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1 Introduction

This chapter is about computational complexity of decision problems in proposi-
tional fuzzy logics and also in algebras which constitute their algebraic semantics. We
investigate sets of formulas and relations thereon, with an aim to determine their com-
plexity by ranking them alongside well-known decision problems, such as SAT and
TAUT in classical propositional logic. A key problem is, for a given logic, to determine
the complexity of the set of its theorems and of the relation of provability of a formula
from a finite theory. We rely on completeness theorems and work in a suitably chosen
class of algebras, so we are also interested in complexity of appropriate fragments of the
algebraic theory. Owing to the multitude of fuzzy logics under investigation, the general
framework yields many particular problems, some of which are open.

Naturally, many patterns of thinking familiar from classical logic are not applicable
in the many-valued case. For example, in classical propositional logic, one can reduce
the problem of provability from finite theories to the problem of theoremhood, using
the deduction theorem. The classical deduction theorem is however not generally avail-
able in fuzzy logic, and that is why the provability relation is, in general, an interesting
complexity problem. To give another example, the duality of satisfiability and tautolo-
gousness, known from classical logic and occasioned by its dichotomy, is not valid for
algebras corresponding to fuzzy logics. The fact that not only the classical dichotomy is
absent, but there are typically infinitely many truth values, makes it actually nontrivial
to find upper bounds on complexity of sets of formulas such as SAT. Indeed, a ma-
jor part of our efforts in this chapter will be targeted to showing, for various existential
problems, that if there is a solution, there is a succinct one.

On the other hand, all decision problems considered in this chapter share common
lower bounds (not necessarily tight): for each consistent axiomatic extension of the logic
FLew, the SAT problem for the corresponding class of algebras is NP-hard, whereas the
TAUT problem is coNP-hard. The word ‘hard’ is ominous here: while the problems
are algorithmically solvable, this chapter does a poor job on attempting to solve them.
Rather, it is intent on classifying the problems, using polynomial equivalence; we are not
concerned about polynomial differences in performance. Throughout, we investigate the
worst-case complexity of problems, an approach that is preferable for its elegance and
robustness as long as one is aware of its limitations.
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There is a pattern in results presented in this chapter: for those decision prob-
lems whose complexity has been settled (the problems have been proved complete in
some complexity class), the situation is analogous to the classical case: satisfiability is
NP-complete, while tautologousness and consequence (hence, theoremhood and prov-
ability) are coNP-complete. One might ask why consequence relation comes out no
more difficult than tautologousness. This chapter tries to answer this question by show-
ing coNP-containment (hence, coNP-completeness) for the universal fragment of the
theory of these algebras. Thus we are able to avail ourselves of the classical dichotomy
after all, albeit on a metamathematical level: the universal fragment of the theory is
coNP-complete if and only if the existential fragment is NP-complete. SAT can be
viewed as a fragment of the existential theory and TAUT and CONS as fragments of the
universal theory, and that is why complexity results come out as rather flat. It is of course
a major question whether this might be the case for those problems that are, so far, open.

Complexity-wise, as well as otherwise, a territory well conquered is propositional
Hájek’s BL and its extensions. It is not an oversimplification to say that complexity
results for the BL family rest on the results for particular MV-algebras, mainly the stan-
dard one, and the latter in turn can be derived from well-known results in linear algebra.
However, the complexity picture is much less complete for fragments and expansions
of BL and of its extensions: here, results are fragmentary despite some considerable
effort, while on the other hand, many problems have not been addressed. Shifting from
BL to MTL, one moves into an area where open problems outnumber existing results.
Decidability results are available for MTL and some of its extensions, and computa-
tional complexity has been settled for particular examples of left-continuous t-norms.
However, a suitable general methodology for tackling complexity problems in semilin-
ear logics weaker than BL is still to be found. Lack of results also prevents us from
even mentioning some even weaker semilinear systems; we usually assume our logics
are axiomatic extensions of MTL or expansions thereof.

This chapter cannot lay claim to a proper introduction of the investigated logics.
For a comprehensive presentation, the reader may wish to consult earlier chapters of
this book. Indeed, this chapter will be indigestible to a reader who has not, at the very
least, come across the logic BL, its extensions Ł, G, Π, and standard BL-algebras for
these logics. Likewise, our treatment of basic computational complexity notions is not
intended as an introduction to the topic, but rather as a condensed reference guide. Some
skill in algorithmization might also come in useful, as algorithms, where needed, are
presented informally within this chapter, and the verification of polynomial nature of
some transactions is left to the reader.

The text is organized as follows. Section 2 gives definitions, important notions
and results, and notational conventions. Section 3 collects general results, applicable to
many particular logics, and some technical statements. Section 4 is dedicated to results
on Łukasiewicz logic and its extensions; it contains prototypical complexity results and
explains in detail some techniques. Section 5 presents results on (the remaining) exten-
sions of BL given by standard BL-algebras. Section 6 is an overview of available results
for fragments and expansions of BL or its extensions. Section 7 gives a flavour of results
available for (extensions of) MTL. Section 8 offers an overview of results and Section 9
is an account of achievements in the field, giving references and credits.
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2 Notions and problems

This section is a brief exposition of elements of logic, algebra and computational
complexity theory. This is accompanied by definitions and discussion of the decision
problems that form the subject matter of our investigation. Some other decision prob-
lems are pointed out whose already established complexity bounds are relevant.

2.1 Logics and algebras

Logics investigated in this chapter are algebraizable; the notion of algebraizability
was introduced in [4]. This property amounts to the fact that, under a natural transla-
tion between propositional formulas and algebraic identities, provability in a particular
propositional logic corresponds to the consequence relation in the (unique) class of alge-
bras that forms its equivalent algebraic semantics. In particular, one gets strong comple-
teness w.r.t. this class, which extends also to axiomatic extensions and many language
expansions. See Chapter IV for a comprehensive exposition.

Languages and expressions. A language L is a countable set of connectives, each with
a given arity in N. The connectives with arity 0 are called constants. This chapter only
considers languages with finitely many connectives of a positive arity (while there can
be infinitely many constants). Given a countably infinite set of variables Var , using
the connectives of L and parentheses one can build in the usual way the set FmL of
L-expressions. These can be viewed as propositional formulas (usually denoted with
lowercase Greek characters ϕ, ψ, etc.) or as algebraic terms (usually denoted with low-
ercase Latin characters t, s, etc.); first-order L-formulas feature L as the set of function
symbols and = as the predicate symbol.

ForL-expressions ϕ, ψ, we write ψ � ϕ to denote the fact that ψ is a subexpression1

of ϕ. For L-expressions ϕ, ψ, χ, we write ϕ(ψ/χ) for a substitutional instance of ϕ
where all occurrences of ψ have been replaced with χ. If X ⊆ Var , we denote FmX

L
the L-expressions in variables from X .

If L1 ⊆ L2 are languages and T is a set of L2-expressions, then the L1-fragment of
T is the set T ′ ⊆ T containing all L1-expressions in T .

Some languages will be particularly important in this chapter. The logic FLew (full
Lambek calculus with exchange and weakening) has binary connectives & (conjunc-
tion), → (implication), ∧, ∨ (lattice conjunction/disjunction), and the constant 0. One
further defines 1 as 0→ 0, ¬ϕ as ϕ→ 0, and ϕ↔ ψ as (ϕ→ ψ) & (ψ → ϕ). In logics
stronger than FLew, some of the connectives are definable;2 in particular, ∨ is definable
in MTL (ϕ ∨ ψ is defined as ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ)), and both ∨ and
∧ are definable in BL (ϕ ∧ ψ is defined as ϕ & (ϕ → ψ)). In Łukasiewicz logic, one
can define all the above connectives using→ and 0 (but one can also equivalently start
with different sets of connectives). In superintuitionistic logics, ∧ and & coincide. In
classical logic, connectives become interdefinable in the familiar manner.

1A connected substring belonging to FmL.
2If L is a logic (extending or expanding FLew) in a language L, we say that an n-ary connective c ∈ L is

definable in L iff there is anL\{c}-formulaϕ(x1, . . . , xn) s.t. `L c(x1, . . . , xn)↔ ϕ(x1, . . . , xn). Anal-
ogously, we say c is (term-)definable in a class K of L-algebras iff K |= c(x1, . . . , xn) = ϕ(x1, . . . , xn)
for ϕ as above.



796 Zuzana Haniková

The logic BL (focal to this chapter), together with many of its extensions, is usually
considered in the language {&,→, 0}. This is also the case here; this language will
be referred to as the language of BL. The definable connectives mentioned above are
regarded as abbreviations, and one uses the defining formulas to translate any formula
containing the definable connectives to the language of BL. Analogously for MTL with
respect to the language {&,→,∧, 0} (the language of MTL). Definable connectives
(in particular, ∧ and ∨) are used quite freely in many places, and some general results
are given for the FLew-language (in particular, Theorem 3.4.1). Yet a straightforward
application of the translations given above, to eliminate definable connectives and thus
pass from one language to another, may lead to an exponential blowup in formula size.
We argue in Theorem 3.3.3 that there is a translation that preserves satisfiability and
tautologousness and that can be performed polynomially.
Propositional logic. A logic L in a language L is a structural consequence relation
`L⊆ P(FmL) × FmL. Often `L is given by a deductive system, i.e., axioms and

deduction rules; cf. Chapter II for a detailed exposition. In a logical setting, we often
speak of (propositional) L-formulas rather than L-expressions. An L-theory is a set of
L-formulas. If L is a logic in L, T ∪ {ϕ} ⊆ FmL, T `L ϕ reads ‘ϕ is provable from T
in L’, and `L ϕ is a case of the former with T = ∅, meaning ‘ϕ is a theorem of L’.

DEFINITION 2.1.1. Let L be a language and L a logic in the language L. We denote

THM(L) = {ϕ ∈ FmL | `L ϕ} (theorems of L)
CONS(L) = {〈T, ϕ〉 ∈ Pfin(FmL)× FmL | T `L ϕ}

(provability from finite theories in L)

The two above notions—theoremhood (for a formula) and provability (for a formula
from a finite theory)—will be in the focus of our attention throughout this chapter. For
various logics, it will be our objective to classify the set of theorems and the relation of
provability from finite theories as to their computational complexity. The restriction to
finite theories is necessitated by the need to work with finite objects.

If L1 is a logic in a language L1 and L2 is a logic in a language L2, we say that L2

is an expansion of L1 iff L1 ⊆ L2 (entailing L1 ⊆ L2); if L1 = L2 we say ‘extension’
rather than ‘expansion’. If a logic L2 in a language L2 expands a logic L1 in a language
L1, we say the expansion is conservative iff, for each L1-theory T ∪ {ϕ}, T `L2

ϕ
implies T `L1 ϕ; in such a case, we say that L1 is the L1-fragment of L2.

DEFINITION 2.1.2. Basic logic BL in the language {&,→, 0} has axioms:
(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

(A2) ϕ& ψ → ϕ

(A3) ϕ& ψ → ψ & ϕ

(A4) ϕ& (ϕ→ ψ)→ ψ & (ψ → ϕ)

(A5a) (ϕ→ (ψ → χ))→ (ϕ& ψ → χ)

(A5b) (ϕ& ψ → χ)→ (ϕ→ (ψ → χ))

(A6) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)

(A7) 0→ ϕ
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The deduction rule of BL is modus ponens. Moreover, monoidal t-norm logic MTL in
the language {&,→,∧, 0} has axioms (A1)–(A3),

(A4a) ϕ ∧ ψ → ϕ

(A4b) ϕ ∧ ψ → ψ ∧ ϕ
(A4c) ϕ& (ϕ→ ψ)→ ϕ ∧ ψ

(A5)–(A7), and deduction rule modus ponens.

Uppercase Latin characters are used for logics: MTL, BL, SBL, Ł, G, Π stand for
monoidal t-norm logic, basic logic, strict basic logic, Łukasiewicz logic, Gödel logic,
product logic respectively. These and other logics are discussed in previous chapters.
Algebraic semantics. Let L be a language. In an algebraic setting, the elements of L
are thought of as function symbols; = is the predicate symbol. Variables in Var are
usually denoted with x, y, z, . . . . L-terms are L-expressions, denoted with s, t, . . . . For
a given language L, an identity is a formula t = s, where t, s are terms. A quasiidentity
is a formula

∧
i≤n(ti = si) → t = s for n ∈ N, where t, ti, s, si, i ≤ n are terms.

An open formula is a formula without quantifiers. A closed formula (or sentence) is
a formula without free variables. We use uppercase Greek characters (Φ, Ψ, . . . ) for
first-order formulas.

An L-algebra is a structure A = 〈A, 〈cA | c ∈ L〉〉; the functions in A are indexed
with the function symbols of L of matching arities. If A is an L-algebra and t is an
L-term, tA denotes the function given by t in A. If A is an algebra, A stands for
its domain. If L′ ⊆ L are languages and A = 〈A, 〈cA | c ∈ L〉〉 is an L-algebra,
the L′-reduct of A is the algebra 〈A, 〈cA | c ∈ L′〉〉. If K is a class of L-algebras,
the theory of K is the set of first-order L-formulas valid in each member of K. We
are particularly interested in the equational and quasiequational fragments of first-order
algebraic theories, as these (for suitably chosen algebras) correspond to theoremhood
and provability in our propositional logics via completeness theorems.

The following notation is used for function symbols of the language of FLew-
algebras: {∗,→,∧,∨, 0}.

While = is the only predicate symbol, our algebras are lattice-ordered, hence we
take the liberty of using predicate symbols ≤ and <, where for any terms t1 and t2,
t1 ≤ t2 stands for t1 ∧ t2 = t1, while t1 < t2 stands for (t1 ≤ t2) ∧ ¬(t1 = t2); so, by
slight abuse, atomic formulas are of the form t1 = t2, t1 ≤ t2, t1 < t2 for some terms
t1, t2 (naturally, under this convention we may no longer claim that atomic formulas are
just identities). Moreover, 0 is the least and 1 the greatest element of the lattice order.

If L is a language and A is an L-algebra, an A-evaluation on FmL is any homo-
morphism from FmL (i.e., the free algebra on Var ) to A. Each mapping e : Var → A
can then be uniquely extended to an A-evaluation on FmL. We denote Val(A) the set
of allA-evaluations on FmL. Further, ifX ⊆ Var , we denote ValX(A) = {e � FmX

L |
e ∈ Val(A)} (the set of all evaluations on FmX

L ).
For T ∪ {ϕ} a set of L-expressions, T |=A ϕ iff, for all A-evaluations e, we have

e(ϕ) = 1A whenever for all ψ ∈ T we have e(ψ) = 1A. For K a class of L-algebras,
T |=K ϕ iff T |=A ϕ for all A ∈ K. The relation |=K is referred to as the consequence
relation in K. The finite consequence relation in K is the restriction of |=K to finite
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theories. We often use the notion of logic given by K (or simply ‘logic of K’): within
this chapter, the logic given byK is identified with the finite consequence relation ofK.3

We write |=K ϕ for ∅ |=K ϕ and we speak of tautologies of K.
We now define some of these, and other, familiar notions as operators on (classes

of) algebras, generalizing the cases from classical logic.

DEFINITION 2.1.3. Let L be a language subsuming the language of FLew. Let K ∪
{A} be a class of L-algebras whose reducts to the FLew-language are FLew-algebras,
and let 1 denote the trivial L-algebra. We denote

TAUT(A) = {ϕ ∈ FmL | ∀e ∈ Val(A)(e(ϕ) = 1A)} (tautologies ofA)

TAUTpos(A) = {ϕ ∈ FmL | ∀e ∈ Val(A)(e(ϕ) > 0A)}
(positive tautologies ofA)

SAT(A) = {ϕ ∈ FmL | ∃e ∈ Val(A)(e(ϕ) = 1A)}
(satisfiable formulas ofA)

SATpos(A) = {ϕ ∈ FmL | ∃e ∈ Val(A)(e(ϕ) > 0A)}
(positively satisfiable formulas ofA)

CONS(A) = {〈T, ϕ〉 ∈ Pfin(FmL)× FmL | T |=A ϕ}
(finite consequence inA)

TAUT(K) =
⋂
A∈K

TAUT(A) (tautologies of K)

TAUTpos(K) =
⋂

A∈(K\{1})

TAUTpos(A) (positive tautologies of K)

SAT(K) =
⋃

A∈(K\{1})

SAT(A) (satisfiable formulas of K)

SATpos(K) =
⋃
A∈K

SATpos(A) (positively satisfiable formulas of K)

CONS(K) =
⋂
A∈K

CONS(A) (finite consequence in K)

In the above definition, the trivial algebra 1 is omitted from consideration for the
TAUTpos and SAT operators, because TAUTpos(1) = ∅ and SAT(1) = FmL. This
seems more convenient than handling the omission separately for each case.

NOTATION 2.1.4. For K a class of algebras, the term SAT(pos)(K) stands for either of
the problems SAT(K) and SATpos(K). Similarly for TAUT(pos)(K).

We now come to the notion of the (first-order) theory of K, where K is a class of
algebras in a given language L. The theory of K is the set of first-order L-sentences Φ
valid in K (i.e., valid in each A ∈ K; write K |= Φ). We use ‘equational theory of K’
for ‘equational fragment of the theory of K’; analogously for the other fragments.

3This is not quite consistent with the conception of logics as consequence relations, because the latter
involve infinite sets of formulas. However, the finite consequence relation captures full information about the
consequence relation in case the latter is finitary, or about its finitary companion in case it is not.
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DEFINITION 2.1.5. Let L be a language, K a class of L-algebras. We write

(i) ThEq(K) for the equational theory of K, i.e., the set of universally quantified
L-identities valid in K;

(ii) ThQEq(K) for the quasiequational theory of K, i.e., the set of universally quan-
tified L-quasiidentities valid in K;

(iii) Th∀(K) for the universal theory of K, i.e., the set of universally quantified open
L-formulas valid in K;

(iv) Th∃(K) for the existential theory of K, i.e., the set of existentially quantified open
L-formulas valid in someA ∈ K;

(v) Th(K) for the (full, first-order) theory of K.

It is obvious from the definition that ThEq(K) ⊆ ThQEq(K) ⊆ Th∀(K) ⊆ Th(K)
and Th∃(K) ⊆ Th(K). It is important to observe that all the inclusions in fact stand for
fragments given by conditions that are easy to verify.

The link between the concepts introduced in the last two definitions is clear: for
any language L, any L-algebraA, anyA-evaluation e and any L-expression ϕ, we have
e(ϕ) = 1A iff A |= (ϕ = 1)[e]. Hence, e.g., ϕ ∈ TAUT(A) iff (ϕ = 1) ∈ ThEq(A).
This yields some straightforward reducibilities, which are collected in Lemma 3.1.1.

