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Abstract. This paper presents an axiomatic set theory FST (‘Fuzzy
Set Theory’), as a first-order theory within the framework of fuzzy logic
in the style of [4]. In the classical ZFC, we use a construction similar to
that of a Boolean-valued universe—over an algebra of truth values of the
logic we use—to show the nontriviality of FST. We give the axioms of

FST. Finally we show that FST interprets ZF.

1 Introduction

If anything comes to people’s minds on the term ‘fuzzy set theory’ being used, it
usually is the theory (or theories) handling fuzzy sets as real-valued functions on
a fixed universe within the classical set-theoretic universe. However, as “fuzzy”
or “many-valued” logic has been evolving into a formal axiomatic theory, a few
exceptions from this general expectation have emerged: these are formal “set”
theories within the respective many-valued logics, i.e., theories whose underlying
logic is governed by a many-valued semantics.

We rely especially on those works which develop a theory in the language and
style of the classical Zermelo-Fraenkel set theory (ZF). We have been inspired
by a series of papers developing a theory generalizing ZF in a formally weaker
logic—intuitionistic ([7], [2]) and later its strengthening commonly referred to
as Godel logice ([9], [10], [11]); some results and proofs carry over to our system.
For an important example, the axiom of foundation, together with a very weak
fragment of ZF, implies the law of the excluded middle, which yields the full
classical logic (both in Godel logic and in the logic we use in this paper), and
thus the theory developed becomes crisp. For this reason we start with building
a non-crisp universe in which we verify our axioms.

However, all these papers fall short in tackling one of the distinguishing traits
of many-valued logic, which is the general non-idempotence of the conjunction
(conjunction is idempotent in Godel logic). The non-idempotence of conjunction
affects the resulting theory considerably (cf. [3]); in coping with some of the
difficulties we appreciated an elegant solution found in [8]. The author works
over the so-called phase spaces as algebras of truth values and builds, using an
analogy of the construction of a Boolean-valued universe (over a phase-space
instead of a Boolean algebra), a class, with class operations evaluating formulas
in the language {€,C, =}, in which he verifies the chosen axioms of his set
theory. Having observed that the standard Lukasiewicz algebra enriched with



the A operator is a particular phase space, we have studied this paper thinking
of a more general approach employing (linearly ordered) BL-algebras with A;
this should form a common generalization of the approach of [9] and [10] and
that of [8].

This paper is an extension of [6]; it brings in a simplified definition of the
initial universe, and an inner model of ZF in FST. Regarding the nature of this
paper we omit most of the logical background, which is to be found mainly in
[4], as well as some technical details and some proofs.
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2 Prerequisites

Definition1. BLVA is a formal logical system with basic connectives &, —,
0 and A, defined connectives =, A, V and =—where = is ¢ — 0, ¢ A ¢ is
pl(p — ¥), eV is (¢ — ¢) = V) A (Y — @) — @), and ¢ = ¥ is
(¢ — ¥)&(¢ — @)—and with two quantifiers ¥ and 3. The axioms are as
follows:
(Al) (¢ = ¥) = (¥ = x) = (¢ = X))
A2) (pltp) — ¢
A3) (pletp) — (Ylep)

4) (ple(p — ¥)) — (Y&( — ¢))
) (p = (¥ = x)) = (p&t)) — x)
) ((pdey)) = x) = (p — (¥ = X))
(p—=4) = x) = (¥ = ¢) = x) = x)
— ¥
PV Ap
(V) = (Ap v Ay)
Y=
w — AAQD
(¢ =) — (Ap — A7)
w(x) — (t) (t substitutable for z in ¢
t) — Jeyp(x) (t substitutable for # in ¢
(x = ¢) — (x = Vo) (x not free in x
z(p — x) — (Fre — x) (2 not free in x
Y Va(p V x) — (Vep V x) ( not free in x).
The deduction rules of BLVA are modus ponens, generalization, and {¢/Ap}.
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Definition2. Let C be an arbitrary schematic extension of BLVA. A C-algebra
is a BLA-algebra L in which all the axioms of C are L-tautologies.

Theorem 3. (Strong completeness) Let C be a schematlic extension of BLYA,
let T be a theory over C, and let ¢ be a formula of the language of T. Then T
proves @ iff ¢ holds in any safe model M of T' over any linearly ordered C-algebra.



