe introduce the theory FST in the language f2g; we take = to be a logicalsymbol with the usual axioms (imposing reexivity, symmetry, transitivity andcongruence w.r.t 2 on the corresponding relation). The underlying logic of FST isa schematic extension C (possibly void) of BL8�; when proving theorems withinFST, we only rely on the logical axioms of BL8� (thus any schematic extensionwill, for example, interpret ZF). On the other hand, for a given extension C, theuniverse V L|for L a C-algebra|will yield an interpretation of FST over C.The reader will have noticed that ours is a crisp equality. This was imposedby the following fact:



Lemma9. A theory with comprehension (for open formulas) and pairing (orsingletons) over a logic which proves the propositional formula (' ! '&') !(' _ :') proves 8x; y(x = y _ :(x = y)).Proof. Given x; y, let z be s. t. u 2 z � (u 2 fxg&u = x), i. e., u 2 z � (u = x)2.Since (x = x)2, we have x 2 z. If y = x then y 2 z by congruence, but then(y = x)2; thus we have proved y = x ! (y = x)2, thus (by assumption on thelogic) (x = y _ :(x = y)). utThus e.g. in  Lukasiewicz logic and in product logic we get a crisp =. Also,under the usual formulation of extensionality, crispness of = implies crispness of2 in a theory with pairings and unions (cf. [3]). We borrow the elegant solutionfrom [8]: a modi�cation of extensionality uses the � operator, which invalidatesthe proof of crispness of 2 from the crispness of =.De�nition10. FST is a �rst order theory in the language f2g, with the follow-ing axioms:(i) (extensionality) 8x8y(x = y � (�(x � y)&�(y � x)))(ii) (empty set) 9x�8y:(y 2 x)(iii) (pair) 8x8y9z�8u(u 2 z � (u = x _ u = y))(iv) (union) 8x9z�8u(u 2 z � 9y(u 2 y& y 2 x))(v) (weak power) 8x9z�8u(u 2 z � �(u � x))(vi) (in�nity)9z�(; 2 z& 8x 2 z(x [ fxg 2 z))(vii) (separation) 8x9z�8u(u 2 z � (u 2 x&'(u; x)), for any formula not con-taining z as a free variable(viii) (collection) 8x9z�[8u 2 x9v '(u; v) ! 8u 2 x9v 2 z'(u; v))] for any for-mula not containing z as a free variable(ix) (2-induction) �8x(8y 2 x'(y) ! '(x)) ! �8x'(x) for any formula '(x) (support) 8x9z(Crisp(z)&�(x � z)))The �'s in the axioms of weak power and 2-induction are introduced toweaken the statements; the �'s after an existential quanti�ers is used to guar-antee that an element with the postulated property exists in every model of thetheory (which does not follow from the semantics of the 9 quanti�er).As usual, in the formulation of some axioms we use the functions of emptyset, singleton, and union, which can be introduced using the appropriate axiomsas in classical ZF, and also the usual de�nition of �. For a detailed treatment ofintroducing functions in BL8, see [5]. The function introduced by the weak powerset axiom will be denoted WP (x) for a set x. We use the following de�nition ofcrispness of a set:De�nition11. Crisp(x) � 8u(�(u 2 x) _�:(u 2 x))Theorem12. Let ' be a closed formula provable in FST. Then ZFC provesjj'jj= 1 in V L.Having proved this theorem we shall take the liberty to call V L a model ofFST. (More pedantically, we have constructed an interpretation of FST (over C)