If L is a logic in a language L, we usually write L for the class of L-algebras that
forms its equivalent algebraic semantics. The elements ofL are referred to as L-algebras;
the linearly ordered elements are L-chains.

If L is a language and K a class of L-algebras, we write V(K) for the variety
and Q(K) for the quasivariety generated by K; further, we write I(K), H(K), S(K),
P(K), PU(K) for the classes of isomorphic images of K, homomorphic images of K,
subalgebras of K, direct products of K, ultraproducts of K, respectively. For A,B two
L-algebras, A is partially embeddable into B iff every finite partial subalgebra of A
is embeddable into B, that is, for each finite set A0 ⊆ A there is a one-one mapping
f : A0 → B such that for each n-ary function symbol g in L, if for a1, . . . , an ∈ A0

we have gA(a1, . . . , an) ∈ A0, then f(gA(a1, . . . , an)) = gB(f(a1), . . . , f(an)). For
K, L two classes of L-algebras, K is partially embeddable into L iff each finite partial
subalgebra of a member of K is embeddable into a member of L.
Structure of BL-chains. We review a few important facts about decomposition of BL-
chains as ordinal sums. This decomposition is an essential part of standard completeness
results for BL and also—as we shall see—of the results on its computational complexity.
We remark that, while MTL (unlike BL) actually enjoys strong standard completeness,
an analogously lucid result about the structure of MTL-chains is not available. Within
this book, BL-algebras are studied in detail in Chapter V.

A t-norm ∗ on [0, 1] is a binary operation that is associative, commutative, nonde-
creasing, satisfying boundary conditions x ∗ 0 = 0 and x ∗ 1 = x. If ∗ is left con-
tinuous, then its residuum → is uniquely given by x → y = max{z | x ∗ z ≤ y}
and [0, 1]∗ = 〈[0, 1], ∗,→,∧,∨, 0, 1〉 is a standard MTL-algebra. [0, 1]∗ is a standard
BL-algebra iff ∗ is continuous.

There are three outstanding examples of continuous t-norms; together with their
residua, they are listed in the following table (note that x→ y = 1 whenever x ≤ y):
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x ∗ y x→ y for x > y
Łukasiewicz max{x+ y − 1, 0} 1− x+ y

Gödel min{x, y} y
product xy y/x

The next proposition justifies the importance of the three examples above. For a contin-
uous t-norm ∗, the set of its idempotents is a closed subset of [0, 1], its complement is a
union of countably many pairwise disjoint open intervals; denote this set of intervals Io.
Let I be the set of closures of the elements of Io.

PROPOSITION 2.1.6 (Mostert–Shields Theorem [36]).
Let ∗ be a continuous t-norm on [0, 1].

(i) For each [a, b] ∈ I, the restriction of ∗ to [a, b] is isomorphic either to the product
t-norm on [0, 1] or to the Łukasiewicz t-norm on [0, 1].

(ii) If there are no a, b such that x, y ∈ [a, b] ∈ I, then x ∗ y = min{x, y}.

For each standard BL-algebra [0, 1]∗, the maximal, nontrivial, closed intervals on
which ∗ is isomorphic to the Łukasiewicz, Gödel, or product t-norm are referred to as
Ł-components, G-components, and Π-components of the t-norm, hence of the algebra
[0, 1]∗. Not every element of [0, 1]∗ belongs to an Ł, G, or Π-component; one also
considers trivial, one-element algebras as possible components. If A is a (standard)
BL-algebra, one can write A =

⊕
i∈I Ai for some linearly ordered index set I and for

eachAi among copies of [0, 1]Ł, [0, 1]G, [0, 1]Π, and the trivial algebra 1.
We remark that one can prove an analogous decomposition result for saturated BL-

chains, and also that BL-chains can be decomposed as ordinal sums of Wajsberg hoops.
We will not need these results in this chapter.
Completeness. If L is a language, L is a logic in the language L and K is a class of
L-algebras, we say that L is:

(i) complete w.r.t.K iff, for each L-formula, we have `L ϕ iff |=K ϕ (i.e., THM(L)
= TAUT(K));

(ii) finitely strongly complete w.r.t. K iff, for each finite set T ∪ {ϕ} of L-formulas,
we have T `L ϕ iff T |=K ϕ (i.e., CONS(L) = CONS(K));

(iii) strongly complete w.r.t.K iff, for each set T∪{ϕ} ofL-formulas, we have T `L ϕ
iff T |=K ϕ.

Obviously (iii) implies (ii) and (ii) implies (i) for any choice of L, L and K. Al-
gebraizability of a logic L implies strong completeness w.r.t. the class of algebras L
forming its equivalent algebraic semantics; logics investigated within this chapter are
semilinear, and hence, strongly complete w.r.t. the chains in L.

In this chapter we are mainly interested in standard4 algebras for each logic L: com-
pleteness results, where available, are then formulated in terms of standard complete-
ness (SC), finite strong standard completeness (FSSC), or strong standard completeness

4For many logics/classes of algebras (such as BL or MTL), the notion ‘standard algebra’ has a clear
and established meaning. In other cases (and particularly for some expanded languages), it is better to state
explicitly what is meant by ‘standard’.
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(SSC), where in all cases, the term ‘standard’ means that in the above definitions, the
role of the class K is played by standard algebras in L.

PROPOSITION 2.1.7 (Standard completeness). The logic BL enjoys finite strong stan-
dard completeness. The logic MTL enjoys strong standard completeness.

2.2 A visit to complexity theory

Computational model. Turing machines capture essential notions of algorithmization,
such as computations and their resources, notably time and space; algorithms are for-
mally identified with Turing machines. A Turing machine has a finite sequence of tapes
for data storage, each tape consisting of infinitely many fields, with a cursor indicating
the current field. One of the tapes is the input tape, and there may also be an output tape;
the input (output) tape is assumed to be read-only (write-only). Tape fields may be blank
or may contain symbols out of a given finite alphabet. A particular Turing machine is
fully determined by a finite alphabet Σ, a finite set of states Q (with the initial state
q0 ∈ Q), and a finite set of instructions ∆.

Each computation starts with all tapes blank except the input tape, which includes
the input—a finite string of symbols from Σ, with the cursor on its leftmost symbol;
the machine’s state is the initial state q0 ∈ Q. The computation runs in steps, each step
processing one instruction from ∆. The next instruction is chosen on basis of the current
state and the content of current fields on the sequence of tapes. Each instruction consists
of a current state of the machine, a sequence of symbols on current fields of all tapes
(some of which may be blank), the next state of the machine out of Q (which may be
one of its halting states), a sequence of symbols to be written down to the current fields
of all tapes (some of which may be blank), and a sequence out of {−1, 0, 1} indicating
the move of cursors on all tapes by at most one field. A computation may terminate or
not depending on whether a halting state is reached. If it does, output may be written
on an output tape. Among halting states, some states may be indicated as accepting or
rejecting. A computation will not continue from a halting state, as there is no instruction
available; for all other states and sequences of symbols read from tapes, there are one or
more instructions available in ∆; if the former is the case for all possible combinations
of states and read sequences—or in other words, if the transition relation induced by
∆ is a function—then the Turing machine in question is deterministic; otherwise, it is
nondeterministic.

Decision problems. Let Σ be a finite alphabet; Σ∗ is the set of finite strings out of Σ;
a word is a finite string x ∈ Σ∗ and |x| denotes the size of x (the number of symbols on
tape). A decision problem (or just ‘problem’) is a set of words P ⊆ Σ∗. Words in Σ∗

are often called inputs or instances. The complement of a problem P is P = Σ∗ \ P .
A Turing machine M with alphabet Σ accepts a problem P iff, for each word x ∈ Σ∗,
we have x ∈ P iff there is a computation of M with input x that terminates in an
accepting state. A problem P ⊆ Σ∗ is recursively enumerable iff it is accepted by a
Turing machine. A problem P ⊆ Σ∗ is recursive (or decidable) iff both P and P are
accepted by a Turing machine. This entails there is a Turing machine with alphabet Σ
which terminates on any word x in the given alphabet—in an accepting state if x ∈ P ,
and in a rejecting state if x ∈ P ; such a machine is said to decide P .
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Complexity classes. Consider functions f, g : N → N. Then f ∈ O(g) (‘f is of the
order of g’) iff there are c, n0 ∈ N such that for each n ≥ n0 we have f(n) ≤ c g(n).

Let f : N → N be a function. A Turing machine M (deterministic or not) operates
in time f iff, for any input x in the alphabet Σ of M , any computation with input x
takes at most f(|x|) steps. TIME(f) is the class of problems P such that there is a
deterministic Turing machine M that accepts P and operates in time O(f); analogously
for NTIME(f) and nondeterministic Turing machines. A Turing machine M (deter-
ministic or not) operates in space f iff, for any input x in the alphabet Σ of M , any
computation with input x (terminates and) writes to at most f(|x|) fields on all its tapes
together except the input and the output tapes. SPACE(f) is the class of problems P
such that there is a deterministic Turing machineM that accepts P and operates in space
O(f); analogously for NSPACE(f) and nondeterministic Turing machines.
Particular complexity classes important in this chapter are defined as follows:

P =
⋃
k∈N

TIME(nk)

NP =
⋃
k∈N

NTIME(nk)

PSPACE =
⋃
k∈N

SPACE(nk)

If C is a complexity class, we denote coC = {P | P ∈ C}, the class of com-
plements of problems in C. Each deterministic complexity class C is closed under
complementation: if P ∈ C, then also P ∈ C. It is widely believed, but not known, not
to be the case for the class NP. By definition, P ⊆ NP and hence P ⊆ coNP, and it
is easy to see that NP ⊆ PSPACE. It is an important open problem whether any of
the inclusions P ⊆ NP ⊆ PSPACE are proper. Each of the classes P, NP, coNP,
and PSPACE is closed under finite unions and intersections.

The following is an equivalent definition of the class NP: a problem P ⊆ Σ∗ is in
NP iff there is a polynomially balanced5 binary relation R ⊆ Σ∗ × Σ∗ in P, such that
P = {x ∈ Σ∗ | ∃y ∈ Σ∗(〈x, y〉 ∈ R)}. Any such word y is called a witness for x ∈ P .
It is easy to see that any problem P that satisfies this definition is in NP: given x, first
“guess” y and then continue (deterministically) to check 〈x, y〉 ∈ R. This definition
of the class NP constitutes the basis for many proofs of containment in NP within
this chapter. It also hints at how to transform each nondeterministic polynomial-time
algorithm into a deterministic one; given x, one searches through all possible witnesses y
(up to a polynomial bounded size) and for each such y, checks whether 〈x, y〉 ∈ R.

Many nondeterministic algorithms in this chapter follow the guess-and-check pat-
tern described above. In the guessing stage, an information of size polynomial in the
input size is guessed. The checking stage may come in several steps. In each step, it
is understood (though not stated explicitly each time the construction is used), that if a
check is unsuccessful, then the given computation terminates in a rejecting state. Like-
wise, the formulation ‘guess an X such that C(X)’ (for some condition C) is to be
understood as ‘guess X and check that C(X) holds’.

5A relation R is polynomially balanced iff there is a polynomial p s.t. 〈x, y〉 ∈ R implies |y| ≤ p(|x|).
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Reductions and completeness. Throughout this chapter we use the polynomial-time
many-one reducibility, also known as Karp reducibility. To define a reduction between
two problems P1 (in an alphabet Σ1) and P2 (in an alphabet Σ2), it is convenient to con-
sider a Turing machine with input tape alphabet Σ1 and output tape alphabet Σ2. A prob-
lem P1 is (many-one, polynomial-time) reducible to a problem P2 (write P1 �P P2)6

iff there is a deterministic Turing machine with input tape alphabet Σ1 and output tape
alphabet Σ2, operating in time nk for some k ∈ N and all n ≥ n0 ∈ N, and such that,
for any pair of input x ∈ Σ∗1 and its output y ∈ Σ∗2 on M , we have x ∈ P1 iff y ∈ P2.
In other words, there is a polynomial-time-computable function f : Σ∗1 → Σ∗2 such that
P1 = {x ∈ Σ∗1 | f(x) ∈ P2}; if that is the case, then also P1 = {x ∈ Σ∗1 | f(x) ∈ P2}.
Reducibility is a preorder, inducing its corresponding equivalence: two decision prob-
lems P1 and P2 are polynomially equivalent (write P1 ≈P P2) iff P1 �P P2 and
P2 �P P1. The equivalence ≈P provides a classification of decision problems of
roughly the same complexity. Even though we are currently unable to tell how equiva-
lence classes of ≈P span over complexity classes defined above, we can prove positive
results on ≈P for particular decision problems.

A decision problem P is said to be hard for a complexity class C (shortly, C-hard)
iff any decision problem P ′ in C is reducible to P . A decision problem P is complete
in C (shortly, C-complete) iff P is C-hard and P ∈ C. Thanks to transitivity of �P,
hardness of a problem P for C is typically demonstrated by reducing to P one problem
already known to be C-hard. Showing that a problem is C-hard can be viewed as setting
a lower bound on its complexity: it is no easier to solve than the problems in C.

Complexity classes in the focus of our attention—P, NP, and PSPACE—are
closed under �P: if C is one of the above classes, P1 �P P2 and P2 ∈ C, then also
P1 ∈ C. This provides a way to demonstrate containment of a problem in a class C.
Containment in C can of course be proved in a direct way, by designing an algorithm
that works within resource bounds given by C. The algorithm may use subroutines that
also satisfy the bounds for C. Showing containment of a problem in a complexity class
sets an upper bound on its complexity: given the computation mode and the bounds, the
problem is algorithmically solvable.

Following the nature of decision problems investigated in this chapter, we shall be
mainly interested in the classes NP, coNP, and PSPACE, namely in the respective
subclasses of problems that are complete for each of them. With each problem, we
seek to find a match between its upper and its lower bound; then the problem is ranked
alongside other problems already known to be in the particular ≈P-class.

As a matter of fact, a classification in the above sense for many decision problems
in fuzzy logic is missing. There are lower bounds that predetermine the problems in-
vestigated in this chapter to be computationally hard (cf. Theorem 3.4.1). In particular,
theorems of a consistent fuzzy logic extending FLew are always coNP-hard. However,
some problems may be much harder than that. As for upper bounds, some decision
problems are known to be recursive, but no more than that. Important examples include
theoremhood and provability from finite theories in MTL and some of its axiomatic

6It would be more docile to write �P
m, since Karp reducibility is exactly the polynomial-time analogue of

many-one reducibility �m provided by recursive functions, to be introduced later.
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extensions, such as IMTL, SMTL, or ΠMTL. Another example is provided by the-
oremhood in the logics ŁΠ and ŁΠ1

2 : the problem is known to be in PSPACE, but
apparently not known to be complete for that class.

Arithmetical hierarchy. Let N be the standard model of arithmetic. Let Φ(x) be an
arithmetical formula with one free variable; we say Φ(x) defines a set A ⊆ N iff for
any n ∈ N, we have n ∈ A iff N |= Φ(n); we say A is definable in N iff there is a Φ
that defines it in N. Analogously, one can introduce definable relations in Nk for each
natural number k. Via coding, one can consider words over finite alphabets.

An arithmetical formula is bounded iff all its quantifiers are bounded (i.e., are of
the form ∀x ≤ t or ∃x ≤ t for some term t). An arithmetical formula is a Σ1-formula
(Π1-formula) iff it has the form ∃xΦ (∀xΦ respectively) where Φ is a bounded for-
mula. A formula is Σ2 (Π2) iff it has the form ∃xΦ (∀xΦ respectively) where Φ is a
Π1-formula (Σ1-formula respectively). Inductively, one defines Σn- and Πn-formulas
for any natural number n ≥ 1.

A set A ⊆ N is in the class Σn iff there is a Σn-formula that defines A in N;
analogously for the class Πn. The definition extends to k-tuples and to words over finite
alphabets in the obvious fashion. Trivially, any set that is in Σn is also in Σm and Πm

for m > n. If A ⊆ N is a Σn-set, then A is a Πn-set. Σ1-sets are exactly recursively
enumerable sets, while recursive sets are Σ1 ∩ Π1. The hierarchy of classes of sets
thus defined is called the arithmetical hierarchy, and the (complete sets in) classes of
sets in the arithmetical hierarchy represent degrees of undecidability. The hierarchy is
noncollapsing, as it can be shown that for each n ≥ 1, Σn+1\Σn is nonempty, and so is
Σ1\(Σ1∩Π1). A setA ⊆ N is arithmetical iff it is definable by an arithmetical formula
in N and so it belongs to the arithmetical hierarchy; otherwise it is nonarithmetical.

A suitable notion of reduction is provided by recursive functions. A problem P1 in
an alphabet Σ1 is m-reducible to a problem P2 in an alphabet Σ2 (write P1 �m P2)
iff there is a deterministic Turing machine with input tape alphabet Σ1 and output tape
alphabet Σ2, halting on all inputs, and such that, for any pair of input x and its output
y, we have x ∈ P1 iff y ∈ P2. Each of the classes Σn, Πn (n ≥ 1) is closed under
m-reducibility. A problem P is Σn-hard (w.r.t. m-reducibility) iff P ′ �m P for any
Σn-problem P ′. A problem P is Σn-complete iff it is Σn-hard and at the same time it
is a Σn-problem. Analogously for Πn.

2.3 Formulas as inputs

If L is a language, L-expressions FmL are well-formed7 strings, consisting of vari-
ables in Var , connectives in L, and and auxiliary symbols (parentheses). First-order
algebraic formulas moreover feature the identity symbol =, Boolean connectives, quan-
tifiers ∀, ∃. Again these formulas are well-formed strings.

An essential question is how resources used by an algorithm depend on the size of
an input. Inputs are formulas (propositional or first-order), viewed as words in a finite
alphabet. We assume a fixed enumeration of the sets of variables and of connectives.
Integers are represented in binary, |n| = dlog(n+ 1)e for n ≥ 1, so |n| ∈ O(log(n)).8

7I.e., they satisfy the usual inductive definition of a propositional formula in the given language.
8Throughout we use base 2 logarithm. We write O(log(n)) for O(max{dlog(n)e, 0}.
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The size of an L-expression ϕ is the number of tape fields needed to represent it, de-
noted |ϕ|. Given ϕ, the value |ϕ| is obtained by adding up the sizes of representations of
all occurrences of connectives, all occurrences of variables, and all occurrences of aux-
iliary symbols. Moreover, if ϕ is an L-expression with n pairwise distinct variables, it is
convenient (and equivalent for our purpose) to consider its substitution instance whose
variables are indexed with integers up to n; this brings the space needed to represent
each of the variables down to O(log(n)).

It is preferable to work with more versatile measures than the actual formula size:
in particular, for L-expressions, the number of occurrences of subexpressions, or the
overall size of constants in the expression; if we show an algorithm to be polynomial in
a measure bounded by |ϕ|, then we may conclude it is also polynomial in |ϕ|.

