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Abstract

Computational complexity of the semigroup fragment (of the algebraic semantics)
and the implicational fragment of some fuzzy logics is studied, from the perspective of
the complexity of the full logic. The available results appear to confirm the key role of
the implicational fragments. Some other language fragments, as well as the notion of
language fragment itself, are discussed.

1 Introduction

This paper is a contribution to studies of language fragments of propositional substructural
logics extending1 FLew or of their equivalent algebraic semantics. Computational properties
of the semigroup fragment and the implicational fragment of some fuzzy logics are studied,
with remarks on other language fragments. A language fragment of a set of terms in some
language is a subset thereof, given by restricting the set of function symbols (connectives) in
that language.

Studies of language fragments (alongside the respective logics) try to clarify the interplay
of connectives, their role, and their expressive power. There are many facets, such as inter-
definability of connectives, subvariety structure, computational properties, etc. Often one or
more language fragments determine the behaviour of the full logic: for example, the chain
of extensions of Gödel logics is isomorphic to the chain of (implicational) extensions of its
implicational fragment. Moreover, for each of the extensions, its tautologies can be easily
retrieved from its implicational tautologies.

Decision procedures are studied, using reductions as key tools. In particular, many-one
polynomial-time reductions are considered, where reducing one propositional logic to another
amounts to finding a translation function f operating (in polynomial time) on terms that
faithfully preserves validity, i.e., ϕ is valid in the source logic iff f(ϕ) is valid in the target
logic. Such reductions yield a “library of translations” between logics and their fragments.
Polynomial-time reductions, used in this paper, can be viewed as incurring a reasonable
translation overhead; in fact, for all translations explicitly considered here, the overhead is
negligible.

∗DOI:10.1007/s00500-016-2346-0
1An extension is understood to be an axiomatic extension in the same language.
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It is a matter of course that polynomial-time translations exist between logics or theories
known to be polynomially equivalent (e.g., coNP-complete). We provide simple, explicit re-
ductions of some fuzzy logics already known to be coNP-complete (e.g.,  Lukasiewicz logic and
its extensions) to their implicational fragments, that are moreover one-one functions invertible
in polynomial time. We thus establish a lower bound on complexity for the implicational frag-
ments in terms of the complexity of the full logic. This new, if expected, coNP-completeness
result for the implicational fragments is ultimately the stronger statement.

On the other hand, some fragments are potentially much easier to decide; moreover, the
language fragment does not have the distinguishing power of the full language, so the corre-
sponding subvarieties do not present a rich structure. As an example, we analyze identities
of the semigroup language fragment.

Studies in language fragments of substructural logics are too numerous to be mentioned
here. We point out a few previous works that are directly relevant. The paper [11] presents a
systematic treatment of language fragments of fuzzy logics (axiomatic extensions of MTL) that
contain the implication, starting from the logic FBCK, the implicational fragment of MTL,
and presenting other logics and their language fragments as axiomatic expansions; the paper
does not study algorithmic problems but does address the problem of (non)coincidence of lan-
guage fragments of the logics. [1] studies basic hoops, i.e., 0-free subreducts of BL-algebras,
and their implicative subreducts.2 Moreover, [13] studies 0-free fragments of important fuzzy
logics, as logics of basic hoops and semihoops: among other results, it shows that 0-free frag-
ments of MTL, SMTL, and IMTL coincide, that 0-free fragments of BL and SBL coincide, and
that each of the logics MTL, BL,  L, G, Π is poly-time reducible to its 0-free fragment. A poly-
time reduction of intuitionistic propositional logic to its implicational fragment is presented in
[29]; the former, and hence the latter, is shown to be PSPACE-complete. Regarding decision
problems in fuzzy logics studied in this paper, [25] gives coNP-completeness of  Lukasiewicz
logic, [17] proves the same for Gödel and product logics, [3] shows coNP-completeness for
Hájek’s BL, and [10] shows coNP-completeness for extensions of  Lukasiewicz logic. In con-
trast, there is no known upper bound on the complexity of MTL (which is known to be
decidable by [5]).

2 Preliminaries

This paper does not introduce and define all of its notions and background theory; owing
to a rather special topic, it is assumed that an interested reader is already familiar with
the agenda and definitions of substructural and fuzzy logics. Comprehensive works include
[14, 27, 17, 12]. Likewise, standard notions of decidability and computational complexity
theory are taken for granted. In particular, P, NP, coNP, LOGSPACE, PSPACE denote
complexity classes, and �P denotes polynomial-time many-one (poly-time) reducibility.

This paper limits its attention to propositional logics extending the logic FLew and their
algebraic semantics; therefore, a logic is always propositional.3 While logics are now generally
understood to be substitution-invariant consequence relations on a set of terms, we opt for a
simpler (and more traditional) view that takes logics to be just sets of terms that are closed

2It follows from that paper that the implicational fragment of product logic is contained in the implicational
fragment of  Lukasiewicz logic; this also follows from the fact that the standard MV-algebra is isomorphic to
the cut product algebra (cf. [17]).

