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Abstract

An interpretation of lattice-valued logic, defined by Titani, in basic fuzzy logic,
defined by Hájek, is presented. Moreover, Titani’s axioms of lattice-valued set theory
are interpreted in fuzzy set theory, under slight modifications of the fuzzy set theory
axiomatics.

1 Introduction

This paper presents a comparison of two axiomatic set theories over two non-classical
logics. In particular, it suggests an interpretation of lattice-valued set theory as defined in
[16] by S. Titani in fuzzy set theory as defined in [11] by authors of this paper.

There are many different conceptions of set theories in non-classical logics, or even
in the much narrower territory of fuzzy logics; cf. [5], [6], [10] for overviews. From the
viewpoint of this paper, a milestone was laid by G. Takeuti and S. Titani in their paper
[15]. Their logic is Gödel fuzzy logic expanded with  Lukasiewicz connectives and product
conjunction, and their set theory is a variant of ZFC in the given logic. Their paper, as
well as its predecessor [14], builds upon results of set theory in intuitionistic logic, as given
by W. C. Powell [12] and R. J. Grayson [7], which is apparent, among other things, in
its spelling of axioms—in a weak setting (such as that of an intermediate logic), different
but classically equivalent versions of axioms are no longer equivalent; some are too strong,
so that they strengthen the logic, while others appear to be too weak to prove desirable
statements, and choosing suitable axiomatics involves avoiding both extremes. The paper
[15] not only establishes strong results for the set theory it defines, but also contributes to
the development of mathematical fuzzy logics, in that it meaningfully employs a richer-
than-usual set of logical connectives; a bit later, this kind of logics re-emerged in P. Hájek’s
book [8] and in the papers of F. Esteva, L. Godo, F. Montagna, P. Cintula and others
(cf. [3],[4],[1]).

S. Titani’s paper [16] is similar to [15] in its development of set theory, but the logic
is significantly different. Titani defines and uses the logic of complete lattices, taking
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the lattice operations as truth functions of the conjunction and the disjunction, and in-
troducing the basic implication representing the lattice ordering, and a corresponding
negation. Strong completeness of this logic w. r. t. models over complete lattices was
proved in [13]. In this logic, she develops a first-order theory LZFZ which is an analogue
of Zermelo-Fraenkel set theory with the axiom of choice. Note that lattice-valued logic,
albeit many-valued, is not a fuzzy logic in the sense of [2]; in particular, it is not complete
with respect to chains among its algebras of truth values, and the conjunction and the
implication do not form a residuated pair: For example, ϕ → (ψ → ϕ) is not a logically
valid formula.

The theory FST (Fuzzy Set Theory) was defined and developed by P. Hájek and
Z. Haniková in [10], [11]. Its logic is BL∀∆, which is the first-order Basic Fuzzy Logic
BL∀, defined by Hájek in [8], expanded with the ∆ connective. FST is a rendering of
the classical Zermelo-Fraenkel set theory in a logic which is a common fragment of, e. g.,
 Lukasiewicz logic and Gödel logic, and therefore significantly weaker than either of the
two.

The above implies that the two set theories in question might be rather similar, which
is indeed the case. The interpretation presented in this paper is in fact an interpretation of
Titani’s lattice-valued logic in the logic BL∀∆, while the set-theoretic language is left intact
and (the translations of) most LZFZ axioms are provable in FST straightforwardly. Among
the similarities on might mention the use of the globalization connective in LZFZ and the
∆-connective in FST, which serve similar purposes—namely, suppressing many-valued
semantics in certain statements, or the fact that equality is a two-valued predicate in both
theories. There are two major differences inbetween the set of axioms of lattice-valued set
theory and that of FST. The first difference consists in connectives used in the formulations
of axioms: LZFZ uses the lattice conjuction, while FST uses the strong conjunction (which
does not admit contraction). Second, FST lacks the axiom of choice or its equivalent, as it
relates not to classical ZFC but to classical ZF. In order to fully interpret lattice-valued set
theory in FST, one has to incorporate some version of choice into FST, and also to make
another amendment in the formulation of the axiom ∈-induction in FST, which seems to
be too weak to prove Titani’s version.

2 Lattice-valued set theory

Titani [16] defines her lattice-valued logic L on complete lattices where she introduces a
basic implication, which is two-valued and represents the lattice ordering, and a corre-
sponding negation. Lattice-valued logic has the logical symbols ∧ (interpreted as lattice
meet), ∨ (interpreted as lattice join), →, ¬, ∀, ∃. Other definable connectives include 1
standing for ϕ→ ϕ, 0 standing for ¬1, and 2, where 2ϕ stands for 1→ ϕ.

A Gentzen-style proof system for L is a modification of the classical Gentzen calculus
LK. First, define 2-closed (Bc) formulas as follows:
(1) formulas of the form ϕ→ ψ, ¬ϕ are 2-closed
(2) if ϕ, ψ are 2-closed, then so are ϕ ∧ ψ, ϕ ∨ ψ
(3) if ϕ(x) is 2-closed with a free variable x, then ∀xϕ(x) and ∃xϕ(x) are 2-closed
(4) any 2-closed formula is obtained by application of (1)–(3)
A sequence of formulas Γ is 2-closed iff it is composed solely from 2-closed formulas.
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Axioms of L are sequentsI) of the form ϕ −→ ϕ. The rules for L are obtained from the
rules of LK, which are subject to the following restrictions:

(a) The structural rules of Weakening, Contraction, and Interchange are as in LK.