On the other hand, |ϕ| is polynomial in the measures mentioned above. Indeed,
for an expression ϕ, denote m the number of occurrences of subexpressions of ϕ. Each
variable takesO(log(m)) tape fields. In a language with finitely many connectives, each
connective takes a constant number of fields, so |ϕ| ∈ O(m log(m)). As for languages
with infinitely many connectives, we attend the case of constants for Q∩ [0, 1]: for each
such q, if q = a

b for some a, b ∈ N where a ≤ b, we have |q| ∈ O(|b|). Hence, for an
expression ϕ with constants from Q ∩ [0, 1], with m occurrences of subformulas, and
whose constants have the largest denominator k, we get |ϕ| ∈ O(m(log(m) + log(k))).

For first-order formulas the above considerations are analogous. Validity is a mean-
ingful concept for sentences; if a formula Φ is not a sentence, then we consider its
universal closure, whose size is polynomial in the size of Φ. Moreover, it is convenient
to only consider sentences in prenex form; bringing a given sentence into the prenex
form is a routine polynomial-time transformation.

Not all words in the given alphabet are desirable inputs. The assumption of well-
formedness in a given language L (propositional or first-order) is always present. In
many cases there are more restrictive assumptions, like the words being universally
quantified L-quasiidentities, existential L-sentences, etc. These assumptions are made
explicitly for each decision problem. A common trait of these assumptions is that the
assumed condition is easy to verify: the class of wordsC ⊆ Σ∗ that satisfy the condition
is a decision problem in P (and of limited interest to us).

To illustrate the difference these assumptions make, consider an algorithm accept-
ing SAT(A)—the set of satisfiable L-expressions in an L-algebra A. The algorithm
accepts satisfiable expressions and rejects unsatisfiable ones; what about words that are
not L-expressions? In view of definitions presented earlier, the algorithm should reject
them. Then—inconveniently—the set of rejected words would consist of a) words that
are not L-expressions, and b) L-expressions that are not satisfiable in A. Now a) is not
at all interesting, while one might be interested in b); indeed b) is the desired comple-
ment to SAT(A). This preference can be met by allowing only L-expressions as inputs
to the algorithm. (One may think of an auxiliary algorithm that test all input strings
for being well-formed L-expressions.) Continuing the given example, suppose we have
indeed shown that SAT(A) is in NP, and, for some L′ ⊂ L, we further want to inves-
tigate satisfiability for L′-expressions in A′, the L′-reduct of A. Can it be argued that
SAT(A′) �P SAT(A) via an identity function (or in other words, can the algorithm
deciding SAT(A) be used also for deciding SAT(A′))? Not quite, because the algo-
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rithm for SAT(A) accepts all satisfiable L-formulas, some of whom are not (satisfiable)
L′-formulas. However, the identity function can be used for reduction if one makes sure
that all inputs to the new algorithm are among L′-expressions.

The informal considerations above have a formal counterpart called promise prob-
lems. A promise problem in an alphabet Σ is a pair (Y,N) where Y,N ⊆ Σ∗ and
Y ∩N = ∅; the set Y ∪N is called the promise. A Turing machine decides the problem
(Y,N) iff it accepts all words in Y and rejects all words in N ; on inputs outside Y ∪N ,
its behaviour is not specified. Intuitively, an algorithm solving a promise problem is
promised that inputs belong to Y ∪ N ; on this condition, it distinguishes the two sets
(given computation mode and bounds). Any decision problem P is a promise problem
under Y = P and N = P .

All problems addressed in this chapter come with a promise in P. Consider (Y,N)
a promise problem where Y ∪ N is in P. If Y is in NP, then Y is in coNP, and so
is N = (Y ∪ N) ∩ Y . If for two promise problems (Y1, N1) and (Y2, N2) we have
Y1 ⊆ Y2 and N1 ⊆ N2, then (Y1, N1) �P (Y2, N2) via the identity function.

It is useful to generalize the notion of ‘fragment’ in the following way. If A ⊆ Σ∗ is
any decision problem, the problem A∩C is called the C-fragment of A. Then, if B is a
decision problem and A is the C-fragment of B for a condition C ∈ P , then A �P B.

2.4 Classical logic and Boolean algebras

The usual language of classical logic is {¬,∧,∨,→,↔, 0, 1}; we refer to these
connectives as the full language of classical logic. In classical context, either ∧ or & is
used for conjunction and the two are interchangeable. It is convenient to start with some
functionally complete subset9 of the above set and to define the remaining connectives.

Classical propositional logic can be introduced in a lot of ways, e.g., via its well-
known Hilbert- and Gentzen-style proof systems; we will be using neither, but we re-
mark that one can obtain classical logic by adding the axiom ϕ ∨ ¬ϕ to the axioms of
the logic FLew or some of its consistent axiomatic extensions, so classical propositional
logic is one of the axiomatic extensions of FLew. Hence the two-element Boolean alge-
bra {0, 1}B is a FLew-algebra; classical propositional logic is just the logic of {0, 1}B.

The following sets of formulas are important decision problems in classical propo-
sitional logic:

DEFINITION 2.4.1. Let L be the full language of classical logic.

SAT({0, 1}B) = {ϕ ∈ FmL | ∃e ∈ Val({0, 1}B)(e(ϕ) = 1{0,1}B)}
TAUT({0, 1}B) = {ϕ ∈ FmL | ∀e ∈ Val({0, 1}B)(e(ϕ) = 1{0,1}B)}

It is easy to see that SAT({0, 1}B) is in NP: if a propositional formula ϕ is clas-
sically satisfiable, then a simple proof of the fact is a satisfying evaluation of its propo-
sitional variables; this is a piece of information of size polynomial in |ϕ|, and the ver-

9A set C ⊆ L of connectives is functionally complete w.r.t. an L-algebra A iff for each n ∈ N, each
n-ary function f : An → A is definable by a C-formula. We remark that, unlike in the classical case, no set
of the above connectives is functionally complete for the algebras in the focus of our attention, i.e., algebras
given by (left-)continuous t-norms. The interesting question which functions in these algebras are definable
by formulas is addressed in Chapter IX of this book.
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ification process is clearly a polynomial affair. Moreover, ϕ ∈ TAUT({0, 1}B) iff
¬ϕ ∈ SAT({0, 1}B), so TAUT({0, 1}B) is in coNP.

Denote SATCNF({0, 1}B) a fragment of the above SAT problem for formulas in
conjunctive normal form, and TAUTDNF({0, 1}B) a fragment of the above TAUT
problem for formulas in disjunctive normal form. (So for both problems, the propo-
sitional language is {¬,∧,∨}.) In [9], S.A. Cook established a link between proposi-
tional logic and computational complexity theory by presenting SATCNF({0, 1}B) as a
first example of an NP-complete problem:

PROPOSITION 2.4.2 (Cook Theorem).
The SATCNF({0, 1}B) problem is NP-complete.

To obtain NP-hardness, Cook considered an arbitrary but fixed set of words S ⊆ Σ∗

accepted by a (nondeterministic) Turing machine in time polynomial in the input size,
and presented a polynomial-time procedure which constructed, for each string s ∈ Σ∗,
a propositional formula ϕs in conjunctive normal form in such a way that s ∈ S iff
ϕs ∈ SATCNF({0, 1}B). Hence, S �P SATCNF({0, 1}B), and SATCNF({0, 1}B) is
NP-complete.

SATCNF({0, 1}B) is a fragment of SAT({0, 1}B), therefore SAT({0, 1}B) is NP-
complete and TAUT({0, 1}B) is coNP-complete.

These complexity results extend immediately to Th∀({0, 1}B), which is coNP-
complete, and to Th∃({0, 1}B), which is NP-complete; this is observed by realizing
that an identity t = s on Boolean expressions can be replaced by the equivalence t↔ s.
By this argument, Th({0, 1}B) is polynomially equivalent to the QBF problem, hence
PSPACE-complete.

2.5 Decision problems in the reals

We review some decision problems in the reals, and also in the integers, that are
relevant to our purpose.10

Consider a system Ax ≤ b of linear inequalities, where b is a rational m-vector
and A is a rational m × n-matrix. Assume every rational is represented as a pair of
coprime integers and denote k the greatest absolute value of an integer occurring in the
representations of A and b.

The problem of solvability of Ax ≤ b in the reals is in P. Within this chapter
though, we will rely on its NP-containment, which can be observed as follows.

Let P = {x ∈ Rn | Ax ≤ b} be a nonempty polyhedron in Rn. Each nonempty,
inclusion-wise minimal face11 of P is a solution to A′x = b′, where A′x ≤ b′ is a
subsystem of the system Ax ≤ b, i.e., A′ is an m′ × n-matrix and b′ an m′-vector
for some m′ ≤ m. Fix a nonempty, minimal face of P ; then its corresponding system
of equations A′x = b′ is solvable in R. Let m′′ ≤ m′ denote the rank of A′, and let
A′′x ≤ b′′ be a subsystem of A′x ≤ b′ with m′′ linearly independent rows. Then

10References for the material presented in this subsection are [40] and [16].
11A face of P is any set {x ∈ P | cTx = d} for c ∈ Rn, d ∈ R chosen in such a way that cTx ≤ d holds

for all x ∈ P . A face is minimal if it does not contain any other face; a minimal face is an affine subspace
of Rn. Since the list of all nonempty faces of (nonempty) P is finite, at least one nonempty, inclusion-wise
minimal face exists.
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b′′ is a linear combination of m′′ columns of A′′, and hence, there is a solution x =
〈x1, . . . , xn〉 ∈ Rn to A′′x = b′′ where at most m′′ of the xi’s are nonzero. Use
Cramer’s rule to compute the nonzero values of x (write m instead of m′′). For each
determinant, its denominator is at most the product of all denominators in A′′; if the
largest one is k, then the product is at most km

2

, i.e., of size at most m2 log(k). The
numerator, being a sum of m! numbers bounded by km

2

, is of size at most m log(m) +
m2 log(k). Hence, any of the xi’s, as a fraction of two determinants, is of size at most
O(m log(m) +m2 log(k)).

Summing up, we arrive at the following statement (where instead of ‘model’ one
might say ‘solution’ or ‘evaluation’):

PROPOSITION 2.5.1 (Small-Model Theorem). Let A be a rational m× n-matrix and
b a rational m-vector. Let k be the greatest integer occurring in the representations of
A and b. If the system Ax ≤ b is solvable in R, then it has a rational solution x0 with
the following properties:

(i) at most m values in x0 are nonzero;

(ii) any value in x0 has size polynomial in |A|, |b|; in particular, for i = 1, . . . , n,
|(x0)i| is in O(m log(m) +m2 log(k)).

Linear Programming Problem. The linear programming (LP) problem12 is defined as
follows: given a rational m× n-matrix A, a rational m-vector b, a rational n-vector c,
and a rational number d, does the system Ax ≤ b, cTx < d have a solution in R?
Again, while the problem is in P, we need its NP-containment. It is not difficult to see
that the added strict inequality does not violate the validity of the small-model theorem
above, where of course now k relates also to the integers in the representation of c and
d as well. Indeed, given a solvable LP problem in the above notation, the halfspace
cTx < d either contains a minimal face of Ax ≤ b; or it intersects one, and then (by
minimality) this face is unbounded and it contains some points that are bounded in size
by the coefficients in Ax ≤ b, cTx < d in the manner of the small-model theorem.

Modifications of the LP problem are obtained by posing various restrictive condi-
tions; these modifications need not be feasible. In particular, the integer programming
problem, here referred to as the ILP problem, is obtained by demanding that all variables
and coefficients assume integer values. This problem is NP-complete. Containment in
NP can be derived from a small-model theorem for Diophantine equations and inequal-
ities: let Ax ≤ b be a system of inequalities, where A is an integral m × n-matrix
and b is an integral m-vector, where the largest absolute value of an integer is k. If the
system is solvable in Z, then it has a solution x0, where for any 1 ≤ i ≤ n, |(x0)i|
is in O(m log(m) + m log(k)). The mixed integer programming (MIP) problem is a
modification of the LP problem demanding that a subset of the variables assume inte-
ger values. Particular bounded version of MIP poses the restrictive condition that the
variables xk, . . . , xn only take the values 0 or 1. This is also in NP: guess a random
assignment of 0’s and 1’s to xk, . . . , xn, then check solvability of the remaining system.

12Quite often, the phrase ‘linear programming problem’ denotes the task to either find a maximum of a
function cTx subject to Ax ≤ b, or to say that none exists. We take the standpoint that a ‘problem’ is always
a decision problem; the optimization task will not be considered in this chapter, so no confusion can arise.



Chapter X: Computational Complexity of Propositional Fuzzy Logics 809

Boolean combinations of linear inequalities. The linear programming problem comes
as a conjunction of linear inequalities. Arbitrary Boolean combinations13 of linear in-
equalities are apparently more difficult to solve. Consider basic inequalities of the form
aTx ≤ b for a rational n-vector a and a rational number b; an inequality formula is a
Boolean combination of basic inequalities. The INEQ problem is: given an inequality
formula, is it solvable in the reals? The fact that the LP problem is in NP entails
NP-containment for the INEQ problem: each inequality formula has a logically equiv-
alent disjunctive normal form, which is solvable in the reals iff so is at least one of its
disjuncts. Each of the disjuncts can be equivalently transformed into an LP problem
(negative literals will use the strict inequality in the LP problem). Because the solvabil-
ity of the LP problem can be witnessed by a small evaluation, so can the solvability of
an INEQ problem. On the other hand, INEQ is NP-hard because classical SAT can be
reduced to it, so it is NP-complete.

Universal theory of RCF. Now let us consider the language of ordered fields, i.e.,
{+, ·, 0, 1,=,≤}. Recall that real numbers R with addition, multiplication, and the
usual ordering, are an example of a real closed field (RCF). The first-order theory of real
closed fields (Th(RCF)) is complete; hence, each two real closed fields are elementarily
equivalent. Moreover, Th(RCF) is decidable. Both results were proved by A. Tarski by
quantifier elimination. J.F. Canny has shown that the existential fragment of the RCF
theory is in PSPACE [7]. As PSPACE is closed under complementation, also the
universal fragment of the RCF theory is in PSPACE. We denote these fragments
Th∃(RCF) and Th∀(RCF), respectively.

3 General results and methods

This section presents general statements, applicable for particular examples of log-
ics; while all of the statements are, to a degree, a prerequisite to reading the following
sections, this is perhaps especially true about Subsection 3.3, where some technical
statements and notation are introduced without which the following sections might be
incomprehensible.

Languages in this section are assumed to subsume the language of FLew, logics
are assumed to be at least as strong as FLew (with maybe additional connectives, and
some connectives definable) and algebras are assumed to be FLew-algebras (with maybe
additional operations). Classes of algebras are assumed nonempty.

3.1 Basic inclusions and reductions

For the next two statements, the discussion of fragments in Subsection 2.3 is relevant.

LEMMA 3.1.1. Let L be a language, L a logic in the language L, and K a class of
L-algebras. Then

(i) THM(L) �P CONS(L); if L enjoys the classical (or the4-) deduction theorem,
then THM(L) ≈P CONS(L);

(ii) ThEq(K) �P ThQEq(K) �P Th∀(K) �P Th(K) and Th∃(K) �P Th(K);

13I.e., a formula with any connectives of the full language of classical logic.
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(iii) TAUT(K) ≈P ThEq(K) and CONS(K) ≈P ThQEq(K);

(iv) TAUTpos(K) �P ThQEq(K);

(v) SAT(pos)(K) �P Th∃(K);

(vi) Th∀(K) ≈P Th∃(K).

Proof. In the following, consider an L-expression ϕ with n variables x1, . . . , xn.
(i) THM(L) is the fragment of CONS(L) obtained by considering only empty theories.
If L enjoys the classical (or the 4-) deduction theorem, then {ψ1, . . . , ψn} `L ϕ iff
`L ψ1 & . . .& ψn → ϕ ( `L 4(ψ1 & . . .& ψn)→ ϕ respectively).

(ii) In all cases, we are dealing with fragments defined by polynomial-time conditions.
(iii) ϕ ∈ TAUT(K) iff (ϕ = 1) ∈ ThEq(K); on the other hand, (ϕ = ψ) ∈ ThEq(K)
iff (ϕ↔ ψ) ∈ TAUT(K). Analogously for CONS and quasiidentities.
(iv) ϕ ∈ TAUTpos(K) iff ∀x1 . . . ∀xn(ϕ = 0→ 0 = 1) ∈ ThQEq(K).
(v) ϕ ∈ SAT(K) iff ∃x1 . . . ∃xn(ϕ = 1) ∈ Th∃(K); analogously, ϕ ∈ SATpos(K) iff
∃x1 . . . ∃xn(ϕ > 0) ∈ Th∃(K).
(vi) A consequence of classical duality of quantifiers.

LEMMA 3.1.2. Let L1 ⊆ L2 be languages.

(i) Assume a logic L2 in language L2 expands conservatively a logic L1 in lan-
guage L1 (so L1 is the L1-fragment of L2). Then THM(L1) �P THM(L2)
and CONS(L1) �P CONS(L2).

(ii) Assume K2 is a class of L2-algebras and K1 is the class of L1-reducts of ele-
ments of K2. Then Th(K1) �P Th(K2), and analogously for the equational,
quasiequational, universal and existential fragments of the two theories.

LEMMA 3.1.3. Let L be a language and K, L classes of L-algebras.

(i) Assume K ⊆ L . Then

(a) SAT(pos)(K) ⊆ SAT(pos)(L);

(b) TAUT(pos)(L) ⊆ TAUT(pos)(K) and CONS(L) ⊆ CONS(K).

(ii) Assume K is (partially) embeddable into L . Then

(a) SAT(pos)(K) ⊆ SAT(pos)(L);

(b) TAUT(pos)(L) ⊆ TAUT(pos)(K) and CONS(L) ⊆ CONS(K).

Proof. (i) holds by definition. For (ii), it suffices to recall that 0 is an element of L and
hence preserved by morphisms, and the same is true for 1 = 0→ 0.

LEMMA 3.1.4. LetL be a language andK a class ofL-algebras containing a nontrivial
algebra. Then

(i) SAT({0, 1}B) ⊆ SAT(K) ⊆ SATpos(K);

(ii) TAUT(K) ⊆ TAUTpos(K) ⊆ TAUT({0, 1}B);

(iii) CONS(K) ⊆ CONS({0, 1}B).
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Proof. For any nontrivial L-algebra A ∈ K, its subalgebra {0A, 1A} is a two-element
Boolean algebra. So {0, 1}B is embeddable into A, the class {{0, 1}B} is embeddable
into K, and Lemma 3.1.3 applies.