3 The Initial Universe

Consider the classical ZFC. Fix C as a schematic extension of BLVA, and fix
a constant L for an arbitrary linearly ordered complete C-algebra; write L =
(L,*,=,A,V,0,1) (as usual, L denotes both the algebra and its support). In
ZFC let us make the following construction: in analogy to the construction of

a Boolean-valued universe over a complete Boolean algebra, we build the class
VL by ordinal induction. Define Lt = L — {0}.

VOL = {VJ}

Va1 = {f : Fne(f) & D(f) C Vi & R(f) C LT}

for any ordinal «, and for limit ordinals A

vi=J vl
a<lA

Here Fnc(xz) is a unary predicate stating that z is a function, and D(x) and R(z)
are unary functions assigning to « its domain and range, respectively.

Note that functions taking the value 0 on any element of their domain are
not considered as elements of the universe.

Finally we put
vi=J v
a€On
Observe that for a < 3, VI C VﬁL.

We define two binary functions from V'’ into L, assigning to any tuple z,y €
VL the values ||z € y|| and ||z = y|| (representing the “truth values” of the two
predicates € and =):

[lz € y|| = y(x) if © € D(y), otherwise 0,
[le=y|| =11if =y, otherwise 0.

We now use induction on the complexity of formulas to define for any formula
o(x1,...,2y)—the free variables in ¢ being 1, ..., #,—a corresponding n-ary
function from (V1)? into L. The induction steps admit the following cases (we
just write ¢ for short):
¢ is 0: then ||¢]| = 0;

o is v & i then [l = [11]+ [l

o is & — x: then [lgl| = [[9] = IIx];

@ is 1 Ax: then [l = 411 A [Ixll;

@ is v y: then |[oll = 1]V [l

o is A then o] = Allb]|:

¢ is Vaip: then [[o]] = Ayeve v(x/u);

@ is Fei: then ||l = Viey s 6(x/u).

Here 1(x/u) is the result of substituting u for the variable  in . We use the
symbols A, V, A for both logical connectives and operations in L.



Definition4. Let ¢ be a closed formula. We say that ¢ is valid in VL iff || = 1|
is provable in ZFC.

(As usual, we take closures of formulas containing free variables when considering
their validity.)

Lemmab. (1) ZFC proves foru e VE:
u(z) = ||z € ull for & € D(w), |ju=ul| = 1
(2) ZFC proves for u,v,we€ VE:

(Du =[]+ |[v = w|| < |[u=w]|

(i)[|u € o[ * [Jv = w|| < [|u € w|

(i) [Ju = v|| * [Jv € w]| < |Ju € w]|

Proof. (1) immediate,
(2) (i) immediate,

(ii) if v = w, then |[v = w|| = 1,50 ||u € v|]| = ||[u € v|| *||v = w|| = ||u €
wl|| * ||[v = w]| = ||u € wl||; otherwise ||v = w|| = 0, in which case the statement
holds trivially.

(iii) analogously. O

Lemma 6. (Substitution) For any formula ¢, ZFC proves: Yu,v € VE, ||u =
vl [le(w)l] < e o)l

Lemma 7. (Bounded quantifiers) ZFC proves Ve € VI
() 1By € zp)ll = |Fu(y € L eIl = Vyep(@(y) * [le»)])
(i) |IVy € ()l = [IVy(y € 2 — eIl = Ayep(e) (@) = [leW)])

Proof. (1) [By(y € e &)l = Vyeve(lly € 2l + o) = Vyep)(e(y)
[le(y)]) since ||y € x|| is nonzero only if y € D(z), and in that case it is #(y).
(ii) analogously. O

Corollary 8. ||z C y|| = ||Yu € z(u € y)|| = ||[Vu(u €  — u € y)||.

4 The Theory FST

We introduce the theory FST in the language {€}; we take = to be a logical
symbol with the usual axioms (imposing reflexivity, symmetry, transitivity and
congruence w.r.t € on the corresponding relation). The underlying logic of FST is
a schematic extension C (possibly void) of BLYA; when proving theorems within
FST, we only rely on the logical axioms of BLYA (thus eny schematic extension
will, for example, interpret ZF). On the other hand, for a given extension C, the
universe VI—for L a C-algebra—will yield an interpretation of FST over C.