3A propositional logic can itself be regarded as a syntactic fragment of its (putative) predicate expansions.
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under substitution and deduction. This choice is pragmatic; this paper predominantly works
with sets of terms/equational theories.

A language is a set of function symbols, each with a given arity. The language L of FLew

has binary symbols · (multiplication), → (implication), ∧ and ∨ (lattice conjunction and
disjunction), and two constants 0 and 1. A countably infinite set of variables is considered.
FLew-terms are defined inductively as usual, and denoted with lowercase Greek letter such as
ϕ,ψ, χ. No distinction is made between function symbols and propositional connectives, or
between algebraic terms and propositional formulas. The set of all L-terms is denoted TmL

(or just Tm if no confusion can arise).
The unary symbol ¬ (negation) is introduced by writing ¬ϕ for ϕ → 0 for any term ϕ;

moreover, ϕ ≡ ψ stands for (ϕ → ψ) · (ψ → ϕ). For a term ϕ, we write ϕn for ϕ · ϕ · · · · · ϕ
(n times).

An interpretation of a function/predicate symbol f in an algebra A is denoted fA; ≈ is
the identity symbol and = denotes equality of elements of an algebra A. The superscripts
may be omitted if no confusion can arise.

Definition 1. An algebra A = 〈A, ·A,→A,∧A,∨A, 0A, 1A〉 is an FLew-algebra if

1. 〈A,∧A,∨A, 0A, 1A〉 is a {0, 1}-bounded lattice; we use ≤A for the lattice order

2. 〈A, ·A, 1A〉 is a commutative monoid with the unit element 1A

3. ·A and →A form a residuated pair, i.e., x ·A y ≤A z iff x ≤A y →A z

Important examples of FLew algebras include MTL algebras (semilinear FLew-algebras),
BL-algebras (divisible MTL-algebras), the standard MV-algebra [0, 1] L, the standard Gödel
algebra [0, 1]G, the standard product algebra [0, 1]Π, Heyting algebras, Boolean algebras in-
cluding the two-element Boolean algebra {0, 1}B. Weakly contractive FLew-algebras are de-
fined by the identity x ∧ ¬x ≈ 0, while distributive ones are defined by the lattice-theoretic
identity delimiting distributive lattices.

The logic FLew is algebraizable and the class FLew of FLew-algebras forms its equivalent
algebraic semantics. We take the logic FLew to be just the set of terms that are valid in all
FLew-algebras.

Lemma 2. Let A be a FLew-algebra, a ∈ A. Then Aa = 〈[a, 1], ·a,→,∧,∨, a, 1〉 is a FLew-
algebra, where [a, 1] is the upper cone of a and x ·a y = a ∨ (x · y).

Proof. Using weakening, the operation → is total function on [a, 1]. Moreover:
1. 〈[a, 1],∧,∨, a, 1〉 is a bounded lattice;
2. 〈[a, 1], ·a, 1〉 is a commutative monoid: for a ≤ x, y, z, we have 1 ·ax = a∨(1 ·x) = a∨x = x;
commutativity is clear; associativity: (x·ay)·az = a∨[(a∨(x·y))·z] = a∨[a·z∨x·y·z] = a∨x·y·z,
and the latter is equal to x ·a (y ·a z) by similar reasoning.
3. residuation follows from the fact that x ·a z ≤ y iff x · z ≤ y.

It is obvious that if, in addition, A is a Heyting algebra, then so is Aa. If A is a chain,
then so is Aa, and if A is semilinear, then so is Aa. If A is an MTL-algebra, then so is
Aa; this was proved in [13], Lemma 3.13.; as pointed out therein, divisibility is preserved
by the construction, so the same is true with respect to BL-algebras; moreover, if A is an
MV-algebra, so is Aa (to see that the latter is involutive, it suffices to recall that for each
x ∈ A, (x→ a)→ a = x∨ a). If A is [0, 1]Π, then Aa is isomorphic to [0, 1] L; this was proved
in [17].
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3 Language fragments

Let F ⊆ L. The F-fragment of Tm, denoted TmF , consists of those terms in Tm that
only employ symbols from F . If L is a logic in L (i.a., L ⊆ Tm), the F-fragment of L is
LF = L ∩ TmF ; note that LF is a logic (in the language F). For language fragments of
algebraic theories, the notation is analogous.

Two remarks seem to be due. (1) Some connectives (such as ¬) are not included in
L on the grounds of their term-definability, and are understood as shortcuts. However,
their term definability may fail in a fragment F ⊂ L. Therefore, a comprehensive study
of language fragments would need to take into account at least the most common examples of
definable connectives (obtaining, for example, the {·,∧,∨,¬}-fragment). Formally this could
be achieved by making L broader, not insisting on connective independence, and considering
subsets of this broader set. (2) Apart from restricting the set of connectives, no further
conditions are posed on term syntax; more syntactic fragments would occur by imposing
additional rules for term formation, such as demanding that negations only occur next to
atoms.

Observation 3. Let L be a logic, ∅ 6= F ⊆ L. Then LF �P L.

