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Abstract.  Lukasiewicz logic is an established formal system of many-
valued logic. Decision problems in both propositional and first-order case
have been classified as to their computational complexity or degrees of
undecidability; for the propositional fragment, theoremhood and prov-
ability from finite theories are coNP complete. This paper extends the
range of results by looking at validity degree in propositional  Lukasiewicz
logic, a natural optimization problem to find the minimal value of a term
under a finite theory in a fixed complete semantics interpreting the logic.
A classification for this problem is provided using the oracle class FPNP,
where it is shown complete under metric reductions.

1 Introduction

 Lukasiewicz logic originated in the 1920s as a semantically motivated formal sys-
tem for many-valued logic. This paper works with the infinite-valued  Lukasiewicz
logic  L, introduced by  Lukasiewicz and Tarski [20]. As with some other non-
classical systems, such as intuitionistic logic, the syntax is similar to classical
logic, while the valid inferences form a strict subset of those of classical logic.

Validity/provability degrees as a concept in  Lukasiewicz logic stem from a
research line proposed by Goguen [11]. The paper set the challenge to develop a
formal approach allowing to derive partly true conclusions from partly true as-
sumptions. In [26] the task was taken up by Pavelka, who offered a comprehensive
formalism based on complete residuated lattices, using essentially diagrams of
arbitrary but fixed residuated lattices to capture provability degrees in the syn-
tax. Pavelka used graded terms1 and his formal system incorporated rules that
explicitly use the algebra on degrees/grades alongside syntactic derivations. For
example, a graded modus ponens reads {〈r, ϕ〉, 〈s, ϕ→ ψ〉}/〈r� s, ψ〉 with r and
s truth constants, ϕ and ψ terms, and � the monoidal operation of the residu-
ated lattice. Pavelka’s approach was later simplified by Hájek [12], who proposed
an expansion of  Lukasiewicz infinite-valued logic with constants for rational el-
ements of [0, 1], and rendered each graded term 〈r, ϕ〉 as the implication r → ϕ.
This was an elegant example of embedding the graded syntax approach in what
turns out to be a conservative expansion of  Lukasiewicz logic. The resulting logic
was named Rational Pavelka logic (RPL); see [12, 14, 4, 7].

1 We use term and (propositional) formula interchangeably in this paper.
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Assume truth values range in a complete lattice. The validity degree of a
term ϕ under a theory T is the infimum of values ϕ can get under assignments
that make T true. No constants are needed to define this notion. Still, the con-
stants provide a canonical way of introducing provability degrees, the syntactic
counterpart; thus we look at the language of RPL next to that of  L.

Both  L and RPL have an equivalent algebraic semantics (in the sense of
[5]). In particular,  L corresponds to the variety of MV-algebras; [6, 9, 24] and the
references therein provide resources for their well-developed theory. MV-algebras
are strongly linked to Abelian `-groups ([22]); this is manifest in the choice of
algebraic language, and we follow MV-algebraists and use the language ⊕ and
¬ as a reference language for our complexity results. This is also a matter of
convenience since some previous results are framed in this language.

We shall use the real-valued (standard) MV-semantics, with the unit interval
as the domain and piecewise linear functions as interpretations of the function
symbols; one can prove strong completeness for finite theories over  L w.r.t. this
algebra. The algebra has been useful for obtaining complexity results for  L, since
Mundici’s pioneering NP-completeness result on its SAT problem [23], which
also gives coNP-completeness for theoremhood in  L. Other complexity results
for propositional logic  L include [2, 1] reducing the decision problems in  L to the
setting of finite MV-chains, [17, 18] dealing with admissible rules, [25], [3], or [8].
All these works target decision problems.

The validity degree task (to determine the validity degree of a term ϕ under
a finite theory T ) is a natural optimization problem induced by the many-valued
setting and the purpose of this paper is to see where it sits among other optimiza-
tion problems. Using tools of complexity theory, we classify the validity degree
task in propositional  Lukasiewicz logic  L and its extension RPL, for instances
that pair a finite theory T with a term ϕ. Our emphasis is on  L rather than
RPL: it is far better known, and the existing algebraic methods for  L provide us
with tools. In fact, the few complexity results available for RPL rely on reduc-
tions to  L. In [12] Hájek proved that for finite theories in RPL, validity degrees
are rational; his method inspires ours in eliminating the constants, relying on
their implicit definability in  L. Hájek also provided complexity classification for
the decision version of the problem in [13], showing that provability from finite
theories in propositional RPL is coNP complete, using mixed integer program-
ming. In [15], the same result is obtained from analogous results for  L, using the
implicit definability of constants directly.