(b) In the structural rule of Cut below, ∆ or Π or ϕ must be 2-closed.

Γ −→ ∆, ϕ ϕ,Π −→ Λ
Γ,Π −→ ∆,Λ

(c) The rules ∧:left as in LK, while in ∧:right below, ∆ must be 2-closed or (ϕ,ψ)
must be 2-closed:

Γ −→ ∆, ϕ Γ −→ ∆, ψ
Γ −→ ∆, ϕ ∧ ψ

(d) The rules ∨:right as in LK, while in ∨:left below, Γ must be 2-closed or (ϕ,ψ)
must be 2-closed:

ϕ,Γ −→ ∆ ψ,Γ −→ ∆
ϕ ∨ ψ,Γ −→ ∆

(e) In the rule→:left below left, ∆ and Π must be 2-closed; while in the rule→:right
below right, Γ and ∆ must be 2-closed.

Γ −→ ∆, ϕ ψ,Π −→ Λ
ϕ→ ψ,Γ,Π −→ ∆,Λ

ϕ,Γ −→ ∆, ψ
Γ −→ ∆, ϕ→ ψ

(f) In the rule ¬:left below left, ∆ or ϕ must be 2-closed; while in the rule ¬:right
below right, Γ and ∆ must be 2-closed or ϕ must be 2-closed.

Γ −→ ∆, ϕ
¬ϕ,Γ −→ ∆

ϕ,Γ −→ ∆
Γ −→ ∆,¬ϕ

(g) The rule ∀:left as in LK; while in the rule ∀:right below, ∆ must be 2-closed or
ϕ(a) must be 2-closed, where a is a free variable not occurring in the lower sequent:

Γ −→ ∆, ϕ(a)
Γ −→ ∆, ∀xϕ(x)

(h) The rule ∃:right as in LK; while in the rule ∃:left below, Γ must be 2-closed or
ϕ(a) must be 2-closed, where a is a free variable not occuring in the lower sequent:

I)A sequent is a formal expression Γ −→ ∆, where Γ, ∆ are finite sequences of formulas.
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ϕ(a),Γ −→ ∆
∃xϕ(x),Γ −→ ∆

The semantics of a first-order language L over L is given by a complete lattice L,
a non-empty universe M , and for each n-ary predicate symbol P in the language L, a
function rP : Mn −→ L. Then M = 〈M, (rP )P predicate symbol〉 is a structure for L.II) An
evaluation v is a mapping assigning a value from M to each free variable. The truth value
of a formula ϕ in M under an evaluation v is as follows:

‖P (a1, . . . , an)‖LM,v = rP (v(a1), . . . , v(an))

‖ϕ ∧ ψ‖LM,v = inf{‖ϕ‖LM,v, ‖ψ‖LM,v}
‖ϕ ∨ ψ‖LM,v = sup{‖ϕ‖LM,v, ‖ψ‖LM,v}
‖ϕ→ ψ‖LM,v = 1 if ‖ϕ‖LM,v ≤ ‖ψ‖LM,v, 0 otherwise

‖¬ϕ‖LM,v = 1 if ‖ϕ‖LM,v = 0, 0 otherwise

‖∀xϕ‖LM,v = inf
v≡xv′

{‖ϕ‖LM,v′}

‖∃xϕ‖LM,v = sup
v≡xv′

{‖ϕ‖LM,v′}

A sequent Γ −→ ∆ is valid in lattice-valued logic L iff inf{‖ϕ‖LM,v : ϕ ∈ Γ} ≤
sup{‖ψ‖LM,v : ψ ∈ ∆} for every choice of L, M, and v. In [13], strong completeness
of L w. r. t. (models over) complete lattices has been shown:

Theorem 2.1. (Strong Completeness) A sequent is provable in lattice-valued logic iff
it is valid in it.

Lattice-valued set theory LZFZ has the following axioms:
GA1. Equality ∀u, v(u = v ∧ ϕ(u)→ ϕ(v))
GA2. Extensionality ∀u, v(∀x(x ∈ u ≡ x ∈ v)→ u = v)
GA3. Pairing ∀u, v∃z∀x(x ∈ z ≡ (x = u ∨ x = v))
GA4. Union ∀u∃z∀x(x ∈ z ≡ ∃y(y ∈ u ∧ x ∈ y))
GA5. Power set ∀u∃z∀x(x ∈ z ≡ x ⊆ u)
GA6. Infinity ∃u(∃x(x ∈ u) ∧ ∀x(x ∈ u→ ∃y ∈ u(x ∈ y)))
GA7. Separation ∀u∃v∀x(x ∈ v ≡ x ∈ u ∧ ϕ(x))
GA8. Collection ∀u∃v(∀x ∈ u∃yϕ(x, y)→ ∀x ∈ u∃y(2y ∈ v ∧ ϕ(x, y)))
GA9. ∈-induction ∀x(∀y(y ∈ x→ ϕ(y))→ ϕ(x))→ ∀xϕ(x)
GA10. Zorn Gl(u) ∧ ∀v(Chain(v, u)→

⋃
v ∈ u)→ ∃zMax(z, u), where

Gl(u) is ∀x(x ∈ u→ 2(x ∈ u))
Chain(v, u) is v ⊆ u ∧ ∀x, y(x, y ∈ v → x ⊆ y ∨ y ⊆ x)

Max(z, u) is z ∈ u ∧ ∀x(x ∈ u ∧ z ⊆ x→ z = x)

GA11. Axiom of 3 ∀u∃z∀x(x ∈ z ≡ 3(x ∈ u))
II)This definition is taken from [13], where function symbols are not considered.