in ZFC.) We omit all validity proofs for logical axioms and inference rules. Thevalidity of congruence axioms for 2 has been veri�ed in Lemma 5. It remains toverify the set-theoretic axioms.Lemma13. The set-theoretical axioms (i)-(x) hold in V L.Proof. (extensionality) For �xed x; y 2 V L, either x = y and then the axiomholds, or x 6= y and jjx = yjj = 0; then either D(x) = D(y) and w. l. o. g. thereis a z 2 D(x) s. t. x(z) < y(z), so jj�y � xjj = 0, or w. l. o. g. there is az 2 D(x) s. t. z 62 D(y), and then jjz 2 xjj is nonzero while jjz 2 yjj is zero thusjj�x � yjj = 0.(empty set) There is only one candidate for the role of an \empty set in V L",and this is the ; in V L0 . Indeed, for an arbitrary x we get jjx 2 ;jj = 0 since nox can be in the domain of ; (taken as a function).(pair) For �xed x; y 2 V L, there is a z 2 V L such that D(z) = fx; yg andz(x) = z(y) = 1. The set z has the desired properties: for arbitrary u 2 V L,either u 2 D(z), then either u = x or u = y and jju 2 zjj = z(u) = 1, oru 62 D(z), and then jju 2 zjj = jju = xjj = jju = yjj = 0.(union) For a �xed x 2 V L, de�ne (auxiliary) D2(x) = SfD(v) : v 2 D(x)g.De�ne z s. t. D(z) = fu 2 D2(x) : Wv2D(x)(v(u) � x(v)) > 0g (with a nilpotentt-norm, the union of a nonempty set may well be empty), and for u 2 D(z) setz(u) = Wv2D(x)(v(u) � x(v)). Then for an arbitrary u 2 V L, if u 2 D(z) thenjju 2 zjj = z(u) = Wv2D(x)(v(u) � x(v)) = jj9y(u 2 y 2 x)jj. If u 62 D(z), thenjju 2 zjj = 0, and also jj9y 2 x(u 2 y)jj = 0 by de�nition of D(z).(weak power) For a �xed x 2 V L, de�ne z s.t. D(z) = fu 2 V L : D(u) �D(x) &u(v) � x(v) for v 2 D(u)g, and z(u) = 1 for u 2 D(z). For u 2 V L,either u 2 D(z) and then jju 2 zjj = z(u) = 1, and also (by de�nition of D(z))jju � xjj = 1 = jj�u � xjj, or u 62 D(z), thus jju 2 zjj = 0, and (by de�nitionof D(z)) either D(u) 6� D(x), or for some v 2 D(u), u(v) > x(v), and in eithercase jj�8v 2 u(v 2 x)jj = �Wv2D(u)(u(v) ) jjv 2 xjj) = 0.(in�nity) De�ne a function z with D(z) = V L! and z(u) = 1 for u 2 D(z).Then jj; 2 zjj = 1 and, since for x 2 V L� we have x [ fxg 2 V L�+1, also jj8x 2z(x [ fxg 2 z)jj = 1.(separation) For a �xed x 2 V L, and a given ', de�ne z s. t. D(z) = fu 2 D(x) :x(u) � jj'(u)jj > 0g and for u 2 D(z) set z(u) = x(u) � jj'(u)jj. Obviously thisde�nition of z demonstrates the validity of separation in V L.(collection) in [8](2-induction) Fix a formula' and suppose the axiom does not hold in V L. Then(since � is two-valued) it must be the case that jj�8x(8y 2 x'(y) ! '(x))jj = 1and jj�8x'(x)jj = 0, thus there is a successor ordinal � s. t. 9x 2 V L� ('(x) <1) & 8� < �8y 2 V L� ('(y) = 1). Suppose �rst � = 0; but jj8y 2 ;'(y) !'(;)jj = 1 ) '(;) = '(;) < 1, thus the antecedent would be 0. Suppose now� > 0, and x 2 V L� is s. t. '(x) < 1. From the condition that jj8y 2 x'(y) !'(x)jj = 1, and since jj8y 2 x'(y)jj = 1, we get jj'(x)jj = 1, a contradiction.