We fill the gap of a basic classification for the optimization problem. Our up-
per bounds are based on improving Hájek’s rationality proof for validity degrees
with establishing an explicit polynomial bound on denominator size, relying on
Aguzzoli and Ciabattoni’s paper [2]. Their paper uses the language of  L; how-
ever, the methods of [12, 15] allow us to tackle the rational constants and to
derive analogous upper bounds for RPL, and we do that in Section 4; such up-
per bounds then apply also to any fragments of language, i.a., the MV-language.
For lower bounds (Section 5), we work with the language of  L, whereby the
hardness result applies also to RPL.
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The decision version of the validity degree is coNP complete, and the SAT
problem for [0, 1] L is NP-complete. Looking at these and similar results on NP-
completeness of decision versions for other common optimization problems, one
might ask what would the appropriate (many-one, poly-time) reduction notion
be between the optimization versions, and indeed if such reductions always exist.
Krentel [19] defines metric reductions in response to the former question and
shows that as far as these reductions are concerned, the answer to the latter is
negative unless P = NP (an outline of relevant results is in Section 3). Thus
there is a sense in which a mere fact that the decision version of a problem is NP
complete does not provide enough information about the optimization version.

Under standard complexity assumptions, one cannot even approximate the
validity degree efficiently: [16, Theorem 7.4] says that no efficient algorithm can
compute the validity degree for an empty theory within a distance of δ < 1/2
unless P = NP.

The combined results of Sections 4 and 5 yield the following statement.

Theorem 1. The validity degree task, considered in either  L or RPL, is com-
plete for the class FPNP under metric reductions.

This appears to be the first work to shift the focus from decision to opti-
mization problems as regards complexity of fuzzy logics, identifying a relevant
complexity class. We find it compelling to investigate complexity problems for
non-classical logics that have no counterpart in classical logic, and the valid-
ity degree problem, discussed here for  L, presents one such research direction.
(While, e.g., admissible rules present another, now well established one.)

This work is about the propositional fragments of  L and RPL, so notions
such as language, term/formula, or assignment need to be read appropriately.

2  Lukasiewicz logic and Rational Pavelka logic

The basic language of propositional  Lukasiewicz logic  L has two function sym-
bols: unary ¬ (negation) and binary ⊕ (strong disjunction or sum). Other func-
tion symbols are definable: 1 as x⊕¬x and 0 as ¬1; further, x� y is ¬(¬x⊕¬y)
(strong conjunction or product); x → y is ¬x ⊕ y; x ≡ y is (x → y) � (y → x);
x ∨ y is (x→ y)→ y or (y → x)→ x; and x ∧ y is ¬(¬x ∨ ¬y).

The interpretations of ⊕, �, ∧ and ∨ are commutative and associative, so
one can write, e.g., x1⊕· · ·⊕xn without worrying about order and parentheses.
We write xn for x� · · · � x︸ ︷︷ ︸

n times

and nx for x⊕ · · · ⊕ x︸ ︷︷ ︸
n times

. Also, ∨ and ∧ distribute over

each other and � distributes over ∨.
Well-formed  L-terms are defined as usual. The basic language is a point of

reference for complexity considerations in this paper, however we may at times
use the expanded language for clarity (as in classical logic).

Definition 1. [2] For any term ϕ(x1, . . . , xn), ](x)ϕ denotes the number of oc-
currences of the variable x in ϕ, and ]ϕ = Σn

i=1](xi)ϕ.
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The ] function is a good notion of length for terms without iterated ¬ symbols
(¬¬ϕ ≡ ϕ is a theorem of L). Our complexity results apply also to the language
of the Full Lambek calculus with exchange and weakening (FLew), i.e., {�,→
,∨,∧, 0, 1} (and the MV-symbol ⊕). Indeed one observes that rendering � and
→ in the basic language does not affect length; for ∨ and ∧, any occurrence of
these defined symbols can be expanded to the basic language in two different
ways (due to commutativity), and this can be used to rewrite any term with
these symbols with only polynomial increase in length.