Proof. On input ϕ ∈ Tm, the decision procedure for LF first checks that ϕ ∈ TmF ; if so, it
calls the decision procedure for L on ϕ.

This easy statement is spelled out here for several reasons. First, it is a natural and
ubiquitous method for providing upper/lower bounds on complexity in the following manner:

• If LF is hard for a complexity class under �P, then so is L.

• If L belongs to a complexity class closed under �P reductions, then so does LF .

Second, it highlights some freedom in choosing the type of reduction. Checking membership
in the language fragment (on an existing promise that the term is well-formed), for fragments
considered here, can be done in linear time and logarithmic space. Third, it prompts the
question whether the two problems are actually equivalent under �P (or another reduction
under consideration).

Naturally, language fragments are potentially easier to decide; for example, the logic BCK
is in NP4, while FLew is PSPACE-complete (see [19] for a proof of hardness). It remains to be
seen whether fuzzy logics (here, MTL and its extensions) can be reduced to their implicational
fragments.

Let us review some facts on available decision procedures for fuzzy logics, taking  Lukasiewicz
logic and MV-algebras as an example. Upper bounds on complexity, where available, rest
mainly on structural knowledge of their algebraic semantics. As shown in [18], such knowl-
edge can provide coNP-containment not just for identities, but for the universal theory of the
standard algebra for the logic. For example, MV-algebras have coNP-complete equational
theory due to the results of [25] concerning the standard MV-algebra [0, 1] L; also the univer-
sal theory of [0, 1] L is coNP-complete ([18]). A fortiori, the quasi-equational theory of [0, 1] L
is coNP-complete; by finite strong standard completeness of  Lukasiewicz logic, the latter cor-
responds to the finite consequence relation of  L. Thus by general strong finite completeness,
quasi-equational theory of MV-algebras is coNP-complete, and it is not difficult to show that

4Proofs are of polynomial size in formula size; the same is true about, e.g., BCI and indeed MLL, cf. [7, 20].
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this extends to their universal theory. (Note that the universal theory of MV-algebras does not
coincide with the universal theory of [0, 1] L). The lower bound for the implicational fragment,
shown in this paper, applies to the implicational fragments of each of these theories.

Let L be a nontrivial logic extending FLew. Consider a language ∅ 6= F ⊆ L. If F does
not contain →, then LF yields uninteresting theorems: in particular, for F ⊆ {·,∧,∨, 0}, LF

has no theorems, for F ⊆ {·,∧, 0, 1}, the only theorems are combinations of 1, and for the
remaining fragments, theorems are the same for all nontrivial FLew-extensions. Therefore,
the F-reduct of the equational theory for the class K of algebras corresponding to L, (or
equivalently, the theory of the F-reduct of K) is considered instead.

If F contains →, then for all logics considered here LF and ThEq
F (K) (where ThEq(K)

denotes the equational theory of K) are polynomially equivalent: clearly for ϕ,ψ ∈ TmF ,
ϕ ∈ LF iff ϕ ≈ (x → x) ∈ ThEq

F (K); on the other hand, ϕ ≈ ψ ∈ ThEq
F (K) iff (ϕ →

ψ) · (ψ → ϕ) ∈ LF , and in case · is not in F , then two separate questions to LF can be
used, and the result is obtained by combining them in conjunction; the classes P, coNP and
PSPACE are closed under this extended type of reduction.

4 The {·}-fragment

This section investigates identities in the semigroup language in FLew-algebras. The language
of semigroups has a single binary symbol {·}; the algebras in question are commutative, which
allows for a simpler notation. The abbreviations CSG is used for ‘commutative semigroup’.

The equational theory of CSGs has two axioms, namely,

x · y ≈ y · x
x · (y · z) ≈ (x · y) · z

These axioms enable a normal form for terms and identities; each identity in the language
of CSGs can be written as

xa1
1 · . . . · x

an
n ≈ x

b1
1 · . . . · x

bn
n

where ai, bi are nonnegative integers with ai + bi > 0 for each i. An identity in normal form
is called trivial iff ai = bi for all i, otherwise it is nontrivial.

[28] shows that each variety of CSGs is finitely based, hence the lattice of varieties of
CSGs (and monoids) is countable; its structure was studies further, e.g., in [26, 21]. We shall
look at the equational theories of semigroup reducts of FLew-algebras, which form a simpler
pattern.

Remark 4. (1) For any class K of CSGs, and for any nonnegative integer t, if K |= xt ≈
xt+1, then K |= xm ≈ xn for t ≤ m,n.

(2) For any class K of FLew-algebras, if K |= xm ≈ xn for 0 ≤ m < n, then K |= xp ≈ xn

for each m ≤ p ≤ n.