The reader will have noticed that ours is a crisp equality. This was imposed
by the following fact:



Lemma9. A theory with comprehension (for open formulas) and pairing (or
singletons) over a logic which proves the propositional formula (¢ — p&p) —

(¢ V=) proves Ve, y(x =y V =(xz = y)).

Proof. Givenz,y,let zbes. t.uez=(ue {z}&u=1x)i.e,ucz=(u=1x)%
Since (x = z)?, we have € z. If y = « then y € z by congruence, but then
(y = z)?%; thus we have proved y = r — (y = z)?, thus (by assumption on the
logic) (x =y V =(x = y)). O

Thus e.g. in Lukasiewicz logic and in product logic we get a crisp =. Also,
under the usual formulation of extensionality, crispness of = implies crispness of
€ in a theory with pairings and unions (cf. [3]). We borrow the elegant solution
from [8]: a modification of extensionality uses the A operator, which invalidates
the proof of crispness of € from the crispness of =.

Definition10. FST is a first order theory in the language {€}, with the follow-
ing axioms:

(i) (extensionality) VaVy(z = y = (A(z C y)&A(y C 2)))

(ii) (empty set) Iz AVy—(y € x)

(iii) (pair) VaVyFzAVu(u € z = (u =2 Vu=1y))

(iv) (union) YeIzAVu(u € z = y(u € y& y € )

(v) (weak power) Ye3zAVu(u € z = A(u C x))

(vi) (infinity)3zA(0 € z& Ve € 2(z U {z} € 2))

(vii) (separation) Ye3zAVu(u € z = (u € z & ¢(u, x)), for any formula not con-
taining z as a free variable

(viii) (collection) Ye3zA[Vu € 23v p(u,v) — Yu € 2Tv € zp(u,v))] for any for-
mula not containing z as a free variable

(ix) (€-induction) AVz(Vy € zp(y) — ¢(x)) — AVap(z) for any formula ¢

(x) (support) Ya3z(Crisp(z)&A(x C 2)))

The A’s in the axioms of weak power and €-induction are introduced to
weaken the statements; the A’s after an existential quantifiers is used to guar-
antee that an element with the postulated property exists in every model of the
theory (which does not follow from the semantics of the 3 quantifier).

As usual, in the formulation of some axioms we use the functions of empty
set, singleton, and union, which can be introduced using the appropriate axioms
as in classical ZF, and also the usual definition of C. For a detailed treatment of
introducing functions in BLY, see [5]. The function introduced by the weak power
set axiom will be denoted W P(x) for a set #. We use the following definition of
crispness of a set:

Definition11. Crisp(z) = Vu(A(u € 2) V A=(u € z))

Theorem 12. Let ¢ be a closed formula provable in FST. Then ZFC proves
lle|| =1 in V.

Having proved this theorem we shall take the liberty to call VX a model of
FST. (More pedantically, we have constructed an interpretation of FST (over C)



in ZFC.) We omit all validity proofs for logical axioms and inference rules. The
validity of congruence axioms for € has been verified in Lemma 5. It remains to
verify the set-theoretic axioms.

Lemma 13. The set-theoretical azioms (i)-(x) hold in VL,

Proof. (extensionality) For fixed =,y € V%, either + = y and then the axiom
holds, or  # y and ||z = y|| = 0; then either D(z) = D(y) and w. |. 0. g. there
isaz € D) s.t.x(z) < y(z), so |[Ay C #|] = 0, or w. l. 0. g. there is a
z € D(x) s. t. z € D(y), and then ||z € x|| is nonzero while ||z € y|| is zero thus
142 C yl| = 0,

(empty set) There is only one candidate for the role of an “empty set in V7,
and this is the § in VL. Indeed, for an arbitrary = we get ||z € 0] = 0 since no
x can be in the domain of § (taken as a function).

(pair) For fixed =,y € V£, there is a z € VI such that D(z) = {z,y} and
z(x) = 2(y) = 1. The set z has the desired properties: for arbitrary u € VI,
either u € D(z), then either v = z or u = y and |Ju € z|| = z(u) = 1, or
u & D(z), and then |[u € z|| = |lu==z|| = ||u = y|| = 0.