2.1 MV-algebras

The general MV-algebraic semantics will not be needed in this paper, anymore
than a formal calculus for  L. We will work with the standard MV-algebra [0, 1] L:
the domain is the real interval [0, 1] and with each MV-term ϕ(x1, . . . , xn) we
associate a function fϕ : [0, 1]n −→ [0, 1], defined by induction on term structure
with f¬ϕ defined as 1 − fϕ, fϕ⊕ψ as min(1, fϕ + fψ). 1 is the only designated
element, accounting for the notions of truth/validity. For any assignment v in
[0, 1] L, v(ϕ→ ψ) = 1 iff v(ϕ) ≤ v(ψ), and thus v(ϕ ≡ ψ) = 1 iff v(ϕ) = v(ψ).

The class of MV-algebras is generated by [0, 1] L as a quasivariety; it is also
generated by the class of finite MV-chains, the (k+ 1)-element MV-chain being
the subalgebra of [0, 1] L on the domain {0, 1/k, . . . , (k + 1)/k, 1}.

Provability from finite theories in  L coincides with the finite consequence
relation of [0, 1] L. We have bypassed introducing the formal calculus; to provide a
meaning to the references to  L within this paper, let us adopt this as a definition.
We lose little since the algorithmic approach only tackles finite theories anyway.

A function f : [0, 1]n → [0, 1] is a McNaughton function if it is continuous and
piecewise linear with integer coefficients: there are finitely many linear polyno-
mials {pi}i∈I , with pi(x̄) = Σn

j=1aij xj+bi and āi, bi integers for each i, such that
for any ū ∈ [0, 1]n there is an i ∈ I with f(ū) = pi(ū). McNaughton theorem
([21]) says that term-definable functions of [0, 1] L coincide with McNaughton
functions. The theorem highlights the fact that one can provide a countably infi-
nite array of pairwise non-equivalent MV-terms for any fixed number of variables
starting with one, as opposed to the case of Boolean functions.

A polyhedral complex C is a set of polyhedra (cells) such that if A is in C, so
are all faces of A, and for A,B in C, A∩B is a common face of A and B. Given
an MV-term ϕ(x1, . . . , xn) one can build canonically a polyhedral complex C(ϕ)
such that [0, 1]n =

⋃
C(ϕ) and fϕ is linear over each n-dimensional cell of C(ϕ).

The minimum of fϕ is attained at a vertex of an n-dimensional cell of C(ϕ). [2]

derives the upper bound ( ]ϕn )n for the least common denominator of any vertex
of any n-dimensional cell of C(ϕ) (see also [23]). By [1] this is a tight bound on
cardinality of MV-chains witnessing non-validity of MV-terms.

For any MV-term ϕ, the 1-region of fϕ is the union of cells of C(ϕ) such that
fϕ attains the value 1 on all points in the cell. (The highest dimension of the
cells in the 1-region of ϕ can range anywhere between 0 and n.) The 1-region of
fϕ is compact for any ϕ. One can investigate the minimum of fψ relative to the
1-region of an fϕ; details in [2].
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2.2 RMV-algebras

The language of RPL expands the language {⊕,¬} of  L with a set Q = Q∩ [0, 1]
of constants. The constants are represented as ordered pairs of coprime integers
in binary. The size of the binary representation of an integer n is denoted |n|.

The standard RMV-algebra [0, 1]Q L has [0, 1] L as its MV-reduct and interprets
rational constants as themselves. As for  L above, we identify RPL with the finite
consequence relation of [0, 1]Q L . If ϕ is an RMV-term, fϕ is the function defined

by ϕ in [0, 1]Q L .

Let us extend the ] function to obtain a good length notion for RMV-terms.
Rational constants can be viewed as atoms but the number of atom occurrences
is not a suitable length notion since it ignores the space needed to represent each
constant, which can be arbitrary with respect to the term structure.

Definition 2. Let an RMV-term ϕ have constants p1/q1, . . . , pm/qm and vari-
ables x1, . . . , xn. For a rational p/q ∈ [0, 1], let ](p/q)ϕ denote the number of
occurrences of p/q in ϕ. Define ]ϕ = Σn

i=1](xi)ϕ+Σm
j=1](pj/qj)ϕ(|pj |+ |qj |).