4



3 Fuzzy set theory over BL∀∆
In this section we describe the logic BL∀∆ and the theory FST, which is a fuzzy set theory
over BL∀∆. See [8] for details on the logic and [11] for development of the set theory;
some degree of familiarity with both is an advantage in technical details to follow.

The logic BL∀∆ is the first-order Basic Fuzzy Logic expanded with the ∆-connective.
The basic logical symbols in the language of BL∀∆ are

(i) The logical connectives of BL∆: the (strong) conjunction &, its residuated im-
plication →, the unary ∆ connective and the constant 0.

(ii) Quantifiers ∀ and ∃

(iii) The symbol = denoting equality.III)

Definable connectives include the negation (¬ϕ stands for ϕ → 0), the min-conjunct-
ion (ϕ ∧ ψ stands for ϕ& (ϕ → ψ)), the max-disjunction (ϕ ∨ ψ stands for ((ϕ → ψ) →
ψ) ∧ ((ψ → ϕ) → ϕ)), the equivalence (ϕ ≡ ψ stands for (ϕ → ψ) & (ψ → ϕ)), and the
constant 1, standing for 0→ 0.

We list some shorthand:

ϕ→∆ ψ is ∆(ϕ→ ψ)

ϕ ≡∆ ψ is (ϕ→∆ ψ) & (ψ →∆ ϕ)
(∃x ∈ y)ϕ is ∃x(x ∈ y&ϕ)
(∀x ∈ y)ϕ is ∀x(x ∈ y → ϕ)

A language of a particular theory has object constants, predicate symbols and function
symbols. Object variables V are denoted x, y, z, w etc.

The Hilbert-style axioms and rules of BL∀∆ are listed below, in the following order:
(A1)–(A7) axioms of propositional BL; (∆1)–(∆5) axioms for the ∆-connective; (∀1)–(∀3)
axioms for quantifiers; (E1)–(E5) axioms for equality.
(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(A2) (ϕ&ψ)→ ϕ
(A3) (ϕ&ψ)→ (ψ&ϕ)
(A4) (ϕ& (ϕ→ ψ))→ (ψ& (ψ → ϕ))
(A5a) (ϕ→ (ψ → χ))→ ((ϕ&ψ)→ χ)
(A5b) ((ϕ&ψ)→ χ)→ (ϕ→ (ψ → χ))
(A6) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)
(A7) 0→ ϕ
(∆1) ∆ϕ ∨ ¬∆ϕ
(∆2) ∆(ϕ ∨ ψ)→ (∆ϕ ∨∆ψ)
(∆3) ∆ϕ→ ϕ
(∆4) ∆ϕ→ ∆∆ϕ
(∆5) ∆(ϕ→ ψ)→ (∆ϕ→ ∆ψ)
(∀1) ∀xϕ(x)→ ϕ(t) (t substitutable for x in ϕ)

III)Inclusion of = among logical symbols is a technical device
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(∃1) ϕ(t)→ ∃xϕ(x) (t substitutable for x in ϕ)
(∀2) ∀x(χ→ ϕ)→ (χ→ ∀xϕ) (x not free in χ)
(∃2) ∀x(ϕ→ χ)→ (∃xϕ→ χ) (x not free in χ)
(∀3) ∀x(ϕ ∨ χ)→ (∀xϕ ∨ χ) (x not free in χ)
(E1) (reflexivity) ∀x(x = x)
(E2) (symmetry) ∀xy(x = y → y = x)
(E3) (transitivity) ∀xyz(x = y& y = z → x = z)
(E4) (congruence) ∀xyz(x = y& z ∈ x→ z ∈ y)
(E5) (congruence) ∀xyz(x = y& y ∈ z → x ∈ z)
Deduction rules of BL∀∆ are modus ponens, ∆-generalization: from ϕ derive ∆ϕ, and
∀-generalization: from ϕ derive ∀xϕ.

The semantics of a first-order language L over BL∀∆ is given by an L-structure M, for
L a BL∀∆-chain. M = (M, (rP )P predicate symbol, (mc)c constant, (fF )F function symbol) has a
non-empty universe M , for each n-ary predicate symbol P of L an L-fuzzy n-ary relation
rP : Mn → L, for each constant c of L an element mc ∈ M , and for each n-ary function
symbol F of L a function fF : Mn −→M (see [8], [9]).

An M-evaluation of object variables is a mapping v : V −→ M . For two evaluations
v, v′, we write v ≡x v′ if v(y) = v′(y) for each variable distinct from x. The value ‖t‖M,v

of a term t under evaluation v is defined inductively: ‖x‖M,v = v(x), ‖c‖M,v = mc,
‖F (t1, . . . , tn)‖M,v = fF (‖t1‖M,v, . . . , ‖tn‖M,v) for an n-ary function symbol F and terms
t1,. . . ,tn.