(support) For a �xed x 2 V L take z such that D(z) = D(x) and 8u 2 D(z)z(u) = 1. Then jjCrisp(z)jj = 1 and Vu2D(x)(x(u) ) jju 2 zjj) = 1. ut5 An Interpretation of ZF in FSTWithin FST, we shall de�ne a class (i.e., we shall give a formula with one freevariable, in the language of FST) of hereditarily crisp sets, which will be provedan inner model of ZF in FST.We start with a bunch of technical statements.Lemma14. BL8� ` 8x�' � �8x'.Proof. The right-to-left implication is easy. We give a BL8�-proof of the con-verse one (an analogy to the proof of the Barcan formula in S5). Let }' standfor :�:'.(i) '! :�:'.In BL�, �:'! :', thus (�:'&') ! 0, thus '! (�:'! 0).(ii) :�'! �:�'.In BL�, �' _ :�', thus ��'_�:�'. This gives :�'! �:�'.Thus the following two are provable in BL�:(iii) '! �}'(iv) }�'! �'.Next, (v) �('!  ) ! (}'!} ),since �('!  ) ! �(: ! :') ! (�: ! �:') ! (}'!} ).(vi) }8x'! 8x}' is a consequence of (v).Finally, 8x�'! �}8x�'! �8x}�'! �8x�'! �8x'. utLemma15. BL8� ` �(' _ :') � �('! �').Proof. Takes place inside BL8�. Implication left-to-right: �(' _ :') ! (�' _�:') ! [' ! ('&(�' _ �:'))] ! [' ! (�' _ ('&�:'))]. In the lastformula in the chain, '&�:' ! 0, thus the last formula implies ' ! �'; weget �(' _ :') ! ('! �'), which �-generalizes to the desired implication.Conversely,�'! �('_:'), thus also (i)�'! [�('! �') ! �('_:')].Moreover �(' ! �') ! (�:�' ! �:') ! [�:�'! �(' _ :')], thus (ii)�:�'! [�('! �') ! �('_:')]. Since BL8� proves �'_�:�', we getthe right-to-left implication by putting together (i) and (ii). utRecall the de�nition of a crisp set. We getCorollary16. 8x(Crisp(x) � 8u�(u 2 x! �(u 2 x)).Note that Crisp(x) � �8u(u 2 x! �(u 2 x)) ! ��8u(u 2 x! �(u 2 x)), socrispness is a crisp property:Lemma17. Crisp(x) ! �Crisp(x).



We write ./ ' for �(' _ :').Lemma18. BL� ` (./ '&('! � )) ! �('!  ).Proof. [�'&(' ! � )] ! � ! �(' !  ), and �:' ! �(' !  ), so./ ' � (�' _ :�') ! (('! � ) ! �('!  )). utLemma19. BL8� ` 8xy((Crisp(x)&Crisp(y)&x � y) ! �(x � y)).Proof. (Crisp(x)&Crisp(y)&(u 2 x! u 2 y)) !(./ (u 2 x)&(u 2 x! �u 2 y)) ! �(u 2 x! u 2 y). utDe�nition20. (Hereditarily crisp transitive set)HCT (x) � Crisp(x) & 8u 2x(Crisp(u)&u � x)The formula HCT (x) de�nes a class, and we adopt the habit of writingx 2 HCT instead of HCT (x) and approaching classes in a similar way weapproach sets. A \crisp class" C is a class for which 8x�(x 2 C _:(x 2 C)), orequivalently, 8x�(x 2 C ! �(x 2 C)).Lemma21. (Crispness of HCT ) x 2 HCT ! �(x 2 HCT ).Proof. x 2 HCT � �Crisp(x)&8u(u 2 x! (Crisp(u)&u � x))�!��Crisp(x)&8u(./ (u 2 x)&(u 2 x! �(Crisp(u)&u � x)))�!��Crisp(x)&8u�(u 2 x! (Crisp(u)&u � x))�!�(x 2 HCT ). utDe�nition22. (Hereditarily crisp set) H(x) � Crisp(x) & 9x0 2 HCT(x �x0).Lemma23. (Crispness of H) x 2 H ! �(x 2 H).Proof. By de�nition of H, we are to prove(Crisp(x)&9y 2 HCT(x � y)) ! �(Crisp(x)&9y 2 HCT(x � y)):Since Crisp(x) ! �Crisp(x), it su�ces to prove(Crisp(x)&9y 2 HCT(x � y)) ! �(9y 2 HCT(x � y))(we may use the presumption Crisp(x) in each of the two implications since itis idempotent).First, (Crisp(x)&y 2 HCT&x � y) ! �(y 2 HCT&x � y) by Lemma 21and Lemma 19. Now generalize: 8y((Crisp(x)&y 2 HCT&x � y) ! �(y 2HCT&x � y)); hence (Crisp(x)&9y(y 2 HCT&x � y)) ! 9y�(y 2 HCT&x �y); and the succedent implies �9y(y 2 HCT&x � y). utWe show that FST proves H to be an inner model of ZF. In more detail, for' a formula in the language of ZF, de�ne 'H inductively as follows:'H = ' for ' atomic;'H = ' for ' = 0;'H =  H&�H for ' =  &�;'H =  H ! �H for ' =  ! �;'H = (8x 2 H) H for ' = (8x) ;'H = (9x 2 H) H for ' = (9x) .