(union) For a fixed @ € V£, define (auxiliary) D?*(z) = [J{D(v) : v € D(z)}.
Define z s. t. D(z) = {u € D*(z) : \/veD(x)(v(u) * 2(v)) > 0} (with a nilpotent
t-norm, the union of a nonempty set may well be empty), and for u € D(z) set
z(u) = \/veD(x)(v(u) % z(v)). Then for an arbitrary u € V£, if u € D(z) then
lu € 2I1 = =) = Ve oy (v() * 2()) = |Buu € y € )]|. T u ¢ D(=), then
|lu € z|| =0, and also [|Fy € z(u € y)|| = 0 by definition of D(z).

(weak power) For a fixed z € VI define z sit. D(2) = {u € VL : D(u) C
D(z) & u(v) < z(v) for v € D(u)}, and z(u) = 1 for u € D(z). For u € V¥,
either 4 € D(z) and then ||u € z|| = z(u) = 1, and also (by definition of D(z))
[lu C || =1=1]Au C ||, or u & D(z), thus ||u € z|| = 0, and (by definition
of D(z)) either D(u) € D(z), or for some v € D(u), u(v) > x(v), and in either
case ||AVv € u(v € z)|| = A\/veD(u)(u(v) = |lvex||)=0.

(infinity) Define a function z with D(z) = VI and 2(u) = 1 for u € D(z).
Then ||§ € z|| = 1 and, since for € V' we have 2 U {z} € V|, also ||Va €
zeU{z}e )| =1

(separation) For a fixed z € V¥, and a given ¢, define z s. t. D(z) = {u € D(z) :
z(u) * ||¢o(w)]] > 0} and for u € D(z) set z(u) = x(u) * ||p(w)]|. Obviously this
definition of z demonstrates the validity of separation in V.

(collection) in [8]

(€-induction) Fix a formula ¢ and suppose the axiom does not hold in V£, Then
(since A is two-valued) it must be the case that ||AVz(Yy € zp(y) — ¢(x))]| =1
and [|AVzo(z)|| = 0, thus there is a successor ordinal a s. t. 3z € VE(p(z) <
H&VE < avy € VﬁL(go(y) = 1). Suppose first o = 0; but ||Vy € Qp(y) —
e(M]] =1 = ¢(B) = o(0) < 1, thus the antecedent would be 0. Suppose now
a>0,and z € VI iss. t. () < 1. From the condition that ||Vy € zp(y) —
e(2)]] = 1, and since ||Vy € zp(y)|| = 1, we get ||e(z)|| = 1, a contradiction.



(support) For a fixed = € VL take » such that D(z) = D(x) and Yu € D(z)
z(u) = 1. Then [|Crisp(2)[| = 1 and A, ¢ p(p(x(u) = [Ju € 2]]) = L. O

5 An Interpretation of ZF in FST

Within FST, we shall define a class (i.e., we shall give a formula with one free
variable, in the language of FST) of hereditarily crisp sets, which will be proved
an inner model of ZF in FST.

We start with a bunch of technical statements.

Lemmal4. BLVA FVzAp = AVze.

Proof. The right-to-left implication is easy. We give a BLYA-proof of the con-
verse one (an analogy to the proof of the Barcan formula in S5). Let (¢ stand
for =A—-yp.

(1) © — —|A—|g0. _ _

In BLA, A-p — -, thus (A-p&e) — 0, thus ¢ — (A-p — 0).

(il) A — A=Ap.

In BLA, ApV —Ap, thus AApV A-Ap. This gives ~Ap — A-Ap.

Thus the following two are provable in BLA:

(iil) ¢ — Ay

(iv) GAp — Agp.

Next, (v) A(p — ) — (O — O¥),

since A(p — ¢) — A(—Y — —p) — (A9 — A-p) — (O — Q).

(vi) OVap — Yado is a consequence of (v).

Finally, Ve Ay — AQVe Ap — AVe O Ap — AVeAp — AVzep. ]

Lemma1l5. BLVAF A(p V —p) = A(p — Agp).

Proof. Takes place inside BLYA. Implication left-to-right: A(p V =) — (Ap V
A=) — [ — (p&(QAp V A=) — [¢ — (A V (p&A—p))]. In the last
formula in the chain, p&A—p — 0, thus the last formula implies ¢ — Agp; we
get A(p V —p) — (¢ — Ap), which A-generalizes to the desired implication.
Conversely, Ay — A(pV-yp), thus also (i) Ay — [A(p — Ap) — A(pV-y)].
Moreover A(p — Ap) — (A-Ap — A-p) — [A-Ap — A(p V —p)], thus (ii)
A-Ap — [A(p — Ap) — A(p V —p)]. Since BLYA proves ApV A-Ap, we get
the right-to-left implication by putting together (i) and (ii).
a

Recall the definition of a crisp set. We get
Corollary 16. Vu(Crisp(z) = Vud(u € v — A(u € ).