The truth value ‖ϕ‖LM,v of a formula ϕ given by an L-structure M and an evaluation
v in M is as follows:
‖P (t1, . . . , tn)‖LM,v = rP (‖t1‖M,v, . . . , ‖tn‖M,v)
‖ϕ&ψ‖LM,v = ‖ϕ‖LM,v ∗ ‖ψ‖LM,v

‖ϕ→ ψ‖LM,v = ‖ϕ‖LM,v ⇒ ‖ψ‖LM,v

‖0‖LM,v = 0
‖∆ϕ‖LM,v = ∆‖ϕ‖LM,v

‖∀xϕ‖LM,v =
∧
v≡xv′

‖ϕ‖LM,v′

‖∃xϕ‖LM,v =
∨
v≡xv′

‖ϕ‖LM,v′

Since L need not be complete lattice, this value may be undefined; the L-structure M
is safe if ‖ϕ‖LM,v is defined for each ϕ and v. The truth value of a formula ϕ of a predicate
language L in a safe L-structure M for L is

‖ϕ‖LM =
∧

v an M−evaluation

‖ϕ‖LM,v

We call an interpretation M of L admissible if all the axioms for = are 1-true in M.
Let T be a theory over BL∀∆, L a BL∀∆-chain and M a safe admissible L-structure

for the language of T . M is an L-model of T iff all axioms of T are 1-true in M, i. e.,
‖ϕ‖LM = 1L for each ϕ ∈ T . A formula ϕ of a predicate language L is an L-tautology iff
‖ϕ‖LM = 1 for each safe admissible L-structure M.IV)

IV)It is essential to remark that the set of tautologies of all BL∆-chains whose lattice ordering is complete
is non-arithmetical. Therefore, the theories of models over such algebras are non-axiomatizable (and the
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Theorem 3.1. (Strong Completeness) Let T be a theory over BL∀∆ and let ϕ be a
formula of the language of T . Then T proves ϕ iff for each BL∀∆-chain L and each safe
admissible L-model M of T , ϕ is 1-true in M.

Fuzzy Set Theory (FST) is a theory over BL∀∆ with the language {∈} (note that =
is a logical symbol). It has the following axioms:V)

(extensionality) ∀xy(x = y ≡ (∆(x ⊆ y) & ∆(y ⊆ x)))
(empty set) ∃x∆∀y¬(y ∈ x)
(pair) ∀xy∃z∆∀u(u ∈ z ≡ (u = x ∨ u = y))
(union) ∀x∃z∆∀u(u ∈ z ≡ ∃y(u ∈ y& y ∈ x))
(weak power) ∀x∃z∆∀u(u ∈ z ≡ ∆(u ⊆ x))
(infinity) ∃z∆(∅ ∈ z&∀x ∈ z(x ∪ {x} ∈ z))
(separation) ∀x∃z∆∀u(u ∈ z ≡ (u ∈ x&ϕ(u, x))) (z not free in ϕ)
(collection) ∀x∃z∆[∀u ∈ x∃v ϕ(u, v)→ ∀u ∈ x∃v ∈ zϕ(u, v)] (z not free in ϕ)
(∈-induction) ∆∀x(∀y ∈ xϕ(y)→ ϕ(x))→ ∆∀xϕ(x)
(support) ∀x∃z(Crisp(z)&∆(x ⊆ z)))

We define an interpretation of FST in ZF. Let L be a linearly ordered complete BL∆-
algebra. Define a BL∆-valued universe V L over L (denote L+ = L− {0}).
V L

0 = {∅};
V L
α+1 = {f : Fn(f) & Dom(f) ⊆ V L

α & Rng(f) ⊆ L+} for any ordinal α;
V L
λ =

⋃
α<λ V

L
α for limit ordinals λ; finally, put

V L =
⋃
α∈Ord V

L
α .

Define evaluation of formulas in V L. For u, v ∈ V L let
‖u ∈ v‖ = v(u) if u ∈ D(v), otherwise 0,
‖u = v‖ = 1 if u = v, otherwise 0.
In the usual way, use induction on complexity of formulas to define, for any FST for-
mula ϕ(x1, . . . , xn), an n-ary function assigning to an n-tuple u1, . . . , un ∈ V L the value
‖ϕ(u1, . . . , un)‖.

Definition 3.2. Let ϕ be a closed formula in the language of FST. We say that ϕ is valid
in V L iff ‖ϕ‖ = 1 is provable in ZF.

Theorem 3.3. Let ϕ be a closed formula provable in FST. Then ϕ is valid in V L.

Lemma 3.4. The following formulas are provable in BL∀∆:

1. ∆(ϕ ∨ ¬ϕ) ≡ ∆(ϕ→ ∆ϕ)

2. ∆(α&β) ≡ (∆α& ∆β)

3. ∆ϕ ∧ ψ → ∆ϕ&ψ

4. ∀x∆ϕ ≡ ∆∀xϕ

5. (∆(ϕ ∨ ¬ϕ) & (ϕ→ ∆ψ))→ ∆(ϕ→ ψ)

logic BL∀∆ is not complete w. r. t. complete BL∆-chains).
V)Cf. [11] for details on the choice of axioms.
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Definition 3.5. (i) A formula ϕ is crisp in FST iff FST ` ϕ ∨ ¬ϕ
(ii) In FST, we define Crisp(x) ≡ ∀u∆(u ∈ x ∨ ¬u ∈ x).