Each rational r in [0, 1] is implicitly definable by an MV-term in [0, 1] L
2: i.e.,

there is an MV-term ϕ(x1, . . . , xk) and an i ∈ {1, . . . , k} such that, for each
assignment v in [0, 1] L, we have v(xi) = r whenever v(ϕ) = 1 (cf. [12, 15]). To
implicitly define a rational p/q, with 1 ≤ p ≤ q, in [0, 1] L, first define 1/q, using
the one-variable term z1/q ≡ (¬z1/q)

q−1, whereupon p/q becomes term-definable
under a theory containing this definition of 1/q, namely we have zp/q ≡ pz1/q

(cf. the technical results in [28, 10, 16]). With p and q in binary, these implicit
definitions are exponential-size in |p| and |q|. One can make them polynomial-size
on pain of introducing (a linear number of) new variables.

Lemma 1. ([15, Lemma 4.1]) For q ∈ N, q ≥ 2, take the binary representation
of q− 1, i.e., let q− 1 = Σm

i=0pi2
i with pi ∈ {0, 1} and pm = 1. Let I = {i | pi =

1}. In [0, 1] L, the set

{y0 ≡ ¬z1/q, y1 ≡ y2
0 , y2 ≡ y2

1 , . . . , ym ≡ y2
m−1, z1/q ≡ Πi∈Iyi}

has a unique satisfying assignment, sending z1/q to 1/q.

To define 1/q, we need |q− 1|+ 1 variables, and the length of the product in
the last equivalence is linear in |q|. Similarly one can achieve a polynomial-size
variant of an implicit definition for p/q.

It is shown in [12] how to obtain finite strong completeness of RPL w.r.t. [0, 1]Q L
from finite strong completeness of  L w.r.t. [0, 1] L, based on the following state-
ment ([12, Lemma 3.3.13]). Let δp/q be an MV-term that implicitly defines the
value p/q in a variable zp/q in [0, 1] L. First, given an RMV-term ϕ in variables

2 On the other hand, no rationals beyond 0 and 1 are term-definable in [0, 1] L, as a
consequence of McNaughton theorem.
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x1, . . . , xn and constants p1/q1, . . . , pm/qm, let δϕ stand for δp1/q1�· · ·�δpm/qm3,
and let ϕ? result from ϕ by replacing each constant pi/qi with the variable zpi/qi .
Now let {ψ1, . . . , ψk} ∪ {ϕ} be a finite set of RMV-terms (in some variables
x1, . . . , xn, particularly, with no occurrences of y-variables or z-variables) and let
τ denote {ψ1�· · ·�ψk}. The statement says that τ `RPL ϕ iff τ?� δτ�ϕ ` L ϕ

?.
The reason is that under δτ�ϕ, the variables that correspond to the implicitly
defined constants behave exactly as the constants would. Moreover, δτ�ϕ is an
MV-term.

Lemma 2. Let τ and ϕ be RMV-terms with rational constants (p1/q1, . . . , pm/qm).
Using the δ notation as above, we have:

1. δτ�ϕ has Σm
j=1(|pj |+ |qj − 1|) + 2m variables.

2. the length of δτ�ϕ, written as an MV-term featuring ⊕ and ¬, is at most
Σm
j=1(8|pj |+ 8|qj − 1|+ 4).

Finally we are ready to define the validity degree of a term ϕ in a theory T :

‖ϕ‖T = inf{v(ϕ) | v model of T},

where a valuation v is a model of T if it assigns the value 1 to all terms in T .
We only consider finite theories; for T = {ψ1, . . . , ψk} write τ = ψ1 � · · · � ψk;
then ‖ϕ‖τ = min{v(ϕ) | v model of τ}. For τ inconsistent, ‖ϕ‖τ = 1. In the rest
of this paper, T is finite and represented by the term τ as above. We define the
optimization problem.

Validity Degree
Instance: RMV-terms τ and ϕ (possibly without constants).
Output: ‖ϕ‖τ .

Lemma 3. ‖ϕ‖τ = ‖ϕ?‖(τ?�δτ�ϕ).

3 Optimization problems and metric reductions

This section briefly sketches our computational paradigm, reproducing some no-
tions and results on the structure of the oracle class FPNP as given in Krentel
[19], with a wider framework as provided in [27]. We also introduce an optimiza-
tion problem from [19] that will be used in Section 5.