Note that Crisp(z) = AVu(u € + — A(u € 2)) — AAVu(u € 2 — A(u € z)), so
crispness is a crisp property:

Lemma17. Crisp(z) — ACrisp(z).



We write 1 ¢ for A(p V —gp).
Lemma18. BLAF (< p&(p — A¢)) — A(p — ).

Proof. [Apk(p — AY)] — Ay — Ay — o), and A-p — A(p — ), so
b = (Ap VaAp) — ((p — AY) — Alp — o). o

Lemma 19. BLYA F Vay((Crisp(z)&Crisp(y)&z C y) — Az C y)).

Proof. (Crisp(2)&Crisp(y)&(u € 2 — u € y)) —
(uex)l(ucr—Auey) = Aluce —ucy). a

Definition20. (Hereditarily crisp transitiveset) HCT(x) = Crisp(z) & Yu
2(Crisp(u)&u C )

The formula HCT(z) defines a class, and we adopt the habit of writing
r € HCT instead of HCT(x) and approaching classes in a similar way we
approach sets. A “crisp class” (' is a class for which Ve A(x € C'V —(z € (), or
equivalently, VeA(z € C — A(z € ().

Lemma 21. (Crispness of HCT) v € HCT — A(x € HCT).

Proof. » € HCT = [Crisp(aj)&Vu(u € z — (Crisp(u)&u C l‘))] —
[ACrisp(x)&Vu(N (u € x)&(u € v — A(Crisp(u)&u C l‘)))] —
[ACrisp(a:)&VuA(u € z — (Crisp(u)&u C l‘))] —

A(z € HCT).

Definition22. (Hereditarily crisp set) H(z) = Crisp(z) & 32’ € HCT(z C
z').

Lemma 23. (Crispness of H) v € H — A(x € H).

Proof. By definition of H, we are to prove

(Crisp(z)&3Jy € HCT(z C y)) — A(Crisp(z)&TJy € HCT(x C y)).

Since Crisp(z) — ACrisp(z), it suffices to prove

(Crisp(#)&3Jy € HCT(x C y)) — A(Jy € HCT(» C y))

(we may use the presumption Crisp(z) in each of the two implications since it
is idempotent).

First, (Crisp(z)&y € HCT&z C y) — A(y € HCT&x C y) by Lemma 21
and Lemma 19. Now generalize: Vy((Crisp(2)&y € HCT&z C y) — Ay €
HCT&x C y)); hence (Crisp(2)&3Jy(y € HCT&z C y)) — JyA(y € HCT&x C
y); and the succedent implies AJy(y € HCT&x C y). O

We show that FST proves H to be an inner model of ZF. In more detail, for
¢ a formula in the language of ZF, define ¢ inductively as follows:
o = for ¢ atomic;
= for ¢ =T,
o = T for o = P&y
e = —\H for p =4 — x;
e = (Vo € H)p™ for o = (Va)y;
o = (Fz € H)pH for o = (Fx)y.



Theorem 24. Let ¢ be a theorem of ZF. Then FST I oH.

To prove this theorem, we first show that the law of the excluded middle
(LEM) holds in H; since BLY together with LEM yield classical logic, we will
have proved that all logical axioms of ZF are provable when relativized to H.
Then we prove the H-relativized versions of all the axioms of the ZF set theory.

Lemma25. Let p(x1,...,2,) be a ZF-formula whose free variables are among

z1,...,2y. Then FST provesVzy € H .. Nz, € H(p" (z1,... 20)Vof(z1,... 2,)).

Proof. We consider a formula ¢ with (at most) one free variable z, the mod-
ification for multiple free variables being easy. The formula to be proved in
FST is Vo(z € H — (¢ (z) vV —~pf(2)); it suffices to prove VzA(x € H —
(e (z) V= (z)), and by Lemma 18 and Lemma 15, it suffices to prove Vz(z €
1 — Ap"(z) — Ap"(2)).

The proof proceeds by induction on the complexity of .

Atomic subformulas: = 1s a crisp predicate, for € we have to prove z €
y — Ax € y assuming x,y € H. In fact y € H implies Crisp(y), which entails
Ve(x € y — Ax € y).