Theorem 5. Let K be a class of FLew-algebras. Consider an arbitrary nontrivial semigroup
identity in normal form, i.e., xa1

1 · . . . · xann ≈ x
b1
1 · . . . · xbnn . The following are equivalent:

(1) K |= xa1
1 · . . . · xann ≈ x

b1
1 · . . . · xbnn

(2) K |= xk ≈ xk+1, where k = min{a1, . . . , an, b1, . . . , bn | ai 6= bi}.
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Proof. Let K |= xa1
1 · . . . · xann ≈ xb11 · . . . · xbnn . Then, in particular, for each 1 ≤ i ≤ n and

each A ∈ K, the identity holds for assignments that assign the element 1A to all variables
except xi; since 1A is the neutral element of ·A, it follows that A |= xaii ≈ xbii . Suppose,
for a given i, that ai > bi; then A |= xbi ≈ xbi+1. It follows that K |= xk ≈ xk+1 for
k = min{a1, . . . , an, b1, . . . , bn | ai 6= bi}.

On the other hand, if K validates xk ≈ xk+1 for k as above, then it validates xai ≈ xbi for
any 1 ≤ i ≤ n, and consequently also xa1

1 · . . . · xann ≈ x
b1
1 · . . . · xbnn .

Subvarieties of FLew-algebras given by the identities

xk ≈ xk+1 (Ek)

were studied in some detail; the paper [27] gives a summary. It refers to the algebras belonging
to the varieties given by Ek as k-potent. We shall denote, for k ≥ 1,

Var(Ek) = {A ∈ FLew | A |= Ek}

Clearly, Var(E1) is the variety of Heyting algebras. It is remarked in [27] that the
FLew-term expressing Ek is pk → pk+1 (of course, this is no longer in the semigroup lan-
guage). Moreover, the paper discusses the chain (ordered by inclusion) of Var(Ek): we have
Var(E1) ⊆ Var(E2) ⊆ . . . ⊆ FLew. It gives, for each k ∈ N, examples of algebras in
Var(Ek) \Var(Ek−1), whose logics are moreover neighbors (direct predecessors) of classical
logic in the inclusion order ([27], Theorem 7.3). We remark here that the finite k + 1-valued
MV-chain is in Var(Ek+1) \Var(Ek); the standard MV-algebra [0, 1] L is not in

⋃
k Var(Ek).

Finally, it follows from Theorem 5 that any algebra in FLew \
⋃
k Var(Ek) satisfies only trivial

CSG identities.
The paper [15] shows that the semigroup fragment of the equational theory of [0, 1] L and

of [0, 1]Π coincide; this is a particular example of the general phenomenon discussed here,
i.e., no nontrivial CSG identities hold in either. There are many more natural examples of
FLew-algebras that do not belong to Ek for any k; a sufficient condition is that the algebra
contain an infinite descending chain 1 > a > a2 > a3 > . . . , or descending chains of every
finite cardinality. Examples include the Chang algebra, any of the Komori algebras, and any
continuous t-norm algebra whose ordinal sum contains an MV- or a product component.

Summing up, a nontrivial CSG identity is FLew-equivalent to Ek for some k ≥ 1. We have
provided examples of FLew-algebras that satisfy only trivial CSG identities; a fortiori, only
trivial CSG identities hold in the CSG variety. Among the FLew subvarieties that satisfy only
trivial CSG identities, there are minimal subvarieties of FLew; for example, the variety given
by the Chang algebra K2.

Theorem 6. The following problems are in LOGSPACE.

(1) given an arbitrary CSG identity, is its normal form trivial?

(2) given k ∈ N and an arbitrary CSG identity, is the identity FLew-equivalent to Ek?

For each CSG identity, either (1) is the case, or (2) is the case for a unique k. Note
that normal form for the input identity s ≈ t is not assumed; a variable may have multiple
occurrences in each of the two terms, and may occur in powers with exponent greater than
1; for xk, k is referred to as multiplicity of the occurrence.
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Proof. All numerical values are assumed to be represented in binary. Any brackets in the
terms are ignored. Without going into details of representation, it is assumed that the pro-
cedure is able to scan a CSG term for occurrences of xi and their multiplicities, and retrieve
individual digits of these numbers.

The input is an identity s ≈ t, where s and t are CSG terms. The term s is of the form
xp1
i1
xp2
i2
. . . xpmim , where each xij , j ≤ m, is one of x1, . . . , xn, and m denotes the number of

occurrences of these variables in s. For each occurrence of a variable, we need O(log n) space
to identify its index (1 to n). Thus the length of s, denoted by |s|, is O(m log n + Σm

i=1|pi|).
Analogously for t; the input size is |s|+ |t|.

There are n distinct variables x1, . . . xn in s and t. Let us denote by Si the sum of
multiplicities of the occurrences of xi in s, and analogously for Ti, for 1 ≤ i ≤ n. The
procedure needs to check the following:
(1) Si = Ti for each i ∈ {1, . . . , n};
(2) there is an i ∈ {1, . . . , n} s.t. Si 6= Ti and Si = k or Ti = k, and moreover for each
i ∈ {1, . . . , n}, if Si 6= Ti, then Si ≥ k and Ti ≥ k.
Clearly, the conditions given by either (1) or (2) can be evaluated by subsequently processing
each i, and the latter consists in performing several comparisons.