In this paper we use the term optimization problem for what is sometimes
called an evaluation or cost version of a function problem (cf. [27]). In our setting,
the output is the validity degree ‖ϕ‖τ (as an extremal value of fϕ on the 1-region
of fτ ), rather than an assignment at which the extremal value is attained.

Let z : N −→ N be smooth.4 FPNP[z(n)] is the class of functions computable
in polynomial time with an NP oracle with at most z(|x|) oracle calls for instance
x. In particular, FPNP stands for FPNP[nO(1)].

3 It is assumed that the collections of auxiliary variables for the implicit definitions
of pi, qi with 1 ≤ i ≤ n are pairwise disjoint and also disjoint from the variables
x1, . . . , xn.

4 I.e., z is nondecreasing and the function 1n 7→ 1z(n) is polynomial-time computable.
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Definition 3. Let Σ be a finite alphabet and f, g : Σ∗ −→ N. A metric reduction
from f to g is a pair (h1, h2) of polynomial-time computable functions where
h1 : Σ∗ −→ Σ∗ and h2 : Σ∗ × N −→ N, such that f(x) = h2(x, g(h1(x))) for all
x ∈ Σ∗.

The concept of a metric reduction is a natural generalization of polynomial-
time many-one reduction to optimization problems. It follows from the definition
that for each function z as above, FPNP[z(n)] is closed under metric reductions.
The paper [19] provides examples of problems that are complete for FPNP under
metric reductions. We define one such problem (see [19]).

Weighted Max-SAT
Instance: Boolean CNF term (C1 ∧ · · · ∧Cn)(x1, . . . , xk) with weights on clauses
w1, . . . , wn, each wi positive integer in binary.
Output: the maximal sum of weights of true clauses over all (Boolean) assign-
ments to the variables x1, . . . , xk.

Theorem 2. ([19]) Weighted Max-SAT is FPNP complete.

The paper [19] provides a separation result for problems in FPNP, a simple
form of which is given below. In particular, under standard complexity assump-
tions there are no metric reductions from FPNP-complete problems (such as
Weighted Max-SAT) to some problems in FPNP[O(log n)], such as the Ver-
tex Cover problem.

Theorem 3. ([19]) Assume P 6= NP.
Then FPNP[O(log log n)] ( FPNP[O(log n)] ( FPNP[nO(1)].

4 Upper bound: validity degree is in FPNP

We present a polynomial-time oracle computation for Validity Degree, using
a coNP-complete decision version of the problem as an oracle; this yields mem-
bership of Validity Degree in FPNP. The instances of the problem are pairs
(τ, ϕ) of RMV-terms, i.e., terms with the MV-symbols ⊕ and ¬ where atoms are
variables and rational constants. The following oracle will be used.

D-RPL-Graded-Provability
Instance: (τ, ϕ, k) with τ, ϕ RMV-terms and k a rational number in [0, 1].
Output: τ `RPL k → ϕ?

Note that τ `RPL k → ϕ iff k ≤ ‖ϕ‖τ . By [13], RPL-provability from finite
theories (given RPL terms τ and ϕ, it is the case that τ `RPL ϕ?) is coNP
complete. Hence, so is D-RPL-Graded-Provability.

The oracle computation can employ a binary search, given an explicit upper
bound on denominators. To obtain a polynomial-time (oracle) computation, the
result of [12] that ‖ϕ‖τ is rational is not enough: we need an upper bound N(τ, ϕ)
on the denominator that is in itself of polynomial size (in binary).
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To expose the algebraic methods employed in this section, let us start with
a simpler related problem, interesting in its own right: the natural optimization
version of the term satisfiability problem in the standard MV-algebra [0, 1] L.

Max Value
Instance: MV-term ϕ(x1, . . . , xn).
Output: max fϕ on [0, 1]n.

This problem reduces to Validity Degree: one maximizes fϕ by minimizing
f¬ϕ under an empty theory. As mentioned in Section 1, even this simpler problem
cannot be efficiently approximated (see [16, Theorem 7.4]).

Lemma 4. Let p1/q1 and p2/q2 be two distinct rational numbers and N a pos-

itive integer, let q1, q2 ≤ N . Then
∣∣∣p1q1 − p2

q2

∣∣∣ ≥ 1
N2 .

Lemma 5. Let a < b be rationals and N a positive integer. Assume the interval
[a, b) contains exactly one rational c with denominator at most N , and other
rationals with denominator at most N are at a distance greater than b− a from
c. There is a poly-time algorithm that finds c on input a,b, and N in binary.