Conjunction: for a subformula ¢ (x, y)&ia (2, 2) of ¢ (we assume one free
variable in common, and one distinct free variable for each subformula, and we
henceforth omit their explicit listings, for legibility’s sake) assume z,y € H —
(Wi — Ay and 2,2 € H — (v& — Ayl Then (z € H)?&(y,» € H) —
(V&) — A(H &), and since = € H is idempotent, this completes the
induction step for conjunction.

Implication: for a subformula ¢ (2, y) — ¥a(x, 2) of ¢, assume z,y € H —
(W — Ay and z, 2 € H — (¥ — Ayd). Thus (v — vi&(z, 2 € H) —
(i — ApE) and since z,y € H implies crispness of ¥ we get z,y € H —
(0 — 208 — AQH — V). Thus o, € 1T — (68 — o) — A —
o).

The universal quantifier: for a subformula Yy (x, y) of ¢, the induction hy-
pothesis is 2,y € H — (v (z,y) — AvH(2,y)). Generalize in y: ¢ € H —
Vyly € H — (W (z,y) — Ay (z,y)); now since for a crisp «, BL proves
(o = (B —7) = (0« = B) — (o« — 7)), we may modify the succedent to
Yy((y € H — v (2,y)) — (y € H — AvH (x,y)), and distributing Yy, we have
proved: # € H — (Yy € Hy® (z,y) — Yy € HAYH (2, y)). To flip the A and the
Yy € H in the succedent, use Lemma 18.

The existential quantifier: for a subformula Vyiy(x,y) of ¢, the induction
hypothesis is =,y € H — (V¥ (z,y) — AvH(2,y)). Generalize in y: = €
H —Vyly € H— ("(z,y) — A" (z,y)); now (y € H — (@7 (2,y) —
Apf(z,y))) — (y € H — (y € H&YM(2,y) — y € HEAYH (2,y))) — (y €
H&pH (2,y) — y € H&AYH (2,y)). We get z € H — (Jy(y € H&yH (2, y)) —
JyA(y € H&y® (2,y))), and the last succedent implies AJy(y € H&WH (=, y)).

O

Definition26. WPC(x) = {u € WP(z); Crisp(u)}.



Lemma 27. Va(x C H&Crisp(x) — x € H).

Proof. Fix an x. # C H is by definition Vu € z3u/(v/ € HCT&u C u'). Thus
JugVu € 23’ € vo(uw' € HCT&u C o'). Fix vy and separate: v = {u € vy : Au €
vokew € HCOT&Iuy € x(ug C u)}. Note that Vu € 230’ € v(v € HCT&u C u'),
because x is crisp. v is a crisp set and all its elements are crisp (all of them
are in HCT); hence |Jv is crisp; its elements are crisp since a € |Jv implies
dbe HCT(a € b € v), thus a is crisp. [Jv is also transitive: b € a € |Jv implies
Jy(b € a € y € v), and since y € HCT is transitive, b € y € v and b € | Jv. Now
consider WPC(|Jv) (the crisp elements of the weak power set of | Jv); this is a
crisp set, and it is a subset of WPC(|Jv) U|J v, which is a crisp transitive set of
crisp elements, thus in HCT, thus WPC(|Jv) € H. Since v C WPC(|Jv), we
get Yu € z3u’ € WPC(|Jv)(u C o), thus Yu € z(u € WPC(|Jv); this means
r CWPC(Jv) € HCT,so x € H. a

We consider ZF with the following axioms: empty set, pair, union, power set,
infinity, separation, collection, extensionality, €-induction. The exact spelling of
these axioms is given separately when proving in FST their H-ed versions.

Theorem 28. For ¢ being any of the abovementioned axioms of ZF, FST proves
H
e

Proof. (empty set) IzVu—(u € 2).

The H-translation, which reads 3z € HYu € H—-u € z, is provable since 0 €
HCT.

(pair) Vo, yF:Vu(u € 2= (u =2 Vu =y)).

The H-translation Yo,y € H3z € HYu € H(u € z = (u = z) V (u = y)) is
absolute: the set {z,y} is crisp (since = is crisp); to show that it is a subset of
a set which is in HCT, consider ' € HCT a witness for x € H and 3y € HCT
a witness for y € H. Then {z,y} Uz’ Uy is a crisp transitive set with crisp
elements, hence in HCT, and thus {z, y} is in H.