The decision procedure can use (apart from the read-only input) a space that is propor-
tional to the logarithm of the input size. In particular, it can store a fixed number of counters
or pointers to the input string. One of the things the procedure cannot generally afford to do
is search for occurrences of xi in s and store a counter for summing up their multiplicities. In
fact, it cannot even store the multiplicity of a single occurrence of xi, because each of those
is, in general, linear in |s|. (Were it assumed that the multiplicity of each variable occurrence
was 1, the counter would be of logarithmic size in |s|).

However, it is easy to compute any digit of Si (or Ti) in logarithmic space. Let us compute
the k-th lowermost (i.e., rightmost) digit of Si. This is done in k steps. As first step the lowest
digits of multiplicities of all occurrences of xi in s are summed; this yields a number r that is
logarithmic in the number of occurrences, and hence in the size of s. If k is 1, the procedure
outputs the lowest digit of r; otherwise, it forgets the lowest digit of r, and proceeds to the
next step. At step j ≤ k, it adds to r the j-th lowermost digits of multiplicities of occurrences
of xi in s (this amounts to addition of two numbers of logarithmic length); if j < k, the lowest
digit of the sum is forgotten, and j increased. Finally, when j = k, the rightmost digit of r is
put out.

Let us spell out how to perform a comparison of two binary numbers a = aqaq−1aq−2 . . . a1

and b = brbr−1br−2 . . . b1. The numbers are streamed on demand: for any i ≥ 1, the procedure
can retrieve the digits ai and bi or conclude that one or both are undefined. To compare a
and b, the procedure first determines the smallest i such that the i-th digit of one or both
numbers are undefined. If only one of a and b has a valid digit at position i, that number is
greater. If both numbers fail to have a valid digit at position i, the procedure (i) decrements i
by one, and if i > 0, (ii) retrieves ai and bi (technically, this can be done by setting a separate
counter to i and subtracting from it until 0 is reached). If ai and bi differ, the number with
the greater value is greater; otherwise, (i) and (ii) are repeated. If i reaches 0, the numbers
are equal.

Theorem 5 shows that, for FLew-algebras, one can restrict one’s attention to identities
with one variable, of the form Ek, when considering subvarieties given by the semigroup
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fragment {·}. We do not know whether the same restriction can be applied to CSG quasi-
identities. In this regard, we remark that there are no nontrivial cancellative FLew-algebras:
if xy ≈ xz → y ≈ z is valid in A, setting x = 0 gives y ≈ z as special case.

By [23], the quasi-equational theory CSGs is EXPSPACE-complete. This shows that it
is distinct from the quasi-equational theory of the {·}-reduct of any standard BL-algebra
for which coNP-completeness of its universal theory is a known fact. Thus there are quasi-
identities that hold in such standard BL-algebras but not in all CSGs.

5 The {→}-fragment

This section studies the {→}-fragment of  Lukasiewicz, Gödel and product logics and their
extensions, and of Hájek’s basic logic BL. These logics are known to be coNP-complete; the
same is shown for their implicational fragments.

The situation is familiar from classical propositional logic (CL). Note that within FLew-
extensions, CL→ as an implicational fragment is unique to CL. Within this section, let us
consider classical propositional logic in the language {→, 0}.

Definition 7. Let ϕ be a term and p be a new variable. Define ϕ? by the following translation
of propositional atoms:

0 7→ p

x 7→ (x→ p)→ p

where x is any variable in ϕ.

If ϕ is a {→, 0}-term then ϕ? is an implicational term. Clearly CL is poly-time reducible
to CL→: ϕ is a classical tautology iff ϕ? is.

It is well known that in a BL-chain A, the map a 7→ ¬¬a is a homomorphism of A onto
the first Wajsberg hoop in the ordinal sum of A. If 0 < c < 1 in A, then [c, 1] with the
operations modified as in Lemma 2, is again a BL-chain, even though a 7→ (a→ c)→ c is no
longer a homomorphism. In the following, the weaker statement will be used.

 Lukasiewicz logic  L, like classical logic, can be presented in the language {→, 0}, and this
feature extends to all extensions. Recall the following result of Komori:

Theorem 8. ([22]) Let a logic L be an axiomatic extension of  L. Then L{→} 6=  L{→} iff
L is given by a finite MV-chain. Moreover, for two finite MV-chains  Ln and  Lm, we have

 L
{→}
n ⊂  L

{→}
m iff m < n.

Theorem 9. Let a logic L be an axiomatic extension of  L. Then L{→} is coNP-complete.

Proof. We rely on completeness theorems of  L with respect to [0, 1] L and of  Ln with re-
spect to the n-element MV-chain. Let A be the standard, or a finite, MV-chain. We show
TAUT(A) �P TAUT(A)→, thereby proving coNP-hardness for all {→}-fragments in view of
Theorem 8. Containment in coNP follows from Observation 3.