In item (i) of the previous definition, it is an equivalent condition to prefix a ∆ to the
provability in FST (since in BL∀∆, ϕ and ∆ϕ are equiprovable for any ϕ). It follows from
Lemma 3.4 that a provably equivalent definition of a crisp set in item (ii) is Crisp(x) ≡
∆∀u(u ∈ x→ ∆(u ∈ x)).

Next we define an interpretation of ZF in FST, by way of restricting quantifiers to a
class H of hereditarily crisp sets.

Definition 3.6. (i) HCT(x) ≡ Crisp(x) &∀u ∈ x(Crisp(u)&u ⊆ x)
(ii) H(x) ≡ Crisp(x) &∃x′(HCT(x) &x ⊆ x′).

We write x ∈ H for H(x). FST proves that both of the above classes are crisp and
H is also transitive. One defines a translation ϕH to each formula ϕ of ZF by restricting
quantification to the class H. Then it can be shown that H is an inner model of ZF in
FST:

Theorem 3.7. Let ϕ be a formula in the language of ZF. Then ZF ` ϕ entails FST ` ϕH.

Working in FST, we define a few notions from classical ZF that will be needed.

Definition 3.8. (i) 〈u, v〉 = {{u}, {u, v}}
(ii) Rel(r) ≡ ∀x ∈ r ∃u, v(x = 〈u, v〉)
(iii) Dom(r) = {x : ∃y(〈x, y〉 ∈ r)}
(iv) Rng(r) = {x : ∃y(〈y, x〉 ∈ r)}
(v) CrispFn(f) ≡ Rel(f) & Crisp(f) &∀x ∈ Dom(f)(〈x, y〉 ∈ f & 〈x, z〉 ∈ f → y = z).

In order to obtain a suitable definition of ordinal numbers in FST, we rely on Theorem
3.7. Recall the classical definition:

Ord0(x) ≡(i)∀y ∈ x(y ⊆ x)
(ii)∀y, z ∈ x(y ∈ z ∨ y = z ∨ z ∈ y)
(iii)∀q ⊆ x(¬(q = ∅)→ ∃y ∈ q(y ∩ q = ∅))

If x ∈ H, then Ord0(x) ≡ OrdH
0 (x), and Ord0(x) is crisp. We define ordinal numbers

to be those sets in H for which OrdH
0 is satisfied. That is,

Definition 3.9. Ord(x) ≡ x ∈ H & Ord0(x).

Theorem 3.7 yields that for any formula ϕ, if
ZF ` ∀x1, . . . , xn(Ord0(x1)& . . .&Ord0(xn)→ ϕ), then
FST ` ∀x1, . . . , xn(Ord(x1)& . . .&Ord(xn)→ ϕH).

4 Interpreting Titani’s set theory

We interpret Titani’s logic L of complete lattices in BL∀∆ by introducing a translation
function (?), taking formulas of the logic L as arguments and producing formulas of BL∀∆
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as values. Using this function, we translate provable sequents in L to provable formulas
in BL∀∆.VI)

Further, we also show that the ?-translations of Titani’s set-theoretic axioms are prov-
able in FST under the translation ?, with the possible exceptions of ∈-induction and Zorn’s
lemma. Note that the translation does not concern extralogical symbols.

The translation ? is defined as follows:

ϕ? is ϕ for ϕ atomic
(ϕ ∧ ψ)? is ϕ? ∧ ψ?

(ϕ ∨ ψ)? is ϕ? ∨ ψ?

(ϕ→ ψ)? is ∆(ϕ? → ψ?)
(¬ϕ)? is ∆¬ϕ?

(∀xϕ)? is ∀xϕ?

(∃xϕ)? is ∃xϕ?

We write ϕ →∆ ψ for ∆(ϕ → ψ), and similarly ¬∆ϕ for ∆¬ϕ. We write ϕ ≡∆ ψ for
(ϕ→∆ ψ) ∧ (ψ →∆ ϕ), which is BL∆-equivalent to (ϕ→∆ ψ) & (ψ →∆ ϕ).

Note that x→∆ y in a BL∀∆-chain is the characteristic function of its lattice ordering,
and ¬∆x is x →∆ 0; thus the evaluation of the ?-formulas in any BL∀∆-chain L is fully
determined by L’s lattice operations.

Also, note that (2ϕ)? is ∆ϕ.

Theorem 4.1. Let ψ1, . . . , ψn, ϕ be sentences over L. Assume `L ψ1, . . . , ψn −→ ϕ. Then
`BL∀∆ ψ?1 ∧ · · · ∧ ψ?n → ϕ?.

Proof. Completeness theorems for both L and BL∀∆ allow for posing equivalent semantic
conditions for each of the above provabilities. Using these, the theorem can be equivalently
reformulated as follows:
For the given sentences ψ1, . . . , ψn, ϕ over L, if for any structure M over any complete
lattice L we have ‖ψ1‖LM ∧ · · · ∧ ‖ψn‖LM ≤ ‖ϕ‖LM in L, then for any safe structure M′ over
any BL∆-chain L′ we have ‖ψ?1‖L

′
M′ ∧ · · · ∧ ‖ψ?n‖L

′
M′ ≤ ‖ϕ?‖L

′
M′ in L′.