LEMMA 3.1.5. Let L be a language and K a class of L-algebras. Then

(i) SAT(pos)(K) = SAT(pos)(I(K)) and TAUT(pos)(K) = TAUT(pos)(I(K));

(ii) SAT(pos)(K) = SAT(pos)(S(K)) and TAUT(pos)(K) = TAUT(pos)(S(K));

(iii) SAT(pos)(K) = SAT(pos)(P(K)) and TAUT(pos)(K) = TAUT(pos)(P(K));

(iv) SAT(pos)(K) = SAT(pos)(PU(K)) and TAUT(pos)(K) = TAUT(pos)(PU(K));

(v) SATpos(K) = SATpos(H(K)) and TAUT(K) = TAUT(H(K)).

Proof. For the SAT operators, the left-to-right inclusions are obtained by virtue of I, S,
P, PU, H being closure operators (in view of Lemma 3.1.3); for the TAUT operators,
the converse inclusions hold by the same argument. Indeed for the TAUT operator,
equality for all cases is well known. In the following, we set to show the remaining
inclusions.
(i) Immediate.
(ii) Let B be a subalgebra of A ∈ K. Then B is embeddable into A (via identity map-
ping). Therefore S(K) is embeddable into K. An application of Lemma 3.1.3 yields the
desired inclusions.
(iii) Let B =

∏
i∈I Ai, where I 6= ∅ and Ai ∈ K for each i ∈ I . If eB(ϕ) = 1B

(eB(ϕ) > 0B), define eAi
(x) = πi(eB(x)) for each i ∈ I (where πi is the i-th pro-

jection); then eAi is an evaluation in Ai for each i ∈ I . Clearly eAi(ϕ) = 1Ai for
each i ∈ I (eAi(ϕ) > 0 for some i ∈ I respectively), so ϕ ∈ SAT(Ai) for each i ∈ I
(ϕ ∈ SATpos(Ai) for some i ∈ I respectively). Likewise, if eAi

(ϕ) > 0Ai for each
i ∈ I and each evaluation eAi

, then in particular, for an arbitrary evaluation eB in B,
we have πi(eB(ϕ)) > 0Ai , hence eB(ϕ) > 0B .
(iv) Let B =

∏F
i∈I Ai, where I 6= ∅, F is an ultrafilter on I , and Ai ∈ K for each

i ∈ I . If eB(ϕ) = 1B , let, for each x ∈ Var , e(x) be any f ∈ [eB(x)]F , and for
each i ∈ I , define eAi

(x) = πi(e(x)); then eAi
is an evaluation in Ai for each i ∈ I .

We have {i | eAi
(ϕ) = 1Ai} ∈ F , hence for some i ∈ I we have ϕ ∈ SAT(Ai).

Assuming eB(ϕ) > 0B (eB(ϕ) < 1B , eB(ϕ) = 0B), one gets in the same manner
ϕ ∈ SATpos(Ai) (ϕ 6∈ TAUT(Ai), ϕ 6∈ TAUTpos(Ai) respectively) for some i ∈ I .
(v) LetB be a nontrivial homomorphic image ofA ∈ K via an f . Assume eB(ϕ) > 0B .
Take eA(x) ∈ f−1(eB(x)) for each variable x; then eA(ϕ) > 0A.

On this basis, we may conclude:

THEOREM 3.1.6. Let L be a language and K a class of L-algebras. Then

(i) SAT(pos)(K) = SAT(pos)(Q(K));

(ii) SATpos(K) = SATpos(V(K));

(iii) TAUTpos(K) = TAUTpos(Q(K));

(iv) TAUT(K) = TAUT(V(K)) = TAUT(Q(K)).
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The previous theorem says that, in contrast to the case of first-order fuzzy logics,
one need not worry about the general/standard semantics distinction in the propositional
case. For important examples of logics L considered in this chapter, their equivalent
algebraic semantics is a variety that is generated by its standard members (as a quasiva-
riety); then one can apply the above theorem to relate the results obtained on standard
algebras also to the general semantics.

3.2 Negations

In classical logic, there is a duality between the SAT and TAUT problems, in the
manner of Lemma 3.1.1 (vi). We inspect the conditions under which as much, or at least
some of that, may be claimed in a many-valued setting.

A negation ∼ in L is involutive iff ∼∼ϕ↔ ϕ is a theorem of L; the semantics of ∼
is an order-reversing involution. A negation ¬ in L is strict iff ¬(ϕ ∧ ¬ϕ) is a theorem
of L. If both the involutive negation ∼ and the strict negation ¬ are available in L, then,
defining4ϕ as ¬∼ϕ, one can prove the usual axioms for the4 connective.

LEMMA 3.2.1. LetL be a language andK a class ofL-algebras containing a nontrivial
algebra. Then

(i) ϕ ∈ TAUTpos(K) iff ¬ϕ ∈ SAT(K);

(ii) ϕ ∈ SATpos(K) iff ¬ϕ ∈ TAUT(K).

If, additionally, ∼ is an involutive negation in K, then

(iii) ϕ ∈ TAUT(K) iff ∼ϕ ∈ SATpos(K);

(iv) ϕ ∈ SAT(K) iff ∼ϕ ∈ TAUTpos(K).

Proof. Items (i), (ii) are easily obtained by observing that in any nontrivial FLew-algebra
A, the equation ¬x = 1 has a unique solution, x = 0A.
Items (iii), (iv) follow from (i), (ii) by substituting ∼ϕ for ϕ and using ∼∼ϕ↔ ϕ.

COROLLARY 3.2.2. Let L be a language and K be a class of involutive L-algebras
containing a nontrivial algebra. Then

(i) TAUT(K) ≈P SATpos(K);

(ii) TAUTpos(K) ≈P SAT(K).

Now we explore logics with strict negations.

LEMMA 3.2.3. Let A be a nontrivial SMTL-chain. Then {0, 1}B is a homomorphic
image ofA.

Proof. The mapping h : A→ A sending 0A to 0A and all nonzero elements to 1A is a
homomorphism ofA onto the two-element Boolean subalgebra {0A, 1A} ofA.

THEOREM 3.2.4. Let K be a class of SMTL-chains containing a nontrivial one.
Then

(i) SATpos(K) = SAT(K) = SAT({0, 1}B);

(ii) TAUTpos(K) = TAUT({0, 1}B).
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Proof. (i) By Lemma 3.1.4, it is sufficient to show that any formula ϕ positively satisfi-
able in K is classically satisfiable. Let for some A ∈ K and some eA be eA(ϕ) > 0A.
Define e′ on {0, 1}B using the homomorphism from Lemma 3.2.3: for any formula
ψ, let e′A(ψ) = h(eA(ψ)). Clearly e′ is a well-defined evaluation in {0, 1}B and
e′(ϕ) = 1{0,1}B iff eA(ϕ) > 0A.
(ii) Again it is sufficient to show TAUTBoole ⊆ TAUTA

pos for any nontrivial A ∈ K.
For ϕ a classical tautology, assume eA(ϕ) = 0A in A; but then e′(ϕ) = 0 in {0, 1}B
(e′ as above), a contradiction; hence ϕ ∈ TAUTpos(A).

3.3 Eliminating compound terms

We start with feasible translations of expressions that preserve satisfiability or tau-
tologousness but eliminate (some) nested connectives in a particular way, at the expense
of adding new variables.

Consider a finite language L and an L-expression ϕ(x1, . . . , xn), where n ≥ 1. To
each subexpression ψ of ϕ, assign a variable yψ in the following manner:

– if ψ is a variable xi, then let yψ be the variable xi;
– otherwise, let yψ be a new variable.

For each ψ � ϕ, let Sψ denote the set of all subexpressions of ψ that are not variables.
For each ψ ∈ Sϕ, if ψ is c(ψ1, . . . , ψk) for some k ∈ N, some ψ1, . . . , ψk � ϕ, and
some c ∈ L, let Cψ stand for yψ ↔ c(yψ1

, . . . , yψk). For each ψ � ϕ, let ψ′ be the
expression &χ∈SψCχ. Then for each ψ � ϕ, if ψ is c(ψ1, . . . , ψk) for some k ∈ N,
some ψ1, . . . , ψk � ψ, and some c ∈ L, then ψ′ is ψ′1 & . . . & ψ′k & Cψ; if ψ is a
variable, then ψ′ is 1.

Observe that ϕ′ can be obtained from ϕ in time polynomial in |ϕ|: indeed, for each
ψ � ϕ, |Cψ| is in O(log(|ϕ|)), and the number of Cψ’s in ϕ′ is bounded by the number
of subexpressions in ϕ, i.e., by |ϕ|.

LEMMA 3.3.1. For each FLew-expression ϕ we have `FLew ϕ′ → (yϕ ↔ ϕ).

Proof. By induction on formula structure. The cases of ψ being a variable or the
constant 0 are simple. For the induction step, let ψ � ϕ be ψ1 ◦ ψ2 for ◦ one of
{&,→,∧,∨}; the induction assumption is ψ′i → (yψi ↔ ψi) for i = 1, 2. We obtain
ψ′1 &ψ′2 &Cψ → (yψ1

↔ ψ1) & (yψ2
↔ ψ2) &Cψ . The antecedent of this implication

is ψ′, while the succedent implies14 ((yψ1 ◦ yψ2) ↔ (ψ1 ◦ ψ2)) & (yψ ↔ (yψ1 ◦ yψ2)),
whence yψ ↔ ψ.

LEMMA 3.3.2. LetK a class of FLew-algebras, ϕ a FLew-expression, and ϕ′ as above.
Then

(i) ϕ ∈ TAUT(K) iff ϕ′ → yϕ ∈ TAUT(K);

(ii) ϕ ∈ TAUTpos(K) iff ϕ′ → yϕ ∈ TAUTpos(K);

(iii) ϕ ∈ SAT(K) iff ϕ′ & yϕ ∈ SAT(K);

(iv) ϕ ∈ SATpos(K) iff ϕ′ & yϕ ∈ SATpos(K).

14Using ((α1 ↔ β1) & (α2 ↔ β2)) → ((α1 ◦ α2) ↔ (β1 ◦ β2)) for ◦ one of {&,→,∧,∨}; if this
congruence is provable for other connectives, then the statement extends to formulas with these connectives.
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Proof. (i) If ϕ ∈ TAUT(K), then by Lemma 3.3.1 ϕ′ → (yϕ ↔ 1) is a tautology of K.
On the other hand, if ϕ(x1, . . . , xn) is not a tautology of K, there is an A ∈ K and an
evaluation eA such that eA(ϕ) < 1A; define e′A(xi) = eA(xi) for 1 ≤ i ≤ n, and if
ψ � ϕ, set e′A(yψ) = eA(ψ). Then clearly e′A(ϕ′) = 1A, while e′A(yϕ) < 1A.
(ii) If ϕ ∈ TAUTpos(K), clearly ϕ′ → yϕ ∈ TAUTpos(K). Conversely, let ϕ′ → yϕ ∈
TAUTpos(K), so eA(ϕ′ → yϕ) = 0A for someA ∈ K and some eA. By Lemma 3.3.1,
eA(ϕ′ → (ϕ → yϕ)) = 1A, so eA(ϕ → (ϕ′ → yϕ)) = 1A, and hence eA(ϕ) = 0A,
so ϕ ∈ TAUTpos(K).
(iii) If ϕ ∈ SAT(K), clearly ϕ′ & yϕ ∈ SAT(K). Conversely, for A ∈ K, if eA(ϕ′) =
1A, then in particular eA(yψ) = cA(eA(yψ1

), . . . , eA(yψk)) = eA(ψ) wheneverψ � ϕ
is c(ψ1, . . . , ψk). We have eA(yϕ) = eA(ϕ) = 1A, hence ϕ ∈ SAT(K).
(iv) If ϕ ∈ SATpos(K), clearly ϕ′ & yϕ ∈ SATpos(K). Conversely, if ϕ ∈ SATpos(K),
then ϕ ↔ 0 is a tautology of K and hence so is ϕ′ → (yϕ ↔ 0), using Lemma 3.3.1.
Hence ϕ′ & yϕ → 0 is a tautology of K, so ϕ′ & yϕ is unsatisfiable in K.

THEOREM 3.3.3. Let K be a class of FLew-algebras. Assume c ∈ L is term-definable
inK, c is not among {&,→}, and letKc− be the class of L\{c}-reducts of K. Then

(i) SAT(pos)(K) ≈P SAT(pos)(Kc
−

);

(ii) TAUT(pos)(K) ≈P TAUT(pos)(Kc
−

).

Proof. We give the proof for TAUT; for the other operators it is analogous. Clearly
TAUT(Kc−) �P TAUT(K) (cf. Lemma 3.1.2). Conversely, if ϕ is an L-formula,
then ϕ ∈ TAUT(K) iff ϕ′ → yϕ ∈ TAUT(K); apply to ϕ′ the desired translation,
i.e., if the identity c(x1, . . . , xk) = χ(x1, . . . , xk) holds in K for some L \ {c}-term
χ, replace each occurrence of yψ ↔ c(yψ1

, . . . , yψk) with yψ ↔ χ(yψ1
, . . . , yψk).

Replace each occurrence of↔ using & and→; denote the resulting formula ϕ′′. Then
ϕ′ → yϕ ∈ TAUT(K) iff ϕ′′ → yϕ ∈ TAUT(Kc−), and moreover ϕ′′ can be obtained
from ϕ′ by a procedure operating in time polynomial in |ϕ′|.

Further we eliminate compound terms from first-order formulas; in particular, we
work with existential sentences (using the technique, one can also eliminate compound
terms from universal sentences, whose negations are existential sentences).

DEFINITION 3.3.4. Let Φ be a first-order formula in a language L. We say that Φ is
without compound terms iff each atomic formula in Φ is either t0 = t1 or t0 ≤ t1 or
t0 < t1, there being an i ∈ {0, 1} such that ti is a variable while t1−i is a variable
or a term f(x1, . . . , xn) for some n-ary function symbol f ∈ L and some variables
x1, . . . , xn.

LEMMA 3.3.5. Let L be a language, let Φ be an existential L-sentence. Then there is
an existential L-sentence Φ′, such that:

(i) Φ′ is of the form ∃x1 . . . ∃xk(Φ1∧Φ2), where Φ1∧Φ2 is an open formula without
compound terms;

(ii) A |= Φ iffA |= Φ′ for each L-algebraA;

(iii) Φ′ can be computed from Φ by an algorithm working in time polynomial in |Φ|.
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Proof. (i) Let Φ be an existential sentence. One may assume Φ is in prenex form (in par-
ticular, there is a polynomial-time algorithm which brings a sentence into an equivalent
sentence in prenex form).

Let T = {t1, . . . , tm} be the collection of all terms in Φ0. Let S be the collection of
T -subterms, i.e., for each s ∈ FmL, we have s ∈ S iff s � ti for some i ∈ {1, . . . ,m}.
To each term s ∈ S, assign a variable xs as follows:
– if s is a variable, let xs be the variable s
– otherwise, let xs be a new variable.

Denote S′ the terms in S that are not variables.
Now let Φ1 result from Φ0 by replacing each atomic formula t1 = t2 (t1 ≤ t2,

t1 < t2) in Φ0 with the atomic formula xt1 = xt2 (xt1 ≤ xt2 , xt1 < xt2 respectively).
Then all terms in Φ1 are variables.

Moreover, let Φ2 be ∧
s∈S′

s is f(s1,...,sn)

(xs = f(xs1 , . . . , xsn)).

Then Φ2 is without compound terms. Finally, let Φ′ be the existential closure of Φ1∧Φ2.
(ii) It is elementary to check that Φ and Φ′ are equivalent in any L-algebra.
(iii) Identifying all (sub)terms in Φ, introducing new variables for subterms where nec-
essary, building Φ1 out of variables standing for terms in Φ, and listing all identities
obtained for variables from the structure of subterms, is clearly polynomial in |Φ|.

In the following sections, we will not only be eliminating compound terms, but
we will be using the particular translation of existential sentences given in the previ-
ous proof. For lack of a better term, we refer to the result of such a translation of an
existential sentence Φ as the existential normal form of Φ.

3.4 Lower bounds

THEOREM 3.4.1. Let L be a language and K a class of L-algebras containing a non-
trivial algebra. Then

(i) TAUT(pos)(K) is coNP-hard;

(ii) SAT(pos)(K) is NP-hard.

Proof. Consider formulas of classical propositional logic in the language {¬,&,∨}.
Recall Proposition 2.4.2: satisfiability in {0, 1}B for CNF-formulas is NP-complete,
hence tautologousness in {0, 1}B for DNF-formulas is coNP-complete. The two prob-
lems are denoted SATCNF({0, 1}B) and TAUTDNF({0, 1}B), respectively.

(i) We show TAUTDNF({0, 1}B) �P TAUT(pos)(K). If ϕ(x1, . . . , xn) is a for-
mula of classical propositional logic in DNF, define ϕ? as

((x1 ∨ ¬x1) & . . .& (xn ∨ ¬xn))→ ϕ(x1, . . . , xn).

We claim ϕ ∈ TAUTDNF({0, 1}B) iff ϕ? ∈ TAUT(pos)(K).
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Assume first that ϕ is a classical tautology in DNF: a formulaD1∨ . . .∨Dm, where
each Dj , 1 ≤ j ≤ m, is a conjunction of literals in variables among x1, . . . , xn and
m ∈ N. Without loss of generality we may assume each Dj contains each of its literals
at most once.15 We will show that ϕ? is a theorem of FLew (hence a tautology of each
FLew-algebra, and a positive tautology of each nontrivial FLew-algebra). Recall that

ψ &
∨
j<k

χj ↔
∨
j<k

(ψ & χj) (aux)

is a theorem of FLew for any choice of FLew-formulas {ψ} ∪ {χj}j<k. Assume e ∈
Val{x1,...,xn}({0, 1}B) is a (restriction of) Boolean evaluation; for each i ∈ {1, . . . , n},
let xei be the literal xi if e(xi) = 1{0,1}B , and the literal ¬xi otherwise; let Ee be the
formula xe1 & . . . & xen. Then e(Ee) = 1{0,1}B , and if e′ ∈ Val{x1,...,xn}({0, 1}B), we
have e′(Ee) = 1{0,1}B iff e = e′. Using (aux), the formula (x1∨¬x1)&. . .&(xn∨¬xn)
is FLew-equivalent to the formula

∨
e∈Val{x1,...,xn}({0,1}B)E

e; we aim at showing

`FLew

( ∨
e∈Val{p1,...,pn}({0,1}B)

Ee
)
→

m∨
j=1

Dj . (1)

As ϕ is a classical tautology, for each Boolean evaluation e we reason as follows. There
is a je ∈ {1, . . . ,m} such that e(Dje) = 1{0,1}B ; this implies that the literals in Dje

are among the literals in Ee, and weakening gives the sequent Ee ⇒ Dje in FLew.
Now, for each Boolean evaluation e, if the last sequent is provable, then (introducing
∨ to the right) so is Ee ⇒ ϕ. Finally (introducing ∨ to the left repeatedly), we get
`FLew

∨
e∈Val{x1,...,xn}({0,1}B)E

e ⇒
∨m
j=1Dj , whence (1) follows.