Theorem 4. Max Value is in FPNP.

Proof. Let ϕ(x1, . . . , xn) be an MV-term. Then fϕ is maximal on a rational
vector 〈p1/q1, . . . , pn/qn〉; the least common denominator of the vector is at most
( ]ϕn )n ([2, Theorem 14]). It follows that the denominator of fϕ(p1/q1, . . . , pn/qn)

is at most N(ϕ) = ( ]ϕn )n.
We sketch a polynomial-time algorithm computing max(fϕ) using binary

search on rationals in [0, 1] with denominators at most N(ϕ), using the general-
ized satisfiability (GenSAT), known to be NP complete ([25]), as oracle: given
MV-term ϕ and a rational r ∈ [0, 1], is max(fϕ) ≥ r?

Test GenSAT(ϕ, 1). If so, output 1 and terminate.
Otherwise, let a = 0, b = 1, and k = 0.
Repeat
k = k + 1; if GenSAT(ϕ, a+ b/2), let a = a+ b/2, otherwise let b = a+ b/2
until 2k > (N(ϕ))2.
Finally, find ‖ϕ‖τ in [a, b) relying on Lemma 5.

Assume the algorithm runs through the loop at least once. After the search
terminates, k is the least integer s.t. 2k > (N(ϕ))2, i.e., k > 2 log(N(ϕ)) ≥ k−1.
hence the number k of passes through the loop is polynomial. Also, the semi-
closed interval [a, b) of length 1/2k < 1/(N(ϕ))2 contains max fϕ, and by Lemma
4, max fϕ is the only value in [a, b) with denominator at most N(ϕ). The values
of a and b are l/2k and (l+ 1)/2k respectively, so |a| and |b| are polynomial in k.

Let us address the Validity Degree problem. The binary search will be
analogous, we need to establish an upper bound for the denominators. The fol-
lowing lemma can be obtained from the proof of [2, Theorem 17], a result on
finite consequence relation in  L.
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Lemma 6. Let τ and ϕ be MV-terms and let n be the number of variables in
these terms. Assume M,N ∈ N are coprime non-negative integers such that
‖ϕ‖τ = M/N . Then

N ≤
(
]τ + ]ϕ

n

)n
Proof. Following [2] and the references therein, one can build, in a canonical
way, (n-dimensional5) polyhedral complexes C(τ) and C(ϕ) such that

⋃
C(τ) =

[0, 1]n =
⋃
C(ϕ), with fτ linear over each n-dimensional cell of C(τ) and fϕ

linear over each n-dimensional cell of C(ϕ).
It follows from the analysis of [2] that the minimum of fϕ on the 1-region of

τ is attained at a vertex (of an n-dimensional cell) of the common refinement of
C(τ) and C(ϕ). It can further be derived from that paper that the least common
denominator of any vertex in this common refinement is bounded by ( ]τ+]ϕ

n )n;
the proof is analogous to the case when τ is void.

Hence, there is a rational vector 〈p1/q1, . . . , pn/qn〉 on which fτ is 1, fϕ
attains the value ‖ϕ‖τ , and the least common denominator of 〈p1/q1, . . . , pn/qn〉
is ( ]τ+]ϕ

n )n. It follows that N ≤
(
]τ+]ϕ
n

)n
.

Denote by N(τ, ϕ) the obtained upper bound on the denominator of ‖ϕ‖τ for
MV-terms τ and ϕ. To provide an upper bound N?(τ, ϕ) on the denominator
of ‖ϕ‖τ in case τ and ϕ are RMV-terms, we rely on Lemma 3 in order to
apply the existing results for MV-terms: namely, we use the upper bounds on
‖ϕ?‖(τ?�δτ�ϕ).

Lemma 7. Let τ and ϕ be RMV-terms. N?(τ, ϕ) = N(τ? � δτ�ϕ, ϕ?) =

= (
]τ?+]δτ�ϕ+]ϕ?

n )n, where n denotes the number of variables in the terms τ?,
δτ�ϕ, and ϕ?.

Lemma 8. For τ and ϕ RMV-terms, N?(τ, ϕ) is polynomial size in ]τ and ]ϕ.

Theorem 5. Validity Degree is in FPNP.