We prove a variant. Assume that for some L-sentences ψ1, . . . , ψn, ϕ and some safe
structure M0 over a BL∆-chain L0 = 〈L0,∧,∨, ∗,⇒,∆, 0, 1〉, we have ‖ψ?1‖

L0
M0
∧ · · · ∧

‖ψ?n‖
L0
M0

> ‖ϕ?‖L0
M0

. We take L1 = 〈L0,∧,∨, 0, 1〉 to be the lattice-reduct of L0. Let M1

be a new structure over L1, which inherits its universe and predicates from M0. It is
immediate that ‖ψ?1‖

L1
M1
∧ · · · ∧ ‖ψ?n‖

L1
M1

> ‖ϕ?‖L1
M1

in L1, and therefore ‖ψ1‖L1
M1
∧ · · · ∧

‖ψn‖L1
M1

> ‖ϕ‖L1
M1

in L1. Now we take L2 to be a (lattice-)completion of L1, which means
L1 is embeddable into L2 and the embedding preserves arbitrary joins and meets. Thus
all formulas evaluate in M1 over L2 in exactly the same way as they do in M1 over L1.
Hence ‖ψ1‖L2

M1
∧ · · · ∧ ‖ψn‖L2

M1
> ‖ϕ‖L2

M1
in L2. Then M1 is a structure over a complete

lattice L2 and M2 6|= ψ1 ∧ · · · ∧ ψn → ϕ, which is the desired conclusion.

VI)We fix the set-theoretic language {∈, =} as the language of formulas of both L and BL∀∆. In the
following theorem, the set-theoretic language can be replaced, w. l. o. g., by any language without constants
or function symbols.
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As already remarked in [13] on behalf of an anonymous referee, this interpretation is
not faithful: for example, the formula expressing distributivity of a lattice, ((ϕ∨ψ)∧χ)→
((ϕ ∧ χ) ∨ (ψ ∧ χ)), while provable in BL∀∆ (and in BL alone), is not provable in lattice-
valued logic L. As also pointed out in that paper, the same translation function yields an
interpretation of L in Gödel logic with ∆ immediately, given the fact that Gödel logic is
complete w. r. t. models over complete lattices.

Let ϕ be a set-theoretic statement. What does it mean that ϕ is provable in LZFZ
over L? In accordance with [15], we take the statement “ϕ is provable in LZFZ” to mean
GA1, . . . ,GA11 −→ ϕ is a provable sequent in L. Then, in order to show the provability
of ϕ? in FST, it is sufficient to show that the ?-translations of the axioms GA1,. . . ,GA11
are provable in FST also.

Now let us take Titani’s axioms of set theory LZFZ (lattice-valued Zermelo-Fraenkel
with Zorn’s lemma) one by one and prove their translations in FST.

Lemma 4.2. (Equality, GA1) For any ϕ, FST ` (x = y ∧ ϕ(x)→∆ ϕ(y).VII)

Proof. In FST, for each ϕ we have ` (∆(x = y) &ϕ(x))→ ϕ(y) (a consequence of equality
axioms in FST, including crispness of =). Hence the following chain of implications is
provable: (x = y ∧ϕ(x))→ (∆(x = y)∧ϕ(x))→ (∆(x = y) &ϕ(x))→ ϕ(y). (The second
implication is due to Lemma 3.4).

Lemma 4.3. (Extensionality, GA2) FST ` ∀u, v(∀x(x ∈ u ≡∆ x ∈ v)→∆ u = v)

Proof. It is sufficient to prove ∀x(x ∈ u ≡∆ x ∈ v) → u = v and then to apply ∆- and
∀-generalization. The statement follows from extensionality in FST.

Lemma 4.4. (Pairing, GA3) FST ` ∀x, y∃z∀u(u ∈ z ≡∆ (u = x ∨ u = y))

Proof. Equivalent to pair axiom in FST by trivial handling of ∆.

Lemma 4.5. (Union, GA4) FST ` ∀u∃z∀x(x ∈ z ≡∆ ∃y(y ∈ u ∧ x ∈ y)

Proof. Equivalently, ∀u∃z∆∀x(x ∈ z ≡ (∃y)(y ∈ u ∧ x ∈ y). This differs from our union
only by having ∧ instead of & in the condition on the right. Take u; to each y ∈ u associate
its support y′. Then by collection, there exists a z0 such that y ∈ u→ y′ ∈ z0. Now take⋃
z0, observe ∃y(y ∈ u∧x ∈ y)→ x ∈

⋃
z0. Therefore, setting z = {x : x ∈

⋃
z0 &∃y(y ∈

u ∧ x ∈ y), we obtain the set which is claimed by Titani’s axiom.

Lemma 4.6. (Power, GA5) FST ` ∀u∃z∀x(x ∈ z ≡∆ x ⊆∆ y)}

This translation is weak power in FST verbatim.

Lemma 4.7. (Infinity, GA6.) FST ` ∃u(∃x(x ∈ u)∧∀x(x ∈ u→∆ ∃y(y ∈ u∧x ∈ y))).

Proof. This is trivially provable in FST: the set ω of natural numbers in the class H
satisfies the axiom.

Lemma 4.8. (Separation, GA7.) ∀u∃v∀x(x ∈ z ≡∆ (x ∈ u ∧ ϕ(x)).