On the other hand, if ϕ is not a classical tautology, there is a Boolean evaluation e
such that e(ϕ) = 0{0,1}B . For eachA ∈ K, define eA in such a way that eA(xi) = e(xi)
for 1 ≤ i ≤ n. Then eA((x1 ∨¬x1) & . . .& (xn ∨¬xn)) = 1A (because eA only takes
classical values on xi’s), so eA(ϕ?) = 0A. Hence, ϕ? 6∈ TAUT(pos)(K).

(ii) We show SATCNF({0, 1}B) �P SAT(pos)(K). If ϕ(x1, . . . , xn) is a formula
of classical propositional logic in CNF, define ϕ◦ as

(x1 ∨ ¬x1) & . . .& (xn ∨ ¬xn) & ϕ(x1, . . . , xn).

We claim ϕ ∈ SATCNF({0, 1}B) iff ϕ◦ ∈ SAT(pos)(K).
If ϕ is classically satisfiable, there is a Boolean evaluation e such that e(ϕ) =

1{0,1}B . For each A ∈ K, define eA in such a way that eA(xi) = e(xi) for 1 ≤ i ≤ n.
Then eA((x1 ∨ ¬x1) & . . .& (xn ∨ ¬xn)) = 1A, and eA(ϕ) = 1A by assumption. We
get ϕ◦ ∈ SAT(pos)(K).

On the other hand, assume ϕ is a formula in CNF which is not classically satisfiable.
Using (aux), the formula ϕ◦ is FLew-equivalent to∨

e∈Val{x1,...,xn}({0,1}B)

(Ee & ϕ). (2)

15More precisely, the problem TAUTDNF({0, 1}B) is polynomially equivalent to its modification where
no conjunction may contain identical literals.
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Now ϕ is C1 & . . . & Cm, where each Cj , 1 ≤ j ≤ m is a disjunction of literals in
variables among x1, . . . , xn and m ∈ N. For each (restriction of) Boolean evaluation e,
it is sufficient to show that Ee & ϕ in (2) is not (positively) satisfiable in any nontrivial
A ∈ K (the trivial algebra is omitted from consideration for SAT(K), and no formula
is positively satisfiable in a trivial algebra). For a given e, we may reason as follows.
If ϕ is unsatisfiable, there is a je ∈ {1, . . . ,m} such that e(Cje) = 0{0,1}B ; that is,
e(l) = 0{0,1}B for each literal l in Cje . The formula Ee & ϕ is FLew-equivalent to

Ee & Cje & (C1 & . . .& Cje−1 & Cje+1 & . . .& Cm). (3)

If Cje is l1 ∨ . . . ∨ lq for some q ≥ 1, then, using (aux) again, Ee & Cje is FLew-
equivalent to

∨
1≤k≤q(E

e & lk). For each 1 ≤ k ≤ q, if lk is an xi for some i, then
e(xi) = e(lk) = 0{0,1}B , hence xei is ¬xi, and the latter occurs in Ee; so the formula
Ee & lk is a conjunction of literals where both xi and ¬xi occur. A dual argument
applies when lk is a ¬xi for some i. Recall ϕ & ¬ϕ ↔ 0 is a theorem of FLew, in
particular, ϕ & ¬ϕ is unsatisfiable in a nontrivial FLew-algebra. So

∨
1≤k≤q(E

e & lk)
is unsatisfiable in a nontrivial FLew-algebra and hence, so is (3). Hence, ϕ◦ is not
(positively) satisfiable in K.

Part (i) of the above theorem was proved in a stronger way in [29]: theoremhood in
a consistent substructural logic is coNP-hard, if moreover the logic has the disjunction
property, then it is PSPACE-hard. We will not be able to use this stronger result as
semilinear logics do not have the disjunction property.16

4 Łukasiewicz logic

Łukasiewicz logic merits particular attention when studying fuzzy logic, and com-
putational complexity of its propositional fragment is no exception. NP-completeness
of satisfiability in the standard MV-algebra [0, 1]Ł was proved in 1987 by D. Mundici;
many other complexity results in propositional fuzzy logic refer to this result.

Łukasiewicz logic Ł can be viewed as the axiomatic extension of BL with ax-
iom ¬¬ϕ → ϕ. The equivalent algebraic semantics of Ł is the variety MV of MV-
algebras. Propositional Łukasiewicz logic is strongly complete w.r.t. MV-chains, and
finitely strongly complete w.r.t. the standard algebra [0, 1]Ł given by the Łukasiewicz
t-norm; these results are due to C.C. Chang. Therefore, the section starts with investi-
gating complexity of decision problems in the standard MV-algebra [0, 1]Ł; this happens
in Subsection 4.1. Next, relying on Y. Komori’s characterization of subvarieties ofMV,
Subsection 4.2 addresses complexity of decision problems in these subvarieties.

Within this section we work with the language {&,→, 0}.

4.1 The standard MV-algebra
Our aim is to investigate complexity of the SAT, TAUT and CONS problems in the

standard MV-algebra [0, 1]Ł, given by the Łukasiewicz t-norm ∗Ł and its residuum→Ł
on [0, 1]. Thanks to finite strong standard completeness of Ł, the obtained results will
apply also to theoremhood and provability in Ł.

16However, the logic FLew, whose language we borrow and which acts as a basis for many of our consid-
erations, does have the disjunction property and thus, theoremhood in FLew is PSPACE-hard.
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LEMMA 4.1.1. For each x, y, z ∈ [0, 1] the following hold in the reals:

(i) x∗Ł y = z iff ((x+ y−1 ≥ 0)∧ (z = x+ y−1))∨ ((x+ y−1 < 0)∧ (z = 0));

(ii) x→Ł y = z iff ((x ≤ y) ∧ (z = 1)) ∨ ((x > y) ∧ (z = 1− x+ y)).

We make a statement about complexity of the universal fragment of Th([0, 1]Ł),
and obtain result for SAT, TAUT, and CONS in [0, 1]Ł as a corollary.

THEOREM 4.1.2. Th∀([0, 1]Ł) is coNP-complete.

Proof. Hardness follows from Theorem 3.4.1, in view of Lemma 3.1.1. The latter also
says it suffices to address Th∃([0, 1]Ł), a problem polynomially equivalent to the com-
plement of Th∀([0, 1]Ł). In the rest of the proof, we show containment of Th∃([0, 1]Ł)
in NP. We present a nondeterministic algorithm, working in time polynomial in the
input size, which uses a subroutine deciding the INEQ problem. (See also discussion
below.)

ALGORITHM EX-L // accepts Th∃([0, 1]Ł)

input: Φ // existential sentence in the language of BL

begin

normalForm() Using Lemma 3.3.5, transform Φ into a (logically equivalent) sen-
tence in existential normal form, ∃x1 . . . ∃xn(Φ1 ∧ Φ2). Remove the quantifier prefix,
and consider the formula Φ1∧Φ2 as a Boolean combination of equations and inequalities
in [0, 1]Ł.17

guessOrder() Guess a linear ordering ≤0 of the set V = {0, 1, x1, . . . , xn}, such
that 0 ≤0 xi ≤0 1 for 1 ≤ i ≤ n, and 0 <0 1; henceforth we take this ordering as fixed,
and exploit this piece of information (without assigning exact values to the variables).
Let Ψ denote the conjunction of conditions expressing the ordering ≤0, i.e., Ψ is∧

x,y∈V
x=0y

(x = y) ∧
∧

x,y∈V
x<0y

(x < y)

checkOrder() Check that Φ1 is consistent with ≤0. Recall that Φ1 is a Boolean
combination of equations and inequalities between pairs of variables in V . Since ≤0

gives a full information about ordering of all variables in Φ1, it is easy to perform the
check; first assess the validity of the atomic conditions in Φ1 against ≤0, then compute
the validity of Φ1, using Boolean operations.
checkInR() Use Lemma 4.1.1 to replace each equation in Φ2 of type x ∗Ł y = z
or x →Ł y = z with an equivalent condition in the language of linear inequalities in
R. Other equations in Φ2 (i.e., those of the form x = c for c a constant) remain intact.
Let Φ′2 denote the conjunction of thus obtained equations. Pass Φ′2 ∧ Ψ to a subroutine
deciding the INEQ problem.18

end
17The sentence ∃x1 . . . ∃xn(Φ1 ∧ Φ2) is valid in [0, 1]Ł iff there is an n-tuple a1, . . . , an ∈ [0, 1] that

satisfies the Boolean combination of equations and inequalities given by Φ1 and Φ2 in [0, 1]Ł.
18A bit more work is needed to rewrite the atomic conditions in Φ′2 ∧Ψ as basic inequalities; we leave this

as an exercise to the reader.
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We claim the algorithm operates in time polynomial in |Φ|, relying in case of the first step
on Lemma 3.3.5, for the next two steps the claim is obvious. If the step checkInR()
is reached, the subroutine for INEQ is called, which (as explained in Subsection 2.5)
operates in polynomial time.

Correctness of the algorithm is argued as follows. By Lemma 3.3.5, the formula
∃x1 . . . ∃xn(Φ1 ∧ Φ2), the existential normal form of Φ, is logically equivalent to Φ
itself. Assume the existential normal form is true in [0, 1]Ł. Then there are values
a1, . . . , an ∈ [0, 1] such that both Φ1 and Φ2 are satisfied under any evaluation e such
that e(xi) = ai. Then one of the computations that guess such an ordering of the xi’s
that mirrors the actual ordering of the ai’s within [0, 1] will be an accepting compu-
tation:19 Φ1 will be consistent with the guessed ordering, and by Lemma 4.1.1 and a
correctness argument for the algorithm for INEQ (knowing that the conditions in Φ′2
and in Ψ are satisfied by a1, . . . , an), we may conclude that the computation will termi-
nate in an accepting state. Conversely, it is clear that any solution found by the algorithm
yields a satisfying evaluation of Φ1 ∧ Φ2.

Discussion. One can simplify the above algorithm to actually show Th∃([0, 1]Ł) �P

INEQ (also obtaining NP-containment for Th∃([0, 1]Ł)). This is done as follows: take
the existential sentence Φ; transform it into an existential normal form; remove quanti-
fiers, add boundary conditions; replace equations involving ∗Ł, →Ł with their equiva-
lents in the language of linear inequalities; pass to INEQ algorithm. We have preferred
the version given in the proof because working with an explicit ordering enables us to
incorporate, later on, some additional connectives, such as4, whose semantics is order-
determined.

On the other hand, one could do without the subroutine for the INEQ problem and
use a subroutine for the LP problem instead, involving more nondeterminism. We refrain
from going into detail, but refer the reader to the proof of Theorem 4.2.5, where this
modified version of the algorithm is used for Komori algebras, relying on a subroutine
deciding the ILP problem. The algorithm for Komori algebras relies on the discrete order
of integers; here, one would have to feed the formula Ψ—with its strict inequalities—to
the LP algorithm, which can be done taking a new variable ε and replacing each strict
inequality x <0 y in Ψ with x + ε ≤ y, finally adding ε > 0; this yields a formula Ψ′

conforming to the criteria on a LP problem.

COROLLARY 4.1.3.

(i) SAT(pos)([0, 1]Ł) is NP-complete.

(ii) TAUT(pos)([0, 1]Ł) and CONS([0, 1]Ł) are coNP-complete.

(iii) THM(Ł) and CONS(Ł) are coNP-complete.

Proof. (i) Hardness stated in Theorem 3.4.1; containment follows from NP-contain-
ment of Th∃([0, 1]Ł) using Lemma 3.1.1.
(ii) Analogous to (i), with respect to Th∀([0, 1]Ł).
(iii) Using (finite strong) standard completeness result for Ł.

19One cannot say ‘the computation that guesses the ordering’ because another nondeterministic step is still
ahead in the INEQ subroutine.
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It still remains to show that the decision problems are nontrivial in the sense of being
distinct from each other and from the classical case.

LEMMA 4.1.4.

(i) SAT({0, 1}B) ( SAT([0, 1]Ł) ( SATpos([0, 1]Ł);

(ii) TAUT([0, 1]Ł) ( TAUTpos([0, 1]Ł ( TAUT({0, 1}B).

Proof. For a variable p:
p ∧ ¬p ∈ SATpos([0, 1]Ł) \ SAT([0, 1]Ł)

p↔ ¬p ∈ SAT([0, 1]Ł) \ SAT({0, 1}B)

p ∨ ¬p ∈ TAUTpos([0, 1]Ł) \ TAUT([0, 1]Ł)

(p ∨ ¬p) & (p ∨ ¬p) ∈ TAUT({0, 1}B) \ TAUTpos([0, 1]Ł). �

4.2 Axiomatic extensions of Łukasiewicz logic

A result of Y. Komori characterizing subvarieties ofMVmakes it possible to extend
the complexity results obtained for Łukasiewicz logic also to its axiomatic extensions.
For L a consistent axiomatic extension of Łukasiewicz logic, letMVL be the subvariety
ofMV forming its equivalent algebraic semantics.

We start by introducing notation for finite MV-chains and Komori chains. Denote
N0 = N \ {0} and N1 = N \ {0, 1}.

DEFINITION 4.2.1. For n ∈ N0, denote:

(i) Łn+1 the subalgebra of [0, 1]Ł with the domain {0, 1
n , . . . ,

n−1
n , 1};

(ii) Kn+1 the algebra

〈{〈i, a〉 ∈ Z× Z | 〈0, 0〉 ≤lex 〈i, a〉 ≤lex 〈n, 0〉}, ∗Kn+1 ,→Kn+1 , 〈0, 0〉〉,

where ≤lex is the lexicographic order on Z× Z and ∗Kn+1
,→Kn+1

are given by
〈i, x〉 ∗Kn+1

〈j, y〉 = maxlex(〈0, 0〉, 〈i+ j − n, x+ y〉) and
〈i, x〉 →Kn+1 〈j, y〉 = minlex(〈n, 0〉, 〈n− i+ j, y − x〉).

Observe that for each n ∈ N0, the algebra Łn+1 is isomorphic to a subalgebra of
Kn+1 (obtained by considering only elements 〈x, 0〉).

DEFINITION 4.2.2. For A,B ⊆ N1, denote

(i) KA = {Ka | a ∈ A};
(ii) LB = {Lb | b ∈ B}.

PROPOSITION 4.2.3 ([10, 19, 31]). For L a consistent axiomatic extension of Ł:

(i) MVL = V(KA ∪ LB) for some A,B ⊆ N1;

(ii) if (i) is true for L, A, and B, then alsoMVL = Q(KA ∪ LB);

(iii) V(KA ∪ LB) = MV iff either of A, B is infinite;

(iv) L is finitely axiomatizable.
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These results are crucial for us: for L a consistent axiomatic extension of Ł, if
MVL is a proper subvariety of MV, it is generated by a pair of finite lists of algebras
of known structure; it is generated by these algebras as a quasivariety; and, using strong
completeness theorem for axiomatic extensions of Ł (or, of BL), results on complexity
of TAUT and CONS for MVL apply also to THM and CONS in L. The fact that, for
givenMVL, the pair of lists need not be unique is of no material importance here.

Now we are interested in complexity of SAT, TAUT, and CONS problems in the
algebras defined above, Łn+1 and Kn+1. We work with the algebra Kn+1 for a fixed
n ∈ N0. For Łn+1, the upper bound is obvious as the algebra is finite (one can also
argue that Łn+1 is a subalgebra ofKn+1, as above).

LEMMA 4.2.4. Let n ∈ N1. Let 〈i1, x1〉, 〈i2, x2〉, 〈i3, x3〉 ∈ [〈0, 0〉, 〈n, 0〉]lex in Z× Z.
Then the following holds in the integers:

(i) 〈i1, x1〉 ∗Kn+1
〈i2, x2〉 = 〈i3, x3〉 iff either

i1 + i2 − n ≤ −1 and i3 = 0 and x3 = 0, or
i1 + i2 − n = 0 and x1 + x2 ≤ −1 and i3 = 0 and x3 = 0, or
i1 + i2 − n = 0 and x1 + x2 ≥ 0 and i3 = 0 and x3 = x1 + x2, or
i1 + i2 − n ≥ 1 and i3 = i1 + i2 − n and x3 = x1 + x2.

(ii) 〈i1, x1〉 →Kn+1
〈i2, x2〉 = 〈i3, x3〉 iff either

i1 < i2 and i3 = n and x3 = 0, or
i1 = i2 and x1 ≤ x2 and i3 = n and x3 = 0, or
i1 = i2 and x1 ≥ x2 + 1 and i3 = n and x3 = x2 − x1, or
i1 ≥ i2 + 1 and i3 = n− i1 + i2 and x3 = x2 − x1.

THEOREM 4.2.5. Th∀(Kn+1) is coNP-complete for each n ∈ N0.

Proof. Hardness follows from Theorem 3.4.1. We argue NP-containment for existen-
tial sentences valid inKn+1 for an arbitrary but fixed n ∈ N0.

ALGORITHM EX-K // accepts Th∃(Kn+1)

input: Φ // existential sentence in the language of BL

begin

normalForm() Using Lemma 3.3.5, transform Φ into an existential normal form
∃x1 . . . ∃xn(Φ1 ∧ Φ2). Remove quantifiers. In the open formula Φ1 ∧ Φ2, for j =
1, . . . , n replace each occurrence of the variable xj with a pair 〈ij , zj〉 where for j =
1, . . . , n, the pair ij , zj are new variables. Consider Φ1 ∧ Φ2 as a Boolean combination
of equations and inequalities inKn+1.

guessOrder() Guess a linear ordering ≤0 of the set {〈ij , zj〉}nj=1 ∪ {〈0, 0〉, 〈n, 0〉},
in such a way that 〈0, 0〉 ≤0 〈ij , zj〉 ≤0 〈n, 0〉 for 1 ≤ j ≤ n, and 〈0, 0〉 <0 〈n, 0〉.
Denote Ψ the set of conditions expressing the ordering ≤0.

checkOrder() As in the proof of Theorem 4.1.2.
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checkInZ() Rewrite the conditions in Ψ and in Φ2 into the language of the o-group
of Z and check their solvability, in the following (nondeterministic) manner. Define a
new empty system S. Processing the conditions in Ψ one by one, in case of:

– 〈ij , zj〉 = 〈ik, zk〉 in Ψ, put ij = ik, xj = xk into S;
– 〈ij , zj〉 < 〈ik, xk〉 in Ψ, put either ij = ik and zj + 1 ≤ zk, or ij + 1 ≤ ik, into S.