Let ϕ? be a translation of a term ϕ as in Definition 7. Claim: ϕ is a tautology of A iff ϕ?

is. Indeed, if ϕ is not true in A under some e, define e′ by extending e with e′(p) = 0; this
entails e′(x) = e′((x→ p)→ p)); then e′(ϕ?) < 1. On the other hand, assume ϕ? is not true
in A under some eA. If e(p) = 0, this yields an assignment that does not validate ϕ; e(p) = 1
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contradicts the assumption. Hence assume 0 < e(p) < 1. By Lemma 2 and subsequent
remarks, the interval [e(p), 1] inA, endowed with→A and e(p) as the interpretation of 0, forms
an MV-chain: if A is the standard MV-chain, then [e(p), 1] is isomorphic to it, and if A is  Ln
for some n, then [e(p), 1] is  Lm for some m < n. The values e(p) and (e(x)→ e(p))→ e(p) for
each variable x give an assignment in the new MV-chain that does not validate ϕ. Depending
on what A is, it may be concluded either ϕ is not valid in [0, 1] L or not valid in  Lm, and hence
not valid in  Ln; i.e., ϕ is not a tautology of A.

For Gödel logic, the situation is even simpler. The structure of axiomatic extensions of G
ordered by inclusion is well known:

CL = G2 ⊃ G3 ⊃ . . . ⊃ G

It can be shown that the logics G→i keep this structure.

Definition 10. ([24]) Let P2 denote the Peirce formula, ((p2 → p1) → p2) → p2; let, for
each i ≥ 3, Pn denote

((pn → Pn−1)→ pn)→ pn

for pn a new variable.

Theorem 11. ([24])

• The formula Pn is valid in the finite Gödel chain Gi iff i ≤ n.

• The formula Pn axiomatizes Gn within Gödel logic.

Two variants of proving coNP-hardness for implicational fragments of Gödel logic G and
its extensions Gn (n ≥ 3) are presented below. The fact that G is complete w.r.t. the standard
Gödel algebra [0, 1]G, as is Gn w.r.t. the n-element Gödel chain, is employed.

Lemma 12. CL{→,0} �P G→ and CL{→,0} �P G→n for n ≥ 3.

Proof. Let A be the standard, or a finite, Gödel chain. For a, b ∈ A,

(a→ b)→ b =

{
b if a ≤ b
1 otherwise.

Claim: TAUT({0, 1}B){→,0} �P TAUT(A)→; in particular, ϕ ∈ TAUT({0, 1}B){→,0} iff
ϕ? ∈ TAUT(A)→.

If ϕ is not a classical tautology under some e, then set e′(p) = 0 and e′(x) = e(x) in A;
then e′ does not satisfy ϕ? in A. On the other hand, if ϕ? is not true in A under e′, then
assuming e′(p) = 0 yields a classical counterexample, e′(p) = 1 contradicts the assumption,
and if 0 < e′(p) < 1, then [e′(p), 1] is a Gödel chain where e′(p), e′((x → p) → p) yields a
classical evaluation not satisfying ϕ, so ϕ is not a classical tautology.

Lemma 13. G �P G→ and Gn �P G→n for n ≥ 3.
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Proof. The reduction employed in [29] to reduce the intuitionistic logic to its implicational
fragment works here in a simpler form, as there is no need to consider ∨; the ground language
of G and its extensions is ∧,→, 0.

For a given formula ϕ(x1, . . . , xn), consider the set Sub of its subformulas and for each
subformula ψ introduce a new variable yψ. Let Def be the union of sets
{xi → yxi , yxi → xi} for i = 1, . . . , n;
{y0 → yψ} for ψ ∈ Sub (y0 denoting the new variable for 0);
{yψ → yχ, yψ → yρ, yχ → (yρ → yψ)} for ψ = χ ∧ ρ in Sub;
{yψ → (yχ → yρ), (yχ → yρ)→ yψ} for ψ = χ→ ρ in Sub.
Since Def is finite, one can write

∧
Def for the conjunction of its elements.

By an argument similar to those in preceding proofs, we get |=[0,1]G ϕ iff |=[0,1]G

∧
Def →

yϕ iff
∧

Def |=[0,1]G yϕ, and analogously for the finite chains. To conclude, we note that∧
Def → yϕ can be equivalently written in pure implicational form, using residuation.

Corollary 14. G→ and G→n for each n ≥ 3 are coNP-complete.

Proof. Gödel logic and extensions are known to be coNP-complete, their implicational frag-
ments inherit the complexity class. Hardness for the implicational fragment follows from
either of Lemma 12 or Lemma 13.

For product logic Π, the only consistent axiomatic extension is classical logic.

Theorem 15. Π→ is coNP-complete.

Proof. We show  L→ �P Π→, relying on standard completeness for both logics.
Lemma: for a, b ∈ [0, 1]Π, we have

(a→ b)→ b =

{
1 if a > b = 0

max(a, b) otherwise.