Proof. We provide a polynomial-time Turing reduction of Validity Degree
to D-RPL-Graded-Provability; i.e., for RMV-terms τ and ϕ the algorithm
computes ‖ϕ‖τ in time polynomial in ]τ+]ϕ, relying on the oracle. The algorithm
is based on a binary search analogous to the algorithm for Max Value from
Theorem 4.

The initial test is D-RPL-Graded-Provability(1, τ, ϕ), where a positive
answer yields ‖ϕ‖τ = 1.

If this is not the case, the binary search is initiated. The upper bound N =
N?(τ, ϕ) on denominator of ‖ϕ‖τ is as in Lemma 7 and 8. This provides discrete
structure to search in and the terminating condition 2k > N2.

The final application of Lemma 5 is analogous to the proof of Theorem 4.

5 The dimension of fτ and fϕ can be extended to n in a number of ways, e.g., supplying
dummy variables. This will modify the length by a linear function of n.
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5 Lower bound: validity degree is FPNP hard

We give a metric reduction of Weighted Max-SAT to Validity Degree. In
this section the Validity Degree problem is considered for MV-terms τ and
ϕ, i.e., we work in the MV-fragment of the RMV language. The lower bound
obtained for the MV-language then applies also to RMV-language.

Theorem 6. Validity Degree is FPNP hard under metric reductions.

Proof. For clarity, the proof is divided in two parts. First, we reduce Weighted
Max-SAT to Validity Degree in an MV-language with the definable symbols.
Subsequently we show how to polynomially translate general MV-terms that
occur in the range of the metric reduction to MV-terms in the basic language.

We define the function h1 from Def. 3, which takes inputs to Weighted
Max-SAT and transforms them to inputs to Validity Degree. Consider a
classical CNF-term (with language ∧, ∨, and ¬) ϕ with variables x1, . . . , xk and
weights w1, . . . , wn for the clauses C1, . . . , Cn of ϕ. One obtains the solution
to Weighted Max-SAT by maximizing Σn

i=1v(Ci)wi over all Boolean assign-
ments v to x1, . . . , xk. To utilize Validity Degree, we need to render this
expression in the MV-language and to isolate the Boolean semantics among the
broader semantics of [0, 1] L.

We define a finite theory T and a term Φ in stages by making several ob-
servations. At any stage, T is assumed to include terms specified in the earlier
stages.
(a) On any input 〈τ, ϕ〉, Validity Degree gives the minimum of fϕ in [0, 1] L
over the 1-region of fτ . The routine can also compute the maximum of fϕ on
the same domain if the input is 〈τ,¬ϕ〉 and the output is subtracted from 1.
(b) To force Boolean assignments, for each 1 ≤ j ≤ k put xj ∨¬xj in T . Since ∨
evaluates as max in the standard MV-algebra, this condition is true only under
(standard MV-) assignments where either xj is 1, or ¬xj is 1, i.e., xj is 0.
(c) The algebra [0, 1] L can only correctly add up to the sum 1.6 Thus the weights
w1, . . . , wn need to be scaled. The computations with weights are bounded by
w = Σn

i=1wi, which is the output of Weighted Max-SAT in case ϕ is satisfi-
able, so an appropriate factor to scale by is 1/w. The new weights are w′i = wi/w
for each i ∈ {1, . . . , n} This is an order-preserving transformation of the weights
and the new weights are of poly-size in the input size.
(d) Multiplication is not available, so e(Ci)w

′
i cannot be expressed with an MV-

term. One can however implicitly define some rational expressions as follows.

– Introduce a new variable b. To implicitly define 1/w in variable b, include
in T the system from Lemma 1 that polynomially renders the condition
b ≡ (¬b)w−1 ; now any model v of T will have v(b) = 1/w.

– For 1 ≤ i ≤ n, introduce a new variable yi. Include yi → b in T ; any
model v of T will have v(yi) ≤ 1/w. Further, include in T a polynomial
rendering of yi ⊕ yi ⊕ · · · ⊕ yi︸ ︷︷ ︸

w times

≡ Ci, using Lemma 1; then for any model v

6 Addition, represented by the strong disjunction ⊕, is truncated at 1.
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of T we have that v(Ci) = 0 implies v(yi) = 0, whereas v(Ci) = 1 implies
v(yi) ≥ 1/w, which in combination with the other condition in this item
gives v(yi) = v(Ci)/w.