Theorem24. Let ' be a theorem of ZF. Then FST ` 'H.To prove this theorem, we �rst show that the law of the excluded middle(LEM) holds in H; since BL8 together with LEM yield classical logic, we willhave proved that all logical axioms of ZF are provable when relativized to H.Then we prove the H-relativized versions of all the axioms of the ZF set theory.Lemma25. Let '(x1; : : : ; xn) be a ZF-formula whose free variables are amongx1; : : : ; xn. Then FST proves 8x1 2 H : : :8xn 2 H('H(x1; : : : ; xn)_:'H(x1; : : : ; xn)).Proof. We consider a formula ' with (at most) one free variable x, the mod-i�cation for multiple free variables being easy. The formula to be proved inFST is 8x(x 2 H ! ('H (x) _ :'H (x)); it su�ces to prove 8x�(x 2 H !('H(x)_:'H(x)), and by Lemma 18 and Lemma 15, it su�ces to prove 8x(x 2H ! �('H(x) ! �'H(x)).The proof proceeds by induction on the complexity of '.Atomic subformulas: = is a crisp predicate, for 2 we have to prove x 2y ! �x 2 y assuming x; y 2 H. In fact y 2 H implies Crisp(y), which entails8x(x 2 y ! �x 2 y).Conjunction: for a subformula  1(x; y)& 2(x; z) of ' (we assume one freevariable in common, and one distinct free variable for each subformula, and wehenceforth omit their explicit listings, for legibility's sake) assume x; y 2 H !( H1 ! � H1 ) and x; z 2 H ! ( H2 ! � H2 ). Then (x 2 H)2&(y; z 2 H) !(( H1 & H2 ) ! �( H1 & H2 )), and since x 2 H is idempotent, this completes theinduction step for conjunction.Implication: for a subformula  1(x; y) !  2(x; z) of ', assume x; y 2 H !( H1 ! � H1 ) and x; z 2 H ! ( H2 ! � H2 ). Thus ( H1 !  H2 )&(x; z 2 H) !( H1 ! � H2 ), and since x; y 2 H implies crispness of  H1 , we get x; y 2 H !(( H1 ! � H2 ) ! �( H1 !  H2 )). Thus x; y; z 2 H ! (( H1 !  H2 ) ! �( H1 ! H2 )).The universal quanti�er: for a subformula 8y (x; y) of ', the induction hy-pothesis is x; y 2 H ! ( H (x; y) ! � H (x; y)). Generalize in y: x 2 H !8y(y 2 H ! ( H (x; y) ! � H (x; y)); now since for a crisp �, BL proves(� ! (� ! )) ! ((� ! �) ! (� ! )), we may modify the succedent to8y((y 2 H !  H (x; y)) ! (y 2 H ! � H (x; y)), and distributing 8y, we haveproved: x 2 H ! (8y 2 H H (x; y) ! 8y 2 H� H(x; y)). To ip the � and the8y 2 H in the succedent, use Lemma 18.The existential quanti�er: for a subformula 8y (x; y) of ', the inductionhypothesis is x; y 2 H ! ( H (x; y) ! � H (x; y)). Generalize in y: x 2H ! 8y(y 2 H ! ( H (x; y) ! � H (x; y)); now (y 2 H ! ( H (x; y) !� H(x; y))) ! (y 2 H ! (y 2 H& H (x; y) ! y 2 H&� H(x; y))) ! (y 2H& H (x; y) ! y 2 H&� H (x; y)). We get x 2 H ! (9y(y 2 H& H (x; y)) !9y�(y 2 H& H (x; y))), and the last succedent implies �9y(y 2 H& H (x; y)).utDe�nition26. WPC(x) = fu 2WP (x); Crisp(u)g.