Note that this process imposes boundary appropriate conditions on the pairs of variables.
Then process the conditions in Φ2 one by one, for each equation x ∗Kn+1

y = z, choose
exactly one of the four mutually exclusive cases from Lemma 4.2.4 (i), and add it into S;
analogously for each atomic formula of type x →Kn+1 y = z, again using a case from
among its equivalents posed by Lemma 4.2.4 (ii). Then process each atomic formula of
type 〈ij , xj〉 = 〈0, 0〉 as above. Finally, pass S to an algorithm for the ILP problem.
end

THEOREM 4.2.6. Let L be a consistent axiomatic extension of Łukasiewicz logic. Then
SAT(pos)(MVL) is NP-complete, whereas TAUT(pos)(MVL) and CONS(MVL) are
coNP-complete.

Proof. Hardness by Theorem 3.4.1. Consider L, MVL as stated. If L is Ł, then re-
sults in the previous subsection apply. Otherwise, using Theorem 4.2.3 (i), we have
MVL = V(KA ∪ LB) for some finite A,B ⊆ N1. Fix such a pair A and B. Re-
call V(KA ∪ LB) = Q(KA ∪ LB) (cf. Theorem 4.2.3 (ii)). Then by Theorem 3.1.6:
SAT(pos)(V(KA ∪ LB)) = SAT(pos)(Q(KA ∪ LB)) = SAT(pos)(KA ∪ LB) =⋃
a∈A SAT(pos)(Ka) ∪

⋃
b∈B SAT(pos)(Lb) (last equality by definition of SAT(pos)).

Since NP is closed under finite unions, we may conclude, on the basis of A,B being
finite, Theorem 4.2.5 and the remark about finite MV-chains, that SAT(pos)(MVL) is in
NP. Hence, TAUT(pos)(MVL) is in coNP by Corollary 3.2.2. By an analogous argu-
ment we get that CONS(MVL) is in NP, and hence CONS(MVL) is in coNP.

Using strong completeness for extensions L ⊇ Ł with respect to the corresponding
varietiesMVL, we may conclude

COROLLARY 4.2.7. Let L be a consistent axiomatic extension of Łukasiewicz logic.
Then THM(L) and CONS(L) are coNP-complete.

5 Logics of standard BL-algebras

This section studies decision problems in propositional BL and extensions given
by continuous t-norms (distinct from Łukasiewicz). We start with Gödel and product
logics, proceed to BL and SBL, and then we discuss logics given by single standard
BL-algebras (and thus, by single continuous t-norms; hence the section title). Within
this section, we work with the language {&,→, 0}.

5.1 Gödel and product logics
Gödel logic G can be obtained as an axiomatic extension of BL with the axiom

ϕ → ϕ & ϕ. It is discussed in detail in Chapter VII. The logic is strongly complete
w.r.t. its standard algebra [0, 1]G, given by the continuous t-norm x ∗G y = min{x, y}
and its residuum x→G y = y for x > y.
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Product logic extends BL with the axiom (ϕ → χ) ∨ ((ϕ → (ϕ & ψ)) → ψ).
Product logic is finitely strongly complete w.r.t. its standard algebra [0, 1]Π, given by the
continuous t-norm x ∗Π y = xy; the residuum is x→Π y = y

x for x > y.
Both logics extend SMTL (and SBL), therefore Theorem 3.2.4 applies for the SAT,

SATpos and TAUTpos operators on the respective standard algebra; it is therefore suf-
ficient to address the set of tautologies and the consequence relation. Moreover, recall
that in Gödel logic, we have the classical deduction theorem, i.e., for ψ1, . . . , ψn, ϕ for-
mulas, we have {ψ1, . . . , ψn} `G ϕ iff `G ψ1 & . . . & ψn → ϕ. In view of Lemma
3.1.1, it is therefore sufficient to investigate theoremhood for Gödel logic.

THEOREM 5.1.1. Let L be a Gödel chain. Then Th∀(L) is coNP-complete.

Proof. Hardness follows from Theorem 3.4.1. We show NP-containment of Th∃(L).
First, in a Gödel chain L = 〈∗,→,∧,∨, 0, 1〉, we have x ∗ y = x ∧ y = min{x, y}
and x → y = 1 iff x ≤ y, otherwise x → y = y. Hence for any term t(x1, . . . , xn)
and for any evaluation e in L, the value e(t′) for any subterm t′ � t will be among
V = {0L, e(x1), . . . , e(xn), 1L}, and moreover, operations are order-determined, i.e.,
the value e(t′) is fully determined by the ordering of V .

So, determining the validity of an existential sentence ∃x1 . . . ∃xnΦ(x1, . . . , xn),
one can replace the existential quantification over all n-tuples of values in [0, 1] by an
existential quantification over all such orderings of variables occurring in Φ that are
possible in L, with respect to its bottom and top elements.

We describe a nondeterministic ALGORITHM EX-G which accepts existential sen-
tences valid in L. A sentence ∃x1 . . . ∃xnΦ(x1, . . . , xn) is given, where Φ is a Boolean
combination of identities. Guess a linear ordering ≤0 of the set V = {0, x1, . . . , xn, 1},
such that 0 ≤0 xi ≤0 1 for 1 ≤ i ≤ n, and in such a way that the length of any strictly
increasing≤0-chain does not exceed the cardinality ofL; this information is polynomial
in the input size. Then compute the Boolean value of each identity in Φ: on the basis
of ≤0, evaluate all terms, then determine whether they are =0-equal. Then compute the
Boolean value of Φ, accept iff this value is 1.

It is easy to see that the algorithm runs in time polynomial in the input size. It is
equally easy to see that it accepts just the set Th∃(L).

COROLLARY 5.1.2.

(i) TAUT([0, 1]G) is coNP-complete.

(ii) THM(G) is coNP-complete.

Now we address product logic, via its standard algebra. We start with a lemma.

LEMMA 5.1.3. For each c ∈ (0, 1), the standard MV-algebra [0, 1]Ł is isomorphic to
the cut product algebra 〈[c, 1], ∗c,→c, c, 1〉 where

x ∗c y = max{c, x ∗Π y} x→c y = x→Π y

The element c is called the cut.

Proof. For a fixed c, the isomorphism is given by f(x) = c1−x, its inverse by f−1(y) =
1− logc(y).
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THEOREM 5.1.4. Th∀([0, 1]Π) is coNP-complete.

Proof. For hardness, see Theorem 3.4.1. We show NP-containment of Th∃([0, 1]Π) by
presenting a nondeterministic algorithm, operating on existential sentences, accepting
Th∃([0, 1]Π), and working in time polynomial in the input formula size. The algorithm
uses a subroutine deciding the existential theory of [0, 1]Ł.

ALGORITHM EX-PRODUCT // accepts Th∃([0, 1]Π)

input: Φ // existential sentence in the language of BL

begin

normalForm() As in the proof of Theorem 4.1.2.

guessOrder() As in the proof of Theorem 4.1.2.

checkOrder() As in the proof of Theorem 4.1.2.

eliminateZero() Partition the equalities in Φ2 into two classes: let Φ0
2 contain

those equalities in Φ2 which contain at least one =0-equal variable, let Φ>0
2 contain the

remaining equalities. Then check that all equalities in Φ0
2 are consistent with ≤0, as

follows. Processing them one by one, in case of:
– an equality x = 0, check x =0 0;
– an equality x ∗Π y = z, if x =0 0, check z =0 0, analogously for y; if z =0 0, check
x =0 0 or y =0 0;

– an equality x →Π y = z, if x =0 0, check z =0 1; if y =0 0, check that either
z =0 0 and x 6=0 0, or x =0 0 and z =0 1; if z =0 0, check x 6=0 0 and y =0 0.

In the checking process, we have made sure that all atomic formulas in Φ0
2 are valid

under ≤0. Finally, omit from Ψ the variables that are =0-equal to 0, obtaining a Ψ>0.

positiveL() Test whether the conditions in Φ>0
2 and the conditions in Ψ>0 are sat-

isfiable by positive values in [0, 1]Π; by Lemma 5.1.3, this is iff they are satisfiable
by positive values in [0, 1]Ł. Use the subroutine checkInR() in the proof of Theo-
rem 4.1.2 to test the positive satisfiability of Φ>0

2 ∧ Ψ>0 in [0, 1]Ł. It follows from that
proof that the subroutine works in polynomial time.

end

COROLLARY 5.1.5.

(i) TAUT([0, 1]Π) and CONS([0, 1]Π) are coNP-complete.

(ii) THM(Π) and CONS(Π) are coNP-complete.

5.2 BL and SBL

In this subsection we address theorems and provability in the logic BL and in its
axiomatic extension SBL with the axiom ¬(ϕ ∧ ¬ϕ). We denote BLst and SBLst the
classes of all standard BL-algebras and all standard SBL-algebras, respectively. We
work with fragments of the respective algebraic theories, relying on finite strong stan-
dard completeness results: propositional BL (SBL) is finitely strongly complete with
respect to the class BLst (SBLst respectively), hence, THM(BL) = TAUT(BLst) and
CONS(BL) = CONS(BLst), and analogously for SBL.
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Apart from that, both BL and SBL are also complete w.r.t. some particular stan-
dard BL-algebras. Using the partial embedding technique, it is not difficult to see that
any standard BL-algebra which is an ordinal sum with a first component that is an
Ł-component and with infinitely many Ł-components generates the full variety BL; the
converse also holds.

PROPOSITION 5.2.1 ([1]). Let A =
⊕

i∈I Ai be a standard BL-algebra. Then
V(A) = BL iff there is a first component Ai0 , which is an Ł-component, and for
infinitely many i ∈ I , Ai is an Ł-component. If that is the case, then also Q(A) = BL.
Hence, THM(BL) = TAUT(A) and CONS(BL) = CONS(A).

Analogous results hold for SBL and each standard BL-algebra which is an ordinal
sum with infinitely many Ł-components, not starting with an Ł-component.

PROPOSITION 5.2.2. Let A =
⊕

i∈I Ai be a standard BL-algebra. Then V(A) =
SBL iff for infinitely many i ∈ I , Ai is an Ł-component, and either there is a first com-
ponent Ai0 , which is not an Ł-component, or there is no first component. If that is the
case, then also Q(A) = SBL. Hence, THM(SBL) = TAUT(A) and CONS(SBL) =
CONS(A).

These facts will be used later when dealing with complexity of individual standard
BL-algebras: the two above types of sums will not be considered, as they generate BL
or SBL and hence the results for BL and SBL (obtained in this subsection) apply.

Let us now investigate TAUT and CONS in BLst and SBLst. The results for SAT,
SATpos, and TAUTpos for the class BLst will be obtained as Corollary 5.3.3; for SBLst,
use Theorem 3.2.4. For TAUT and CONS, we rely on the following lemma.

LEMMA 5.2.3. Let Φ(x1, . . . , xk) be an open formula in the language of BL. Then
BLst |= Φ iffA |= Φ for each standard BL-algebraA with at most k + 1 components.

Proof. The left-to-right implication holds by definition. For the converse one, we give
a partial embedding argument. If BLst 6|= Φ, there is a standard BL-algebra A and an
evaluation eA such that A 6|= Φ[eA]. Write aj = eA(xj) for 1 ≤ j ≤ k. Possibly
re-enumerating, w.l.o.g. assume a1 ≤ a2 ≤ · · · ≤ ak. For 1 ≤ j ≤ k, let Aj be the
component of A s.t. aj ∈ Aj ; if aj ∈ Ai1 ∩ Ai2 for i1 < i2, let j = i2. It follows
from Theorem 2.1.6 that {0A} ∪

⋃
1≤j≤kAj ∪ {1A} is a BL-subchain of A, so for

any term t occurring in Φ, we have eA(t) ∈ {0A} ∪
⋃

1≤j≤kAj ∪ {1A}. Let A0

be the first component of the ordinal sum A if there is one, if not, then let A0 be any
component. If Aj is a trivial component for 1 ≤ j ≤ k, replace it with a G-component.
Define A′ =

⊕
j≤kAj . If e(xj) = aj in A′, then A′ 6|= Φ[e]. The BL-chain A′ is

isomorphic to a standard BL-algebra B with at most k + 1 components via some f ,
and {0A} ∪

⋃
1≤j≤kAj ∪ {1A} is isomorphic to a subchain of B. Define eB in B

s.t. eB(xj) = f−1(aj) for x1, . . . , xk; thenB 6|= Φ[eB], henceB 6|= Φ.

Combining Lemma 5.1.3 with the above proof, one can replace each copy of [0, 1]Π
with two copies of [0, 1]Ł (and it is easy to replace copies of [0, 1]G by a suitable number
of [0, 1]Ł copies as well). Then the partial embedding gives us the easy implication from
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Proposition 5.2.1. For SBL, reasoning in full analogy (with the proviso that the first
component—if any—is not Ł), we get SBLst |= Φ iff A |= Φ for each standard SBL-
algebraA with at most k + 1 components.

THEOREM 5.2.4. Th∀(BLst) and Th∀(SBLst) are coNP-complete.

Proof. Hardness follows from Theorem 3.4.1; we address coNP-containment for the
case of BL, with comments on modifications for the SBL case.

We work with the complement of Th∀(BLst). The complement consists of univer-
sal sentences Φ that do not hold in at least one standard BL-algebra; by Lemma 5.2.3,
one can limit oneself to a class C of finite sums of cardinality bounded polynomially
by |Φ|. Equivalently, one can consider the set of existential sentences Φ that are valid
in at least one standard BL-algebra in the class C. We give a nondeterministic algo-
rithm that accepts Th∃(BLst) (its modification accepts Th∃(SBLst)) and works in time
polynomial in the input size.

ALGORITHM EX-BL //accepts Th∃(BLst)

input: Φ // existential sentence in the language of BL

begin

normalForm() Using Lemma 3.3.5, transform Φ into a (logically equivalent) sen-
tence in existential normal form, ∃x1 . . . ∃xn(Φ1 ∧Φ2). Note that n is bounded polyno-
mially by |Φ|, in particular, n ∈ O(|Φ|).

guessOrdinalSum() Guess a k ∈ N, k ≤ n + 1. Guess an ordinal sum A of k
components (i.e., a sequence of k symbols out of Ł, G, Π).
// For SBL, the first component is Π.

componentDelimiters() Introduce constants 1
k , . . . ,

k−1
k , 1 for the idempotent

elements of A that delimit its components, in their real order, (0 we already have). Set
V = {0, 1

k , . . . ,
k−1
k , 1} ∪ {x1, . . . , xn}.

guessOrder() Guess a linear ordering ≤0 of elements of V , in such a way that ≤0

preserves the strict ordering of the constants imposed by the delimiters they represent.

For i < k, we say that any variable x ∈ V such that i
k ≤0 x ≤0

i+1
k belongs to i.

checkOrder() Check that≤0 is consistent with Ψ1, as in the proof of Theorem 4.1.2.

checkExternal() Check that ≤0 is compatible with all identities in Φ2, as far as
the operations are order-determined, as follows. Consider each atomic formula in Φ2.
In case of:

– x = 0 for some variable x, check x =0 0 (x =0 1 respectively).
– x ∗ y = z for some variables x, y, z, then if, for some l ≤ k, we have x ≤0

l
k ≤0 y,

then check that z =0 x; analogously for y ≤0
l
k ≤0 x. If, on the other hand, for

some l < k, we have l
k ≤ x, y ≤

l+1
k , then check l

k ≤ z ≤
l+1
k .

– x → y = z for some variables x, y, z, then if x ≤0 y, check z =0 1. If, x >0 y,
then if, for some l ≤ k, we have x ≥0

l
k >0 y, then check z =0 y; if, on the other

hand, for some l < k we have l
k ≤ x, y ≤

l+1
k , then check l

k ≤ z ≤
l+1
k .
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checkInternal() For each ≤0-interval [ lk ,
l+1
k ], l = 0, . . . , k − 1, check that ≤0

is compatible with all identities in Φ2 for the variables belonging to l. Working for a
fixed l, consider Φ2 restricted to those identities where at least one variable belongs to
l. Construct a system Sl of identities, as follows. Sl is initially empty. Consider each
identity in Φ2. In case of:

– x = 0 for some variable x, add x = 0 (x = 1 respectively) into Sl.
– x∗y = z for some variables x, y, z, then if x and y belong to l, add x∗y = z into Sl.
– x ∗ y = z for some variables x, y, z, then if x and y belong to l, add x → y = z

into Sl.
Further, add a conjunction of atomic formulas defining ≤0 for l

k , l+1
k , and the variables

in l, into Sl; replace l
k with 0 and l+1

k with 1. In case the l-th component ofA is:
– an Ł-component, use ALGORITHM EX-L to check satisfiability of Sl in [0, 1]Ł.
– a Π-component, use ALGORITHM EX-PRODUCT to check satisfiability of Sl in

[0, 1]Π.
– a G-component, use the external check based on ≤0.
end

Because both BL and SBL enjoy finite strong standard completeness, we may conclude:

COROLLARY 5.2.5. The sets THM(BL), CONS(BL), THM(SBL), CONS(SBL)
are coNP-complete.

5.3 Other logics of standard BL-algebras

The term ‘logics of standard BL-algebras’ may be ambiguous. Suppose that, given
a class K of standard BL-algebras, we do have a clear idea what is meant by a ‘logic
ofK’. Then one reading of the term is that for each standard BL-algebraA, we consider
the logic of A; another reading is that we take arbitrary nonempty classes of standard
BL-algebras and for each, we consider the logic of K. Most of this section is dedicated
to discussing the former meaning; at the end, we give some remarks on the latter. All of
this is going to happen in view of previously presented results that addressed particularly
important choices of standard BL-algebras; here, we cater for the “remaining cases”.

PROPOSITION 5.3.1 ([14]). Let A be a standard BL-algebra. Then the logic of A is
an axiomatic extension of BL obtained by adding finitely many axioms.

We investigate each given standard BL-algebra as to the complexity of its SAT,
TAUT, and CONS problems. We start with some easy results; recall that in the ordinal-
sum decomposition of a standard BL-algebraA, eitherA has a first component Ł, orA
is an SBL-algebra.

THEOREM 5.3.2. Let K be a nonempty class of standard BL-algebras and let each
A ∈ K be of the type Ł⊕X for some ordinal sum X (possibly void). Then

(i) TAUTpos(K) = TAUTpos([0, 1]Ł);

(ii) SAT(pos)(K) = SAT(pos)([0, 1]Ł).
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Proof. [0, 1]Ł is isomorphic to a subalgebra of each A ∈ K; use Lemma 3.1.3 to obtain
the left-to-right inclusion in (i) and the right-to-left inclusion in (ii). Moreover, for
each A ∈ K, a mapping f sending x to ¬¬x in A is a homomorphism of A onto (an
isomorphic copy of) [0, 1]Ł; we have f(x) = 0 iff x = 0 and f(x) = 1 if x = 1, which
yields the converse inclusions.