– For 1 ≤ i ≤ n, introduce a new variable zi. Include in T a polynomial
rendering of yi ⊕ yi ⊕ · · · ⊕ yi︸ ︷︷ ︸

wi times

≡ zi, again relying on Lemma 1. Any model v

of T will have v(zi) = v(Ci)w
′
i.

To recap, we define T as the following set of MV-terms:
– xj ∨ ¬xj for each j ∈ {1, . . . , k};
– a polynomial-sized rendering of b ≡ (¬b)w−1 (cf. Lemma 1);
– for 1 ≤ i ≤ n, yi → b and a poly-sized rendering of wyi ≡ Ci (Lemma 1);
– for 1 ≤ i ≤ n, a poly-sized rendering of wiyi ≡ zi (Lemma 1).

Let a term τ represent T , let Φ stand for ¬(z1⊕z2⊕· · ·⊕zn). Let m = ‖Φ‖τ ,
i.e., m is the rational number that Validity Degree returns on input τ and
Φ. We claim that (1 −m)w (the function h2 from Definition 3) is the solution
to the instance C1, . . . , Cn and w1, . . . , wn of Weighted Max-SAT on input.

To see this, observe that the models of τ feature precisely all Boolean as-
signments to variables {x1, . . . , xk}. Each such model v extends to the new vari-
ables b, yi and zi (1 ≤ i ≤ n), namely v(b) = 1/w, v(yi) = (1/w)v(Ci), and
v(zi) = (wi/w)v(Ci). In particular, if v models T , then the values of b, yi and
zi under v are determined by the values that v assigns to the x-variables (i.e.,
the “Boolean” variables). Except for b, the sets of variables introduced for each
i are pairwise disjoint.

It follows from the construction of τ and Φ that any Boolean assignment that
yields an extremal value of Weighted Max-SAT also produces an extremal
value of Validity Degree and vice versa. It is easy to check that the order-
reversing operations (taking 1− y back and forth) and the scaling and descaling
work as expected (both are order-preserving). Hence, the reduction correctly
computes an input to Validity Degree and correctly renders the result of this
routine as an output of Weighted Max-SAT.

Finally, both functions involved are clearly polynomial-time functions.
For the second part of the proof, we notice that Φ is a term in the basic

language. As for τ , recall that one can render ϕ � ψ and ϕ → ψ in the basic
language, using the definitions, without changing the number of variable occur-
rences; this includes the nested occurrences of � in (a rendering of) (¬b)w−1

(recall that the product in the p-size variant is of cardinality |w|). To rewrite
each disjunction Ci in the basic language, we apply to the following claim.7

Claim: let α = (α1∨· · ·∨αn), where αi are terms in the basic language. There
is a term β in the basic language  L-equivalent to α and such that ]β = 2]α.

To justify the claim, let αl = α′ ∨αn, where α′ = (α1 ∨ · · · ∨αn−1). Then αl

is equivalent to (α′ → αn) → αn. Repeat this process for α′ unless it coincides
with α1. This produces a term equivalent to α, with→ as the only symbol; then
rewrite → in the basic language.
7 Slightly more general claim was made, without proof, at the beginning of Section 2.
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6 Closing remarks

This result attests a key role of algebraic methods for computational complexity
upper bounds in propositional  Lukasiewicz logic. Syntactic derivations are not
even discussed; indeed at present we have no idea how to employ them.

A proof-theoretic counterpart of a validity degree is the provability degree:
|ϕ|T = sup{r | T `RPL r → ϕ}, with the provability relation defined by extend-
ing  Lukasiewicz logic with suitable axioms. Hájek proved Pavelka completeness
for RPL in [12]: for any choice of T and ϕ, |ϕ|T coincides with ‖ϕ‖T . Our results
thereby apply also to provability degrees (for finite theories).

To our knowledge there are no works explicitly dealing with the more prag-
matical tasks of providing algorithms computing the validity degree (or maximal
value), identifying fragments where they might be efficient, or similar.

We have obtained hardness for FPNP under metric reductions for Validity
Degree but not Max Value. A somewhat similar reduction of Weighted
Max-SAT to a 0-1 integer programming problem was presented in [19], where
roughly speaking, some conditions in the matrix correspond to some of our
conditions in the theory. We do not know how to avoid employing the theory,
and cannot supply a FPNP-hardness proof for Max Value at present.
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