Lemma27. 8x(x � H&Crisp(x) ! x 2 H).Proof. Fix an x. x � H is by de�nition 8u 2 x9u0(u0 2 HCT&u � u0). Thus9v08u 2 x9u0 2 v0(u0 2 HCT&u � u0). Fix v0 and separate: v = fu 2 v0 : �u 2v0&u 2 HCT&9u0 2 x(u0 � u)g. Note that 8u 2 x9u0 2 v(u0 2 HCT&u � u0),because x is crisp. v is a crisp set and all its elements are crisp (all of themare in HCT ); hence S v is crisp; its elements are crisp since a 2 Sv implies9b 2 HCT (a 2 b 2 v), thus a is crisp. S v is also transitive: b 2 a 2 S v implies9y(b 2 a 2 y 2 v), and since y 2 HCT is transitive, b 2 y 2 v and b 2 S v. Nowconsider WPC(Sv) (the crisp elements of the weak power set of S v); this is acrisp set, and it is a subset of WPC(Sv)[Sv, which is a crisp transitive set ofcrisp elements, thus in HCT , thus WPC(S v) 2 H. Since v � WPC(Sv), weget 8u 2 x9u0 2 WPC(Sv)(u � u0), thus 8u 2 x(u 2 WPC(Sv); this meansx �WPC(S v) 2 HCT , so x 2 H. utWe consider ZF with the following axioms: empty set, pair, union, power set,in�nity, separation, collection, extensionality, 2-induction. The exact spelling ofthese axioms is given separately when proving in FST their H-ed versions.Theorem28. For ' being any of the abovementioned axioms of ZF, FST proves'H .Proof. (empty set) 9z8u:(u 2 z).The H-translation, which reads 9z 2 H8u 2 H:u 2 z, is provable since 0 2HCT .(pair) 8x; y9z8u(u 2 z � (u = x _ u = y)).The H-translation 8x; y 2 H9z 2 H8u 2 H(u 2 z � (u = x) _ (u = y)) isabsolute: the set fx; yg is crisp (since = is crisp); to show that it is a subset ofa set which is in HCT, consider x0 2 HCT a witness for x 2 H and y0 2 HCTa witness for y 2 H. Then fx; yg [ x0 [ y0 is a crisp transitive set with crispelements, hence in HCT, and thus fx; yg is in H.(union) 8x9z8u(u 2 z � 9y(u 2 y 2 x)).The H-translation 8x 2 H9z 2 H8u 2 H(u 2 z � 9y 2 H(u 2 y 2 x))is absolute: let x0 2 HCT witness x 2 H. Then Sx is a crisp set with crispelements (since x � x0), and Sx � Sx0 2 HCT , which witnesses Sx 2 H.(power set) 8x9z8u(u 2 z � u � x)The H-translation reads 8x 2 H9z 2 H8u 2 H(u 2 z � 8y 2 H(y 2 u !y 2 x)). Let x0 be a witness for x 2 H. then for x 2 H it holds that 8u 2H(u 2WPC(x) � �(u � x)H � (u � x)H ), WPC(x) is crisp, and WPC(x) �WPC(x0) [ x0, which is a transitive crisp set with crisp elements, thus in HCTand a witness for WPC(x) 2 H.(separation) 8x9z8u(u 2 z � (u 2 x&'(u)) for a ZF-formula not containing zfreely.The H-translation is absolute: let x0 2 HCT witness x 2 H and set z = fu 2x;'H(u)g, then z is a crisp set and z � x � x0 2 HCT (i.e., x0 is a witness forz 2 H).(in�nity) 9z(0 2 z&8u 2 z(u [ fug 2 z)).