Proof: a ≤ b gives a→ b = 1 and (a→ b)→ b = b = max(a, b). If a > b = 0, then a→ b = 0
and (a → b) → b = 1. If a > b > 0, then a → b = b/a; an assumption that (a → b) ≤ b,
combined with weakening, gives b = a→ b, i.e., b = b/a, whence a = 1 = max(a, b); assuming
b < (a → b), we get (a → b) → b = b/(b/a) = a = max(a, b). This concludes the lemma
proof.

For each two (implicational) terms ϕ and ψ, denote by M(ϕ,ψ) the (implicational) term
(ϕ → ψ) → ψ. Define the reduction as assigning, to each term ϕ, a term M((p → q), ϕ◦),
where ϕ◦ occurs from ϕ by replacing each occurrence of a variable x with a term (x→ p)→ p;
the atoms p and q are new variables, not occurring in ϕ. Since ϕ is implicational, so is
M((p→ q), ϕ◦).

Recall that for any element 0 < c < 1, the algebra [c, 1] in [0, 1]Π, with the cut product,
residuum, and c as bottom, is isomorphic to [0, 1] L; in fact the→-reduct of [c, 1] is isomorphic
to the →-reduct of [0, 1] L (as [c, 1] is closed under product residuum). The isomorphism be-
tween [0, 1] L and cut product is unique for each c (as [0, 1] L has no nontrivial automorphisms);
denote it g. Of course, g(1) = 1.

If ϕ is a tautology of [0, 1] L, let us show M((p→ q), ϕ◦) is a tautology of [0, 1]Π. Consider
assignments in [0, 1]Π; suppose e is such that e(p) = 0; then e(p → q) = 1 no matter what
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e(q) is; this entails e(M((p → q), ϕ◦)) = 1. Suppose e(p) > 0, then e((x → p) → p) =
max(e(x), e(p)) ∈ [e(p), 1]; therefore,

e(ϕ◦) = ϕ[0,1]Π(max(e(x1), e(p)), . . . ,max(e(xn), e(p))) =

ϕ[0,1] L(g−1(max(e(x1), e(p))), . . . , g−1(max(e(xn), e(p))))

The latter is always 1 in [0, 1] L, so M((p→ q), ϕ◦) holds in [0, 1]Π.
On the other hand, if ϕ is not valid in [0, 1] L under some assignment e, then one easily

constructs an assignment e′ in [0, 1]Π such that e′(M((p → q), ϕ◦)) is not true, by setting
e′(p) > 0, e′(q) < e′(p), and e′(x) = g(e(x)); note that e′((x→ p)→ p) = max(e′(x), e′(p)) =
e′(x) (since e′(p) > 0).

The following theorem addresses the implicational fragment of BL. By [13], BL→ coincides
with SBL→.

Theorem 16. BL→ is coNP-complete.

Proof. We consider the algebra ω L, the infinite ordinal sum ordered by ω of standard MV-
components, as an algebra such that TAUT(ω L) = BL (this was shown in [2]). Consequently,
BL→ = TAUT(ω L)→.

We show TAUT([0, 1] L) �P TAUT(ω L)→, using the translation ϕ? as in Definition 7.
Consider c ∈ ω L; since this is a sum of Wajsberg hoops whose only common element is 1,

either c = 1 or c belongs to a unique component. For the latter case,

(x→ c)→ c =


c if x ≤ c
x if x > c and x is in the same Wajsberg component as c

1 otherwise.

Moreover, if d is the smallest idempotent such that c < d, then [c, d) ∪ 1, endowed with →
(as in ω L) and c interpreting 0 is an MV-chain, isomorphic to the standard MV-chain.

If ϕ is not a tautology of [0, 1] L under some e in [0, 1] L, then define e′ in ω L by setting
e′(p) = 0 and e′(x) = f(e(x)) for f being an isomorphism of [0, 1] L onto the first Wajsberg
component in the sum. Clearly e′(ϕ) < 1.

If ϕ? is not a tautology of ω L, fix e′ such that e′(ϕ) < 1. This entails e′(p) < 1; then, by
the above, [e(p), d) ∪ 1 (for d the least idempotent strictly above e(p)) is an isomorphic copy
of the standard MV-algebra, and moreover, e′((x→ p)→ p) ∈ [e′(p), d)∪ 1. It follows that ϕ
is not a tautology of [0, 1] L.

6 Remarks on other language fragments

Fuzzy logics (MTL and extensions) are distributive, i.e., the lattice reduct of each MTL-
algebra is a distributive lattice. Therefore, any lattice identity that is true in all distributive
lattices (or equivalently, in {0, 1}B) is true in any MTL-algebra. The converse also holds:
any lattice identity true in a nontrivial MTL-algebra holds in all distributive lattices, since
the variety of distributive lattices has no proper subvarieties beside the trivial one. The
problem of deciding the validity of any lattice identity in a nontrivial MTL-algebra is thus
coNP-complete by [6].
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The {·,∨}-fragment of FLew has not been studied in this paper; in particular, we do not
know the structure of the lattice of {·,∨}-generated subvarieties of the FLew-variety. (In [4],
axiomatization by {·,∨}-canonical formulas is given for all extensions of k-potent FLew, for
each k.) We remark that validity for {·,∨}-identities is coNP-hard in any nontrivial FLew-
algebra, by the results of [6].