COROLLARY 5.3.3.

(i) TAUTpos(BLst) = TAUTpos([0, 1]Ł);

(ii) SAT(pos)(BLst) = SAT(pos)([0, 1]Ł).

Proof. We have BLst = SBLst ∪L, where L denotes the class of standard BL-algebras
with a first component Ł.
(i) TAUTpos(BLst) = TAUTpos(SBLst) ∩ TAUTpos(L) =
TAUT({0, 1}B) ∩ TAUTpos([0, 1]Ł), where the last equality holds by combining The-
orem 3.2.4 with the theorem above. The statement then follows from Lemma 3.1.4.
(ii) SAT(pos)(BLst) = SAT(pos)(SBLst) ∪ SAT(pos)(L) =
SAT({0, 1}B) ∪ SAT(pos)([0, 1]Ł), analogously to the above case.

Apply Lemma 4.1.4 to show that the SAT, SATpos, and TAUTpos problems for the
class of standard BL-algebras are distinct from each other and from the classical case.
Compare this to Theorem 3.2.4 for classes of standard SBL-algebras (i.e., not starting
with an Ł-component).

5.3.1 Finite sums
THEOREM 5.3.4. Let A be a standard BL-algebra which is a finite ordinal sum of Ł,
G, and Π-components. Then Th∀(A) is coNP-complete.

Proof. Hardness follows from Theorem 3.4.1. We prove NP-containment for Th∃(A);
the type and cardinality of the sum of A is used as a built-in information. This is the
only difference from Algorithm EX-BL, which guesses a finite ordinal sumB and tests
whether the given formula is in Th∃(B). Here, we fix a standard BL-algebra A which
is a finite ordered sum of k components, so the guessOrdinalSum() step is omitted.

ALGORITHM EX-FIN //accepts Th∃(A)

input: Φ // existential sentence in the language of BL

begin

normalForm() As in the proof of Theorem 5.2.4.

componentDelimiters() As in the proof of Theorem 5.2.4.

guessOrder() As in the proof of Theorem 5.2.4.

checkOrder() As in the proof of Theorem 5.2.4.

checkExternal() As in the proof of Theorem 5.2.4.

checkInternal() As in the proof of Theorem 5.2.4.

end
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COROLLARY 5.3.5. Let A be a standard BL-algebra that is a finite ordinal sum and
let L(A) be the logic ofA. Then

(i) SAT(pos)(A) is coNP-complete;

(ii) TAUT(pos)(A) and CONS(A) are coNP-complete;

(iii) THM(L(A)) and CONS(L(A)) are coNP-complete.

Proof. For SAT, SATpos, TAUTpos, consider that if A has a first component Ł, and
then one can use Theorem 5.3.2, otherwise one can use Theorem 3.2.4.

5.3.2 Infinite sums
Now we consider those standard BL-algebras that are ordinal sums of infinitely

many components. As stated in Propositions 5.2.1 and 5.2.2, a standard BL-algebra A
that is an ordinal sum with infinitely many Ł-components generates either the variety BL
(in case the sum has a first component Ł) or the variety SBL (otherwise). In both cases,
the respective variety is generated as a quasivariety by A. Hence, it is sufficient to deal
with standard BL-algebras with finitely many Ł-components.

A standard BL-algebra with finitely many, say n, Ł-components seems much more
tangible than the general case: one can think about it in terms of n+ 1 ordinal subsums
that are without Ł-components and sit inbetween the n Ł-components. Some of these
sums may be finite ordinal sums of G- and Π-components, some others may be infinite
sums thereof, and some may be void. The infinite sums might be a problem, because
there are too many such infinite sums for a finite description. Fortunately, from the point
of view of the (quasi)equational theory of the algebra, we need not describe the infinite
sums of G- and Π-components exactly, as the following analysis shows.

Consider two algebras X , Y , where either is a standard BL-algebra or the trivial
one-element algebra. Let us take standard BL-algebrasZ1 andZ2 that are two arbitrary
infinite sums of G- and Π-components. It is easy to see that Z1 is partially embed-
dable into Z2 and vice versa, and therefore the standard BL-algebrasX ⊕Z1 ⊕Y and
X ⊕ Z2 ⊕ Y have the same universal theory. So the universal theory of any standard
BL-algebra can be encoded by a finite string in the alphabet Ł,G,Π,∞Ł,∞Π.

DEFINITION 5.3.6 (Canonical Standard BL-algebra). A standard BL-algebra is canon-
ical iff it is an ordinal sum that is either∞Ł, Π⊕∞Ł, or a finite sum of Ł, G, Π, and
∞Π, where no G is preceded or followed by another G, and no ∞Π is preceded or
followed by a G, a Π, or another∞Π.

PROPOSITION 5.3.7. For each standard BL-algebra A there is a canonical standard
BL-algebraA′ such that Th∀(A) = Th∀(A

′).

Not only canonical standard BL-algebras generate all possible subvarieties of BLst

that are generated by any single standard BL-algebra, but, as shown in [14], nonisomor-
phic canonical standard BL-algebras generate distinct subvarieties. Hence, the strings in
the alphabet {Ł,∞Ł,G,Π,∞Π} give a finite-string representation of all varieties (and
all sets of propositional tautologies) given by a single standard BL-algebra. Moreover
each of these varieties is generated as a quasivariety by the standard BL-algebra, so this
consideration extends also to the respective quasivarieties (finite consequence relations).
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As in previous cases, we address the universal theory of each of the canonical stan-
dard BL-algebras with finitely many L-components (and thus, no∞Ł-components).

THEOREM 5.3.8. LetA be a canonical standard BL-algebra which is an infinite ordi-
nal sum with finitely many L-components. Then Th∀(A) is coNP-complete.

Proof. Hardness follows from Theorem 3.4.1. We prove NP-containment of Th∃(A),
using an algorithm that (accepts the given set and) relies on a built-in information about
A in terms of a string of symbols. It works as follows: first, it guesses another finite
sumB of Ł, G, and Π, whose cardinality is linear in the input size. Then, it checks that
the ordinal sum B is a subsum of the sum of A, in such a way that a first Ł-component
inB is also a first component inA; if this is true, thenB is a subalgebra ofA and thus,
any solution found inB will be a solution inA also. Finally, it tests the input existential
formula for validity inB.

ALGORITHM EX-INF //accepts Th∃(A)

input: Φ // existential sentence in the language of BL

begin

normalForm() As in the proof of Theorem 5.2.4 (in particular, n is the number of
variables in the formula Φ1 ∧ Φ2).

guessOrdinalSum() Guess a k ∈ N, k ≤ n+ 1.
Guess an ordinal sumB of k components (a sequence of k symbols out of Ł,G,Π).

checkEmbedding() Check whether the sum of B is embeddable into the sum of A
(as a sequence of symbols into a sequence of symbols), in such a way that an initial Ł
ofB (if any) is mapped to an initial Ł inA.
From now on, work withB instead ofA.

componentDelimiters() As in the proof of Theorem 5.2.4.

guessOrder() As in the proof of Theorem 5.2.4.

checkOrder() As in the proof of Theorem 5.2.4.

checkExternal() As in the proof of Theorem 5.2.4.

checkInternal() As in the proof of Theorem 5.2.4.

end

Let us look at the checkEmbedding() step. First of all, we discuss this is a
subroutine working in time polynomial in k, hence in |Φ|. As a matter of fact, the
check can be done deterministically in polynomial time; but it is simpler and sufficient
to present the nondeterministic check. Take the finite-string representation of B (in the
alphabet Ł, G, Π), for each element of the sum of B, guesses a natural number points
into the finite-string representation of A (in the alphabet Ł, G, Π, ∞Π), then checks
that this assignment is a one-one embedding in terms of components (more than one Π-
component inB can be mapped onto a single∞Π-component ofA), and that it satisfies
the condition that if Ł is initial inB, then it is mapped onto an initial L-component inA.
This is a polynomial-time procedure: the cardinality of B is bounded polynomially by
|Φ| and the cardinality ofA (as a finite string in the alphabet Ł, G, Π,∞Π) is fixed.
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If there is a satisfying evaluation inA, then one can find a finite subsum harbouring
it; we know by Lemma 5.2.3 it is enough to search all finite subsums up to length k+ 1.
The algorithm works with each such subsum as finite sum and works in exactly the same
way as in the case for finite sums.

It is perhaps worth remarking that under this construction, the algorithm “throws
away” some of the constructed sums which actually could supply a satisfying evaluation
embeddable into A; for example, if we permitted G-components in B to map onto
∞Π components, the algorithm would still be correct because, if later the algorithm
guesses an ordering that assigns finitely many idempotent values into this G-component,
then these could map onto some delimiting idempotent values in the∞Π-segment. We
prefer, however, to work solely with the string representations and not to go back to the
structure of the standard BL-algebras.

COROLLARY 5.3.9. Let A be a standard BL-algebra that is an infinite ordinal sum
and let L(A) be the logic ofA. Then

(i) SAT(pos)(A) is coNP-complete;

(ii) TAUT(pos)(A) and CONS(A) are coNP-complete;

(iii) THM(L(A)) and CONS(L(A)) are coNP-complete.

5.3.3 Logics given by classes of standard BL-algebras
Let us first discuss the case that K is finite. The following is a consequence of a

more general result of [17].

PROPOSITION 5.3.10. If K is a finite, nonempty class of standard BL-algebras, the
logic of K is an axiomatic extension of BL obtained by adding finitely many axioms.

Recall that NP is closed under finite unions, and consider that SAT(pos)(K) =⋃
A∈K SAT(pos)(A); coNP is closed under finite intersections, and TAUT(pos)(K) =⋂
A∈K TAUT(pos)(A) and CONS(K) =

⋂
A∈K CONS(A). On that basis, and in view

of Theorem 3.4.1, we may conclude:

THEOREM 5.3.11. If K is a finite, nonempty class of standard BL-algebras and L(K)
is the logic of K, then

(i) SAT(pos)(K) is NP-complete;

(ii) TAUT(pos)(K) and CONS(K) are coNP-complete;

(iii) THM(L(K)) and CONS(L(K)) are coNP-complete.

Now let us address the case when K is an arbitrary (possibly infinite) class of stan-
dard BL-algebras. We rely on the following statement.

PROPOSITION 5.3.12 ([24]). Let K be a class of standard BL-algebras. Then there is
a finite class L of standard BL-algebras such that V(K) = V(L).

COROLLARY 5.3.13. Let K be a nonempty class of standard BL-algebras. Then

(i) SAT(pos)(K) is NP-complete;

(ii) TAUT(pos)(K) is coNP-complete.
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Proof. For TAUT the statement follows from the previous one. For SAT, SATpos,
and TAUTpos, recall that we can partition K into a class KŁ of those algebras in K
that have a first component Ł, and a class KŁ̄ of the remaining algebras in K. Then
use Theorem 5.3.2 and Theorem 3.2.4 for the two classes, and Lemma 3.1.4 on their
union/intersection.

6 Logics in modified languages

In this section we discuss some fragments and expansions of BL and MTL and their
extensions. As regards fragments, we limit ourselves to dropping 0, i.e., we consider the
falsehood-free language of hoops. For expansions, we consider in particular logics with
4, logics with new propositional constants, logics with an involutive negation as an
independent connective, and the logics ŁΠ and ŁΠ1

2 .

6.1 Falsehood-free fragments

MTLH (monoidal t-norm hoop logic) is obtained from MTL by dropping 0 from
the language and dropping the axiom 0 → ϕ. BLH (basic hoop logic) is obtained from
BL in the same manner. BLH can be extended to ŁH, GH, and ΠH in exactly the same
way as BL extends to Ł, G, and Π. Besides, cancellative hoop logic CHL is obtained
from BLH by adding the axiom (ϕ→ (ϕ& ψ))→ ψ.

PROPOSITION 6.1.1 (Conservativeness [13]).

(i) MTL, IMTL, and SMTL are conservative expansions of MTLH;

(ii) BL and SBL are conservative expansions of BLH;

(iii) Ł is a conservative expansion of ŁH;

(iv) G is a conservative expansion of GH;

(v) Π is a conservative expansion of ΠH.

So each of the falsehood-free fragments inherits the complexity class of its counter-
part in the full language (cf. Lemma 3.1.2). For CHL, we use the following fact:

PROPOSITION 6.1.2. Let L be the language of hoops and T ∪ {ϕ} ⊆ FmL. Then
T `CHL ϕ(p1, . . . , pn) iff T `Π (

∧n
i=1 ¬¬pi)→ ϕ.

COROLLARY 6.1.3. CONS(CHL) �P CONS(Π), so CONS(CHL) is in coNP.

In the following we prove coNP-hardness for theoremhood in BLH, ŁH, GH, ΠH,
CHL. Let p be a new variable, and consider the following translation function, operating
on BL-formulas:

– if ϕ is 0 then ϕ◦ is p
– if ϕ is atomic then ϕ◦ is ϕ ∨ p
– if ϕ is ψ & χ then ϕ◦ is (ψ◦ & χ◦) ∨ p
– if ϕ is ψ → χ then ϕ◦ is ψ◦ → χ◦
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PROPOSITION 6.1.4 (Interpretation in falsehood-free fragments [13]). Let L be MTL,
BL, Ł, or G, LH its falsehood-free fragment, and ϕ a formula in the language of MTL.
Then

(i) `L ϕ iff `LH ϕ◦;

(ii) `ΠH ϕ◦ iff `Π ϕ and `Ł ϕ;

(iii) `CHL ϕ
◦ iff `Ł ϕ.

COROLLARY 6.1.5. Theoremhood (and hence, provability from finite theories) in the
logics BLH, ŁH, GH, ΠH, and CHL is coNP-hard, hence coNP-complete. Moreover,
MTL ≈P MTLH.

Proof. The set THM(Ł) ∩ THM(Π) = TAUT([0, 1]Ł) ∩ TAUT([0, 1]Π) can be ob-
served to be coNP-hard by Theorem 3.4.1; hence coNP-hardness for ΠH. The other
cases are straightforward.

Satisfiability for (classes of) hoops is not an interesting problem. IfL is the language
of hoops and K is a nonempty class of L-hoops, then SAT(K) = SATpos(K) = FmL
(clearly in any hoop, each formula is satisfiable by evaluating all of its variables with the
value 1).

6.2 Logics with4
Let L be MTL or its extension. The 4-expansion L4 of L is obtained by adding

the rule of4-generalization: from ϕ derive4ϕ, and the following axioms:
(41) 4ϕ ∨ ¬4ϕ
(42) 4(ϕ ∨ ψ)→ (4ϕ ∨4ψ)

(43) 4ϕ→ ϕ

(44) 4ϕ→44ϕ
(45) 4(ϕ→ ψ)→ (4ϕ→4ψ)

Recall that the deduction theorem for a logic L4 reads as follows: T ∪ {ϕ} `L4 ψ
iff T `L4 4ϕ → ψ. Hence CONS(L4) ≈P THM(L4) and it is sufficient to investi-
gate complexity of the set THM(L4) (cf. Lemma 3.1.1).

Adding 4 in the above manner expands the logic L conservatively; in particular,
we can expand each standard L-algebra into a L4-algebra, and then prove standard
completeness results.

We remark that for any logic L, in any L4-chain A, the semantic counterpart of4
is the function given by4(1) = 1,4(x) = 0 for x 6= 1.

THEOREM 6.2.1. Let L be the logic of a standard BL-algebra. Then THM(L4) is
coNP-complete.

Proof. For hardness, combine Lemma 3.1.2 with results on standard L-algebras. Con-
tainment by an inspection of containment proof for L; it is sufficient to note that the
4-operation is order-determined. In this way, we actually obtain coNP-completeness
of the universal fragment of the theory of the appropriate standard L4-algebra.
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6.3 Logics with constants

Expanding the language with constants is addressed in a comprehensive manner in
Chapter VIII. We rely on [11] for the general framework and on [22] for results. Admit-
tedly, the results are rather fragmentary and there are some open and many unattempted
problems. We discuss three examples: Łukasiewicz logic, Gödel logic, and product
logic, each expanded with new propositional constants as explained below.

In a general setting, one expands the language with names for some elements of a
chosen algebra, often a standard one. In that case, one takes an arbitrary C ⊆ [0, 1],
countable and closed under all operations, to be the canonical semantics of new con-
stants. But in order to be able to reason about complexity, we need much more: elements
of C should be representable by finite words, C should be decidable (preferably in P),
and the C-words should admit feasible evaluation of operations. Thus we restrict our
attention to the case C = Q ∩ [0, 1].

Let [0, 1]∗ be a standard BL-algebra. Let Q = {q | q ∈ Q ∩ (0, 1)} be a set of new
propositional constants. If L is the language of BL, define LQ = L ∪ Q. If L is the
logic of [0, 1]∗, then L(Q) in the language LQ expands L with the bookkeeping axioms

r & s↔ r ∗ s and r → s↔ r → s

for each r, s ∈ Q ∩ [0, 1]. Each logic L(Q) has its equivalent algebraic semantics
(L-algebras enriched with constants, satisfying the axioms), it has standard semantics
(standard L-algebras, ditto), but we are interested primarily in its canonical semantics,
which is given by the initial standard algebra [0, 1]∗ and the canonical interpretation of q
with q for each q ∈ Q∩ [0, 1]. If [0, 1]∗ is a standard BL-algebra, L is the logic of [0, 1]∗,
then [0, 1]Q∗ denotes the canonical L(Q)-algebra. Now let us see where bookkeeping
axioms can take us, completeness-wise.

PROPOSITION 6.3.1 ([21, 39]). Let [0, 1]∗ and L be as above. Then

(i) L(Q) has the canonical FSSC iff ∗ is the Łukasiewicz t-norm;

(ii) L(Q) has the canonical SC if ∗ is the Gödel or the product t-norm.

Note also that finite strong standard completeness (i.e., completeness with respect
to the class of all standard algebras) holds for any L(Q) obtained in this manner, and
consequently, each L(Q) is conservative over L and L is the L-fragment of L(Q).

Now for complexity: we work in the canonical standard algebras, starting with the
expansion of Łukasiewicz logic.

THEOREM 6.3.2. Th∀([0, 1]QŁ ) is coNP-complete.

Proof. Hardness follows from the result for [0, 1]Ł without constants (Theorem 4.1.2):
we have Th∀([0, 1]Ł) �P Th∀([0, 1]QŁ ) since the former is the fragment of the latter
given by restriction to the BL-language; cf. also Lemma 3.1.2.