It su�ces to prove that there is a set z 2 H s.t. 0 2 z&8u 2 z(u [ fug 2 z).Let z0 be any set satisfying the axiom of in�nity in FST and de�ne z1 = fx 2z0 : �(x 2 z0)&Crisp(x)g. Then z1 is a subset of z0 and 0 2 z1 and u 2 z1 !u [ fug 2 z1. Now let z = fx 2 z1 : x � z1g, i.e., a transitive subset of z1.Obviously 0 2 z, let us prove x 2 z ! (x [ fxg) 2 z, that is by de�nition of z,[x 2 z1&8y 2 x(y 2 z1)] ! [x [ fxg 2 z1&8a(a 2 x _ a = x ! a 2 z1)]. Weknow x 2 z1 ! (x [ fxg 2 z1). Also, x 2 z1&(y 2 x ! y 2 z1) ! (y 2 x _ y =x ! y 2 z1). (Note that we made multiple use of the presumption x 2 z1; wemay do that because the formula is crisp, thus x 2 z1 � (x 2 z1)2.) Finally, z isa crisp transitive set with crisp elements, so z 2 HCT .(extensionality) 8xy(x = y � 8z(z 2 x � z 2 y)).The H-translation 8x; y 2 H(x = y � 8z 2 H(z 2 x � z 2 y)) follows fromextensionality in FST by H being transitive and by the crispness of its elements(the �'s may be left out).(collection) 8u(8x 2 u9y'(x; y) ! 9v8x 2 u9y 2 v'(x; y)) for ' not contain-ing v freely.The H-translation reads 8u 2 H(8x 2 H(x 2 u ! 9y 2 H'H (x; y)) ! 9v 2H8x 2 H(x 2 u ! 9y 2 H(y 2 v&'H (x; y)))). Fix u 2 H and a ZF-formula'; we want to �nd a corresponding v 2 H s.t. the above is true. De�ne v0 bycollection in FST for u and the formula y 2 H&'H(x; y); separate v = fx 2 v0 :�(x 2 v0)&x 2 Hg. Then v � H is a crisp set and, since u is crisp, satis�es thecollection axiom. By Lemma 27, v 2 H.(2-induction) 8x(8y 2 x'(y) ! '(x)) ! 8x'(x) for any ZF-formula '.The H-translation is 8x 2 H(8y 2 H(y 2 x ! 'H(y)) ! 'H(x)) ! 8x 2H'H(x). Fix a ZF-formula ', and consider the instance of 2-induction in FSTfor the formula x 2 H ! 'H (x):�8x(8y 2 x(y 2 H ! 'H(y)) ! (x 2 H ! 'H (x))) ! �8x(x 2 H ! 'H (x)).This formula is our aim except for the �'s. Let us denote A the antecedent and Sthe succedent in the implication, with the �'s omitted. Since �S ! S, it remainsto be proved that A! �A. Let us further denote 8y 2 H(y 2 x! 'H (y)) withI. First, it is obvious thatx 2 H ! 8y(y 2 x!./ 'H (y)), andx 2 H ! 8y ./ (y 2 x). Thus,x 2 H ! 8y(./ (y 2 x)&(y 2 x!./ 'H (y))), hencex 2 H ! 8y(./ (y 2 x! 'H(y))), andx 2 H !./ 8y(y 2 x ! 'H (y)), thus x 2 H !./ I. Since x 2 H �./ (x 2 H),we getA! 8x 2 H(./ I&(I ! �'H(x))), hence by use of Lemma 18A! 8x 2 H�(I ! 'H(x)), soA! �8x 2 H(I ! 'H(x)), which is A! �A. utReferences1. Cignoli, R., Esteva, F., Godo, L., Torrens, A.: Basic Fuzzy Logic is the logic ofcontinuous t-norms and their residua, Soft Computing 4 (2000) 106-112
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