Glivenko-like theorems provide lower bounds for {→, 0}-fragments of some logics. Two
logics K and L in the same language L are Glivenko equivalent iff for each L-term ϕ we
have ¬ϕ ∈ K iff ¬ϕ ∈ L. It is not difficult to show that if K is Glivenko equivalent to L,
K ⊆ L, and L is involutive, then ϕ ∈ L iff ¬¬ϕ ∈ K for each ϕ. Logics that allow for this
reduction (in the role of L and K respectively) include classical logic and intuitionistic logic
(or weakly contractive logic), or  Lukasiewicz logic and Hájek’s basic logic BL ([8]); thus (as
is well known), one can read classical tautologies from intuitionistic (or weakly contractive)
ones, and one can read MV-tautologies from BL-tautologies. Moreover, since only → and 0
are needed for the reduction, the same holds for the {→, 0} fragments of the logics involved.
Unfortunately, this is not applicable to MTL and its involutive extension IMTL, because these
two logics are not Glivenko equivalent (cf. [9]).

7 Concluding remarks

This paper has studied the (equational theories of) the semigroup and the implicational
fragment of some propositional fuzzy logics, predominantly extensions of BL, from a compu-
tational perspective. A basic complexity classification is an interesting but secondary pursuit;
the main target is to gain more information about the logics in relation to their fragments.
The results given here confirm our intuitions about these fragments:

• the semigroup reducts can generate a chain of subvarieties of CSGs; due to strong
additional characteristics, such as the existence of a neutral element, a partial order,
and monotonicity of powers, the subvariety structure is much simpler than the full CSG
subvariety lattice. Valid identities in any such subvariety of CSG are easy to recognize.

• the implicational fragments of BL and some of its extensions are polynomially equivalent
to the full logic.

One should adopt a humble perspective in interpreting these results. Glivenko theorem
[16] and other negative translations of classical to intuitionistic logic are sometimes interpreted
as saying that “classical logic is contained in/a fragment of intuitionistic logic”; this is true
insofar as consistency strength or existence of decision procedures are concerned, but it is not
the case that one loses nothing by working in intuitionistic rather than classical logic. The
reductions provided here show, in exactly the same sense, that Lukasiewicz logic (or classical
logic for that matter) is “contained in” its implicational fragment; the translation provided
by Definition 7 is easily invertible, so from any formula in the range of ?, one can retrieve a
unique source formula. Moreover, the range of ? is itself a syntactic fragment of (implicational
fragment of) Tm. Still, much was arguably lost in accomplishing such a translation; among
other things, one starts with the language {→, 0}, which may already seem awkward in many
contexts. Moreover, at present there seem to be no outstanding decision procedures tailored to
the implicational fragment in particular, whose features would be preserved by the reduction.
On the other hand,  L �P  L→ as shown in the proof of Theorem 9, and  L→ �P Π→ by the
proof of Theorem 15; this shows that a reduction between  L and Π is due to a reduction
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between respective implicational fragments, which supports the perspective of their key role
for the logic.

Many questions are left open by this paper. Some questions are implicit to the material
presented here; concerning the semigroup fragment, it remains to be determined whether
each quasi-identity is equivalent to a quasi-identity in one variable, and the subquasivariety
structure of semigroup reducts of FLew remains to be determined, and the complexity of the
corresponding theories. For the implicational fragment, an immediate question concerns the
structure of the lattice of implicational fragments (as logics), e.g., which logics share their
implicational fragment, and which logics are reducible to their implicational fragment. In
particular, we would like to know this for MTL, whose complexity is a long-standing open
problem within propositional fuzzy logics.

On a broader scale, language fragments form only a small area of syntactic fragments
in general (see Section 3 for a discussion). Finite-variable fragments, or fragments of the
universal algebraic theory, are further noteworthy theories.
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[3] Matthias Baaz, Petr Hájek, Franco Montagna, and Helmut Veith. Complexity of t-
tautologies. Annals of Pure and Applied Logic, 113(1–3):3–11, 2002.

[4] Nick Bezhanishvili, Nick Galatos, and Luca Spada. Canonical formulas for k-potent
commutative, integral, residuated lattices. arXiv:1509.07980.

[5] Willem J. Blok and Clint J. van Alten. The finite embeddability property for residuated
lattices, pocrims and BCK-algebras. Algebra Universalis, 48(3):253–271, 2002.

[6] P. A. Bloniarz, H. B. Hunt III, and D. J. Rosenkrantz. Algebraic structures with hard
equivalence and minimization problems. Journal of the ACM, 31:879–904, 1984.

[7] Wojciech Buzskowski. On the complexity of some substructural logics. Reports on
Mathematical Logic, 43:5–24, 2008.
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Logic. In Petr Cintula, Petr Hájek, and Carles Noguera, editors, Handbook of Mathe-
matical Fuzzy Logic, volume 1, pages 1–101. College Publications, 2011.
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