VII)Where possible, we omit the ?-index with ϕ since the statements hold in general.
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Proof. Again, this differs from ours by ∧ instead of & . But note that (x ∈ u ∧ ϕ(x))
is (x ∈ u& (x ∈ u → ϕ(x)), where the second conjunct can be taken as the separation
formula; then Titani’s separation follows from ours.

Lemma 4.9. (Collection, GA8.) (∀u)(∃v)[(∀x)(x ∈ u→∆ (∃y)ϕ(x, y))→∆

→∆ (∀α)(x ∈ u→∆ (∃y)(∆(y ∈ v) ∧ ϕ(x, y))].

Proof. Collection schema in FST spells as follows:
∀u∃v[∀x(x ∈ u→ ∃yϕ(x, y))→∆ ∀x(x ∈ u→ ∃y ∈ vϕ(x, y))].
First observe that (due to idempotence of ∆), collection in FST entails
∀u∃v[∀x(x ∈ u→∆ ∃yϕ(x, y))→∆ ∀x(x ∈ u→∆ ∃y ∈ vϕ(x, y))].
Then replace v by a crisp support v̂:
∀u∃v̂[∀x(x ∈ u→∆ ∃yϕ(x, y))→∆ ∀x(x ∈ u→∆ ∃y(∆(y ∈ v̂) &ϕ(x, y))]. Due to Lemma
3.4, the last strong conjunction can be equivalently replaced by a min-conjunction, i. e.,
(∆(y ∈ v̂) ∧ ϕ(x, y)). This yields Titani’s collection.

For GA9, see below.
The axiom GA10, a variant of Zorn’s lemma in LZFZ, has no counterpart in FST.

This is because Titani relates her theory to ZFC, while authors of this paper work in ZF.
In order to fully interpret LZFZ, it would be necessary to adopt at least the ?-translation
of GA10 into FST; while it would need a more thorough discussion to identify a suitable
version of Zorn for FST, we remark here that the ?-translation of GA10 is valid in V L

when Zorn’s lemma is assumed externally.

Lemma 4.10. (Axiom of 3, GA11) FST ` (∀u)(∃z)(∀t)(t ∈ z ≡∆ ¬∆∆¬∆(t ∈ u))

Proof. First observe that ¬∆∆¬∆ϕ is equivalent to ¬∆¬ϕ. For u given, let v be a support
(i. e., (Crisp(v) & ∆u ⊆ v). Observe ¬∆¬(t ∈ u) → t ∈ v. (Indeed, t ∈ u → t ∈ v,
therefore ¬(t ∈ v) → ¬(t ∈ u) and ∆¬(t ∈ v) → ∆¬(t ∈ u) and ¬∆¬(t ∈ u) →
¬∆¬(t ∈ v); the last succedent is equivalent to t ∈ v as v is a crisp set). Separate from
v: z = {t ∈ v : ¬∆¬(x ∈ u)}. Then t ∈ z ≡ ¬∆¬(t ∈ u) by the last observation. This
satisfies Titani’s axiom.

5 On the axiom of ∈-induction

Titani’s ∈-induction GA9 is an axiom schema in LZFZ for all its formulas. The following
schema will be called Titani’s ∈-induction in FST, or simply Titani’s induction (TI):

∀x[∀y(y ∈ x→∆ ϕ(y))→∆ ϕ(x)]→∆ ∀xϕ(x)

This is the ? translation of GA9 except for the fact that we apply the schema to any
formula ϕ of FST, rather than just to ?-translations of LZFZ formulas. Obviously, the
consequent may be equivalently replaced by ∆∀xϕ(x). The FST-native ∈-induction then
differs only by having ∀y(y ∈ x → ϕ(y)) instead of ∀y(y ∈ x →∆ ϕ(y)) in its antecedent.
It is easy to prove that Titani’s induction implies FST-induction, using properties of ∆.

It is an open problem whether FST can prove Titani’s induction. Another open prob-
lem is whether FST can prove all formulas that are valid in V L. In this section we do
not offer solutions to either of the problems, but we show that if the latter is solved in
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the affirmative, then so is the former; in particular, Titani’s ∈-induction is valid in V L.
Then we study a rather natural statement which, in FST, is provably equivalent to Ti-
tani’s ∈-induction. Namely, we formulate an axiom saying that each set is obtained from
the empty set by iterating the application of the weak power axiom of FST along ordinal
numbers in FST.

Lemma 5.1. For any FST-formula ϕ, Titani’s induction is valid in V L.

Proof. Suppose ‖∀x[∀y(y ∈ x →∆ ϕ(y)) →∆ ϕ(x)] →∆ ∀xϕ(x)‖ < 1 in V L; then it must
be the case that ‖∀x∆[∀y∆(y ∈ x→ ϕ(y))→ ϕ(x)]‖ = 1 and ‖∀xϕ(x)‖ < 1; hence, there
is a least ordinal α s. t. ∃a ∈ V L

α (‖ϕ(a)‖ < 1) and α is not a limit ordinal. If α = 0,
then a = ∅, but we have

∧
b∈V L(‖b ∈ ∅‖ ⇒ ‖ϕ(b)‖) = 1. If α has a predecessor, then∧

b∈V L ∆(‖b ∈ a‖ ⇒ ‖ϕ(b)‖) = 1, since for b ∈ Dom(a) we have ‖ϕ(b)‖ = 1 because of the
rank of b, and for b 6∈ Dom(a) we have ‖b ∈ a‖ = 0 by definition. In both cases, the value
of the antecedent is 1⇒ ‖ϕ(a)‖ = ‖ϕ(a)‖ < 1, which contradicts the assumption.