(union) Yz3zVu(u € z = Jy(u € y € x)).

The H-translation Yo € H3z € HVYu € H(u € z = Jy € H(u € y € z))
is absolute: let ' € HCT witness # € H. Then |Jz is a crisp set with crisp
elements (since # C 2’), and (Jx C |J&' € HCT, which witnesses | Jz € H.
(power set) VodzVu(u € z=u C )

The H-translation reads Yo € H3z € HVYu € H(u € z =Vy € H(y € u —
y € z)). Let 2’ be a witness for # € H. then for # € H it holds that Vu €
Hu e WPC(z) = A(u C 2) = (u C 2)), WPC(z) is crisp, and WPC(z) C
WPC(2')Ua', which is a transitive crisp set with crisp elements, thus in HCT
and a witness for WPC(x) € H.

(separation) VedzVu(u € z = (u € z&yp(u)) for a ZF-formula not containing z
freely.

The H-translation is absolute: let ' € HCT witness ¢ € H and set z = {u €
z; o (u)}, then 2 is a crisp set and 2 C z C 2’ € HCT (i.e., ' is a witness for
z € H).

(infinity) 32(0 € 2&Yu € z(u U {u} € 2)).



It suffices to prove that there is a set z € H s.t. 0 € z&Vu € z(u U {u} € 2).
Let zo be any set satisfying the axiom of infinity in FST and define z; = {z €
zo : A(x € z9)&Crisp(x)}. Then z; is a subset of zy and 0 € z; and v € z; —
uU{u} € z1. Now let z = {& € 1 : @ C z1}, i.e., a transitive subset of z.
Obviously 0 € z, let us prove & € z — (z U{z}) € z, that is by definition of z,
[x € n&Vy € x(y € )] = [zU{e} € n&Va(a € xVa =2 — a € z1)]. We
know z € 21 — (zU {2} € 21). Also, v e n&(ycr —yen)— (ye€axVy=
z — y € z1). (Note that we made multiple use of the presumption z € z1; we
may do that because the formula is crisp, thus € z1 = (z € 21)?.) Finally, z is
a crisp transitive set with crisp elements, so z € HCT.

(extensionality) Yey(z = y =Vz(z € x = z € y)).

The H-translation Va,y € H(z =y = Vz € H(z € x = z € y)) follows from
extensionality in FST by H being transitive and by the crispness of its elements
(the A’s may be left out).

(collection) Yu(Ve € udyp(z,y) — FoVe € udy € vp(x,y)) for ¢ not contain-
ing v freely.

The H-translation reads Yu € H(Vz € H(z € u — Jy € Hp(z,y)) — Tv €
HVz € H(x € u — Jy € H(y € v&p(2,y)))). Fix v € H and a ZF-formula
w; we want to find a corresponding v € H s.t. the above 1s true. Define vy by
collection in FST for u and the formula y € H& e (z,y); separate v = {z € vy :
Az € vo)&w € H}. Then v C H is a crisp set and, since u is crisp, satisfies the
collection axiom. By Lemma 27, v € H.

(e-induction) Yz (Vy € z¢(y) — w(x)) — Vop(x) for any ZF-formula ¢.

The H-translation is Vo € H(Vy € H(y € = — ¢ (y)) — of(z)) — Vz €
Hpf(z). Fix a ZF-formula ¢, and consider the instance of €-induction in FST
for the formula x € H — o (z):

AVz(Vy € x(y € H — oH(y)) — (z € H — o (2))) — AVz(z € H — o (2)).
This formula is our aim except for the A’s. Let us denote A the antecedent and S
the succedent in the implication, with the A’s omitted. Since AS — S| it remains
to be proved that A — AA. Let us further denote Yy € H(y € x — ¢ (y)) with
1. First, it is obvious that

r€ H —Vy(y € z —x 9 (y)), and

r € H—Vyra(y € x). Thus,

v € H —Vy(= (y € 2)&(y € v =<1 (y))), hence

r€ H —Vy(=< (y € z — pf(y))), and

€ H—xVyly € x — ¢ (y)), thus € H —pa . Since z € H =1 (z € H),
we get

A —Vz € H(=< I&(I — Apf(z))), hence by use of Lemma 18

A—Vr e HA(I — ¢ (x)), so

A— AVz € H(I — ¢ (x)), which is 4 — AA. O
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