Definition 5.2. The iterated weak power property is as follows:
ItWP(f) ≡ CrispFn(f) & Dom(f) ∈ Ord & f(∅) = ∅&∀α ∈ Ord(α 6= ∅&α ∈ Dom(f) →
f(α) =

⋃
β∈αWP (f(β)))

Lemma 5.3. (1) ItWP is a crisp notion: ItWP(f) ≡ ∆ItWP(f).
(2) [ItWP(f) & ItWP(g) & Dom(f) ≤ Dom(g)]→ ∆(f ⊆ g)

Proof. (1) obvious. (2) Put x = {α ∈ Dom(f)|f(α) = g(α)}; we show x = Dom(f). As
both f and Dom(x) are crisp, we may prove by contradiction. If Dom(f) \ x 6= ∅ then it
is a crisp set of ordinals with a least element, a successor ordinal α+ 1 (for some α). But
then f(α) = g(α) implies f(α+ 1) = g(α+ 1), contradiction.

Lemma 5.4. (∀α)(∃f)(ItWP(f) & Dom(f) = α).

Proof. As above.

Definition 5.5. (i) For each α ∈ Ord let V̂α be the unique (crisp) set z such that
∃f(ItWP(f) &α ∈ Dom(f) & f(α) = z).
(ii) Axiom of iterated weak power: (∀x)(∃α)(x ∈ V̂α) (IWP)

Theorem 5.6. FST + (TI) proves (IWP).

Proof. Let ϕ(x) stand for (∃α)(x ∈ V̂α). Clearly, ϕ(∅) holds. The following is a provable
chain of implications in FST:
(∀∆y ∈ x)(∃α)(y ∈ V̂α)→∆ (∃z)(∀∆y ∈ x)(∃α ∈ z)(y ∈ V̂α)→∆

→∆ (∃z ⊆ Ord,Crisp)(∀∆y ∈ x)(∃α ∈ z)(y ∈ V̂α)→∆

→∆ (∃β)(∀∆y ∈ x)(y ∈ V̂β)→∆

→∆ (∃β)(∆(x ⊆ V̂β))→∆

→∆ (∃β)(x ∈ V̂β+1).
This gives (IWP) by Titani’s induction.

Lemma 5.7. FST+(IWP) proves ∀x∃α(α least s. t. x ∈ V̂α).

Proof. Given x, let β be such that x ∈ V̂β and let z = {α|α ≤ β&x ∈ V̂α}; x is a crisp
non-empty set of ordinals and hence it has a least element.
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Definition 5.8. For each x, τ(x) is the least α s. t. x ∈ V̂α.

Lemma 5.9. FST+(IWP) proves y ∈ x→ τ(y) < τ(x).

Proof. Let τ(x) = α + 1, thus x ∈ WP (V̂α), ∆(x ⊆ V̂α), thus y ∈ x → y ∈ V̂α → τ(y) ≤
α→ τ(y) < τ(x).

Theorem 5.10. FST+(IWP) proves Titani’s ∈-induction.

Proof. We want to prove ∀x[∀y(y ∈ x →∆ ϕ(y)) →∆ ϕ(x)] →∆ ∀xϕ(x). Since both the
antecedent and the succedent are crisp, we may prove by contradiction. Indeed,

(∃x)¬∆ϕ(x)→∆ (smallest type)
→∆ (∃x)[¬∆ϕ(x) & (∀y)(τ(y) < τ(x)→ ∆ϕ(y)]→∆ (crispness of τ,<)
→∆ (∃x)[¬∆ϕ(x) & (∀y)∆(τ(y) < τ(x)→ ∆ϕ(y)]→∆ (Lemma 5.9)
→∆ (∃x)[¬∆ϕ(x) & (∀y)∆(y ∈ x→ ϕ(y))]→∆

→∆ ¬∀x(∀y∆(y ∈ x→ ϕ(y))→∆ ϕ(x)).

6 Concluding remarks

It remains open whether (IWP) is provable in FST as it stands (without strengthening
∈-induction). In any case, Titani’s induction (TI) can be adopted as an additional axiom
in FST (instead of the current axiom of ∈-induction), on the ground of its validity in V L.
Clearly, both FST and FST + (IWP) can be seen as conservative extensions of ZF under-
stood as the theory of hereditarily crisp sets (by adding the law of the excluded middle, the
logic collapses to classical and FST becomes ZF). Likewise, the axiom (GA10)?—Zorn’s
lemma—can be adopted as an additional axiom in FST. Adopting these two additional
axioms is a final step toward a full interpretation of LZFZ in FST.

Titani has proved a completeness of LZFZ with respect to the lattice-valued universe
in her paper; an analogous result for FST is still to be proved. Needless to say, comparison
with Titani’s works is extremely interesting and inspiring for developing set theory over
various fuzzy logics.
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[10] Petr Hájek and Zuzana Haniková. A set theory within fuzzy logic. In Proceedings of
the ISMVL 2001, pages 319–323, Warsaw, 2001. IEEE Computer Society.
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