We show NP-containment of Th∃([0, 1]QŁ ) by a discussion of ALGORITHM EX-L
accepting Th∃([0, 1]Ł). In the case with constants, the input is an existential sentence
Φ with constants, represented as two integers in binary. As before, we first transform Φ
into an existential normal form (see Lemma 3.3.5). In the normal form for Φ we have,
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in addition to the former, also identities of the form x = c for x a variable, c a constant.
Then we guess an ordering ≤0 of V = {x1, . . . , xn, c1, . . . , ck}, where c1, . . . , ck are
those constants in Φ, and 0 and 1. Then we check that Φ1 is compatible with ≤0. Then
we need to translate each equation x = c into the language of linear programming. But
that is easy, since for c being p

q , we may translate the equation x = p
q with xq = p. The

rest is as before.

COROLLARY 6.3.3.

(i) SAT(pos)([0, 1]QŁ ) is NP-complete.

(ii) TAUT(pos)([0, 1]QŁ ) and CONS([0, 1]QŁ ), are coNP-complete.

(iii) THM(Ł(Q)) and CONS(Ł(Q)) are coNP-complete.

Proof. For hardness, use Lemma 3.1.2. For (i), (ii), consider Lemma 3.1.1. For (iii), use
finite strong canonical completeness of Ł(Q).

THEOREM 6.3.4. Th∀([0, 1]QG) is coNP-complete.

Proof. Hardness follows from follows from Theorem 5.1.1 and Lemma 3.1.2. We show
NP-containment of Th∃([0, 1]QG), modifying ALGORITHM EX-G (we are only consid-
ering the standard algebra) to cater for truth constants. Let Φ be an existential sentence
∃x1 . . . ∃xnΦ(x1, . . . , xn) in the language of ([0, 1]QG), where Φ is an open Boolean
combination of identities. Let k1

l1
, . . . , kmlm be a list of truth constants in Φ distinct from

0, 1. Guess a linear ordering ≤0 of the set V = {0, 1, x1, . . . , xn,
k1

l1
, . . . , kmlm }, such

that 0 is at the bottom, 1 is at the top, and the natural order of the constants is preserved.
Compute the value of each atomic formula in Φ: on the basis of ≤0, evaluate all atomic
formulas. Evaluate the Boolean combination Φ, accept iff the result is 1.

THEOREM 6.3.5.

(i) SAT(pos)([0, 1]QG) is NP-complete.

(ii) TAUT(pos)([0, 1]QG) and CONS([0, 1]QG) are coNP-complete.

(iii) THM(G(Q)) is coNP-complete

(iv) CONS(G(Q)) is coNP-complete.

Proof. (i) to (iii) are clear, but we prove (iv), because CONS in the canonical algebra
need not correspond to provability (due to lack of canonical FSSC). For CONS(G(Q)),
recall that G(Q) enjoys the FSSC, and observe that for each standard G(Q)-algebra
A, there is a filter F on the G-algebra of constants Q ∩ [0, 1] such that A interprets
the elements of F with 1, whereas other constants are interpreted with pairwise dis-
tinct elements. If {ϕ1, . . . , ϕn}, ψ ∈ CONS(G(Q)), then this shows in some standard
G(Q)-algebra given by a filter F on the algebra of constants, and the only informa-
tion needed about F is which constants occurring in the input belong to it. So we may
guess a rational (inbetween two constants occurring in the input) and use a variant of the
algorithm given above onA obtained in this manner.
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THEOREM 6.3.6. Th∀([0, 1]QΠ) is in PSPACE.

Proof. We show Th∃([0, 1]QΠ) �P Th∃(RCF). Consider, for k ∈ N, its binary rep-
resentation (cblog(k)c . . . c0). Then k =

∑
i≤blog(k)c ci.2

i; let this be the term k corre-
sponding to k in the language of RCF.

Let Φ be an existential Π(Q)-sentence. Transform it into an existential normal form
∃x1 . . . ∃xn(Φ1 ∧ Φ2). Define Φ′2 as follows. Process the identities in Φ2 one by one,
for i1, i2, i3 ≤ n, in case of:

– xi1 = c
d , replace with xi1 · d = c ;

– xi1 ∗ xi2 = xi3 , replace with xi1 · xi2 = xi3 ;
– xi1 → xi2 = xi3 , replace with ((xi1 ≤ xi2) ∧ (xi3 = 1)) ∨

((xi1 > xi2) ∧ (xi1 · xi3 = xi2)).
Let Φ3 denote the formula

∧n
i=1 0 ≤ xi ∧ xi ≤ 1 for 1 ≤ i ≤ n (boundary conditions).

Let Φ′ denote the formula Φ1 ∧ Φ′2 ∧ Φ3. Then Φ ∈ Th∃[0, 1]QΠ) if and only if
∃x1 . . . ∃xnΦ′ ∈ Th∃(RCF). Moreover, the latter formula can be computed from Φ in
time polynomial in |Φ|.

EXAMPLE 6.3.7. There is a standard BL-algebra [0, 1]∗ which is an infinite sum of
Ł-components such that both TAUT([0, 1]Q∗ ) and SAT([0, 1]Q∗ ) are nonarithmetical.

Proof. Let A ⊆ N be any set. Let [0, 1]∗ be a standard BL-algebra with idempotents 0,
1, and 1

n for n ∈ A, and all components isomorphic to [0, 1]Ł. Let us introduce rational
constants into [0, 1]∗. Now observe the following: for each n ∈ N, we have n ∈ A iff
the formula

1
n & 1

n ↔
1
n

is in TAUT([0, 1]Q∗ ) (or SAT([0, 1]Q∗ )). Therefore, A �m TAUT([0, 1]Q∗ ) and A �m

SAT([0, 1]Q∗ ). Fixing A as a nonarithmetical set closes the proof.

6.4 Logics with an involutive negation

We discuss expansions of a given logic L with a new unary connective ∼, which
behaves as a decreasing involution. The resulting logic L∼ is particularly interesting
when the definable negation ¬ in the logic is the strict negation, because of the two
negations’ interplay. This means the cases when L is an extension of SMTL. Then4ϕ
is defined as ¬∼ϕ. In particular, if L extends SMTL, then L∼ results from L by adding
the rule ϕ/4ϕ and the axioms

∼∼ϕ↔ ϕ

4(ϕ→ ψ)→4(∼ψ → ∼ϕ)

¬ϕ→ ∼ϕ

The semantics of ∼ on [0, 1] is given by decreasing involutions; a prominent example is
the function 1−x on [0, 1], the canonical involutive negation. We say that L∼-algebra is
standard iff its FLew-reduct is a standard MTL-algebra, no matter what the∼-operation
is. If A is a standard MTL-algebra and ∼ is an involutive negation, denote A∼ the
algebra that is an expansion of A with the involutive negation ∼. Further, denote A∼
the class of all algebras that expandA with some involutive negation ∼.
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Let A be a set totally ordered by ≤. Let 〈a1, b1〉, 〈a2, b2〉, . . . , 〈an, bn〉 be a finite
number of pairs from A. We say that these pairs are nested (w.r.t. ≤) iff there is a
permutation σ on {1, . . . , n} such that aσ(1) ≤ aσ(2) ≤ · · · ≤ aσ(n) ≤ bσ(n) ≤ · · · ≤
aσ(2) ≤ aσ(1) and for each i = 1, . . . , n−1 we have aσ(i) = aσ(i+1) iff bσ(i) = bσ(i+1).

LEMMA 6.4.1. Let 0 < a0 < · · · < ak < 1 be real numbers. Then there is a decreasing
involution ∼ on [0, 1] such that ∼(ai) = ak−i for i = 0, . . . , k.

PROPOSITION 6.4.2. If L is the logic of some standard BL-algebra, then L∼ enjoys
finite strong standard completeness.

This entails that, if L is the logic of some standard BL-algebra, L∼ is a conservative
expansion of L.

THEOREM 6.4.3. LetA be a standard SBL-algebra which is a finite ordinal sum. Then
Th∀(A∼) is coNP-complete.

Proof. Hardness follows from Lemma 3.1.2, considering that A is the ∼-free reduct of
each A∼ ∈ A∼. We prove NP-containment of Th∃(A∼). Since A is a standard SBL-
algebra, we modify ALGORITHM EX-FIN to cater for the involutive negation. We rely
on Lemma 6.4.1.
ALGORITHM EX-INV //accepts Th∃(A∼)

input: Φ // ex. sentence in the language of BL with ∼
begin

normalForm()

componentDelimiters()

guessOrder()

checkOrder()

checkInvolution() Let k be the number of variables in the normal form of Φ. For
each xi, xj , i, j ≤ k′, if xi = ∼xj occurs in Φ2, put down a pair {xi, xj}. Do this for
every occurrence of ∼ in Eq . Check that the pairs thus created are nested w.r.t. ≤0.
checkExternal()

checkInternal()

end

We discuss why this works correctly: assume for an algebra A∼ obtained from A
by adding some involutive involution, we have |=A Φ. Then one guess of ≤0 will be
the real ordering of A on all values of subformulas. The properties of the involution
on A warrant that the conditions in the step checkInvolution() will be satisfied.
(And the equations in the remaining operations will be solvable.) Hence, there is an
accepting computation. On the other hand, if there is an accepting computation on Φ,
then the values of all variables determine a complete evaluation of Φ; by Lemma 6.4.1,
there is a decreasing involution on [0, 1] which satisfies all the identities prescribed by ϕ
on the given values. Note that the check of soundness of the ordering w.r.t. involution is
independent of the other steps and can be performed at any stage (after the ordering ≤0

is established).
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The algorithm can be modified to work also for SBL∼: instead of working with a
fixed algebra, the algorithm first (transforms the input formula into a normal form, and
then) guesses an ordinal sum whose first component is Π and whose number of compo-
nents is bounded by 2m+1, where m is the number of variables in the normal form (for
each variable, we consider its component and the component of its ∼-negation).

Finally, for infinite ordinal sums, we may restrict our attention to the canonical
ones; ifA is any standard BL-algebra andA′ is the canonical standard BL-algebra with
the same universal (equational, quasiequational) theory, then by completeness, the logic
of A∼ coincides with the logic of A′∼.

COROLLARY 6.4.4. Let L be the logic of a standard SBL-algebra. Then THM(L∼)
and CONS(L∼) are coNP-complete.

One might further ask about complexity of fragments of the theory of particular
(standard) SBL∼ algebras (or SMTL∼-algebras); this is an interesting open problem.
Research in this area will be framed by available results on the structure of the lattice of
subvarieties of the variety of SBL∼-algebras. Chapter VIII gives details. We mention
an important example, the case of standard Π∼-algebras given by a combination of the
standard product algebra [0, 1]Π and an arbitrary involutive negation∼ on [0, 1]; such an
algebra will be denoted [0, 1]∼Π .

For [0, 1]Π and ∼1, ∼2 two involutive negations on [0, 1], we say ∼1 and ∼2 are
isomorphic w.r.t. [0, 1]Π iff there is an isomorphism of [0, 1]∼1

Π onto [0, 1]∼2

Π . Any such
isomorphism must obviously be an automorphism of the product t-norm. It is not diffi-
cult to see that the cardinality of the class of isomorphism classes of algebras [0, 1]∼Π , for
all choices of∼ on [0, 1], is that of the continuum. The following result can be obtained:

PROPOSITION 6.4.5 ([18]). Let ∼1, ∼2 be two involutive negations on [0, 1]. Then we
have TAUT([0, 1]∼1

Π ) = TAUT([0, 1]∼2

Π ) iff [0, 1]∼1

Π is isomorphic to [0, 1]∼2

Π .

Hence, nice complexity results can only be obtained for a minority of such algebras.
This result concerning the standard product algebra can be generalized to particular
ordinal sums of Ł- and Π-components, as shown in [27]. In the next section, we give an
upper bound for the particular case of ∼ being the function 1− x.

6.5 The logics ŁΠ and ŁΠ1
2

The logics ŁΠ and ŁΠ1
2 are discussed in detail in Chapter VIII. The logic ŁΠ is

a result of combining the Łukasiewicz and the product connectives in a single logical
system. We use subscripts to distinguish between the two sets of connectives where
necessary, writing &Ł, &Π, etc.; ∼ denotes the involutive negation in Ł. The logic
ŁΠ1

2 has, in addition, a constant 1
2 in the language. All the connectives of the three

important schematic extensions of BL are available in both ŁΠ and ŁΠ1
2 . Moreover,

the4 connective is defined by4ϕ being ¬∼ϕ. Then the4-deduction theorem entails
polynomial equivalence of THM and CONS for both ŁΠ and ŁΠ1

2 (cf. Lemma 3.1.1).
The logics ŁΠ and ŁΠ1

2 can be presented as expansions of Łukasiewicz logic; an-
other approach to axiomatizing ŁΠ is the following one. Take the logic Π∼ and define
ϕ →Ł ψ as ∼(ϕ &Π ∼(ϕ →Π ψ)). Add (ϕ →Ł ψ) → ((ψ →Ł χ) → (ϕ →Ł χ)) to
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the axioms of Π∼. Then one can define all the other connectives of ŁΠ, in particular,
&Ł. For the logic ŁΠ1

2 , introduce a new constant 1
2 and add the axiom 1

2 ↔Ł ∼ 1
2 .

The standard semantics of ŁΠ and ŁΠ1
2 on [0, 1] is obtained by combining the stan-

dard semantics for both sets of connectives: [0, 1]ŁΠ = 〈∗Ł,→Ł, ∗Π,→Π, 0〉. The stan-
dard algebra [0, 1]ŁΠ1

2
has additionally a constant operation 1

2 . Completeness of ŁΠ
with respect to [0, 1]ŁΠ and of ŁΠ1

2 with respect to [0, 1]ŁΠ1
2

can be proved; it fol-
lows that ŁΠ expands its Ł-, G-, and Π-fragment conservatively, and that ŁΠ1

2 is a
conservative expansion of ŁΠ. This also shows what has not been mentioned in the
previous subsection, that the logic ŁΠ is a complete axiomatization of the standard
Π∼-algebra given by the product t-norm and the involutive negation 1− x.

Owing to the presence of an involutive negation, Lemma 3.2.1 holds in full, estab-
lishing usual reductions between tautologousness and satisfiability. Summing up, we
only need to investigate TAUT and SAT for ŁΠ and ŁΠ1

2 .

LEMMA 6.5.1.

(i) TAUT([0, 1]ŁΠ) ≈P TAUT([0, 1]ŁΠ1
2
).

(ii) SAT([0, 1]ŁΠ) ≈P SAT([0, 1]ŁΠ1
2
).

Proof. (i) It is sufficient to show TAUT([0, 1]ŁΠ1
2
) �P TAUT([0, 1]ŁΠ), the other

reduction follows from the fact that the latter set is the 1
2 -free fragment of the former

one (cf. Lemma 3.1.2). Let ϕ be an ŁΠ1
2 -formula, p be a new variable; then

ϕ ∈ TAUT([0, 1]ŁΠ1
2
) iff 4(p↔Ł ∼p)→Ł ϕ( 1

2/p) ∈ TAUT([0, 1]ŁΠ).

Observe that ϕ( 1
2/p) is an ŁΠ-formula. Now assume ϕ ∈ TAUT([0, 1]ŁΠ1

2
); for any

evaluation e in [0, 1]ŁΠ, either e(p ↔Ł ∼p) = 1, then e(p) = 0.5, and e(ϕ( 1
2/p)) = 1

by assumption, or e(p ↔Ł ∼p) < 1, so e(4(p ↔Ł ∼p)) = 0, and hence e(4(p ↔Ł
∼p) →Ł ϕ( 1

2/p)) = 1. Conversely, if 4(p ↔Ł ∼p) →Ł ϕ( 1
2/p) ∈ TAUT([0, 1]ŁΠ),

then in particular all evaluations e in [0, 1]ŁΠ such that e(p) = 0.5 give e(ϕ( 1
2/p)) = 1,

so ϕ ∈ TAUT([0, 1]ŁΠ1
2
).

(ii) Similarly, for p new variable, ϕ ∈ SAT([0, 1]ŁΠ1
2
) iff (p ↔Ł ∼p) &Ł ϕ( 1

2/p) ∈
SAT([0, 1]ŁΠ).

Tautologousness and satisfiability in [0, 1]ŁΠ and [0, 1]ŁΠ1
2

can be shown to be in
PSPACE using a polynomial reduction to Th∃(RCF). Since the TAUT problems for
both algebras are polynomially equivalent (and the same goes for SAT), we henceforth
work only with [0, 1]ŁΠ1

2
.

THEOREM 6.5.2. Th∀([0, 1]ŁΠ1
2
) and Th∃([0, 1]ŁΠ1

2
) are in PSPACE.

Proof. Both proofs are conducted by replacing atomic formulas in the language of
ŁΠ1

2 -algebras with their equivalents in the ordered field of reals. We show that

Th∃([0, 1]ŁΠ1
2
) �P Th∃(RCF).

Let Φ be an existential sentence in the language of ŁΠ1
2 . Using Lemma 3.3.5,

transform Φ into a formula Φ′ of the form ∃x1 . . . ∃xn(Φ1∧Φ2), where Φ1 is a Boolean
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combination of atomic formulas xi = xj , xi ≤ xj , xi < xj for some pairs 1 ≤ i, j ≤ n,
while Φ2 is a conjunction of identities without compound terms.
Define a formula Φ′′ as ∃x1 . . . ∃xn(Φ1 ∧ Φ′2 ∧ Φ3), where

– Φ1 is as before,
– Φ3 is 0 ≤ xi ≤ 1 for each 1 ≤ i ≤ n (boundary conditions), and
– Φ′2 results from Φ2 by processing all identities in Φ2 (i, j, k ∈ {1, . . . , n}) in the

following way:

(i) keep any identity xi = c, where c is a constant;

(ii) replace any xi ∗Ł xj = xk with (xi + xj − 1 ≤ 0 ∧ xk = 0) ∨
(xi + xj − 1 > 0 ∧ xk = xi + xj − 1);

(iii) replace any xi ∗Π xj = xk with xi.xj = xk;

(iv) replace any xi →Ł xj = xk with (xi ≤ xj ∧ xk = 1) ∨
(xi > xj ∧ 1− xi + xj = xk);

(v) replace any xi →Π xj = xk with (xi ≤ xj ∧ xk = 1) ∨
(xi > xj ∧ xi ∗ xk = xj).

Clearly Φ holds in [0, 1]ŁΠ1
2

iff Φ′′ holds in R; for replacement of Łukasiewicz
connectives, see Lemma 4.1.1. Moreover, it is obvious that the translation process can
be performed in time polynomial in |Φ|.

Interestingly, a converse reducibility also holds in a stronger way; namely, we are
going to show next that Th∀(RCF) �P TAUT([0, 1]ŁΠ1

2
).

Let us start with defining a bijection f of (0, 1) onto R. Take

fneg(x) =
4x

2x− 1
fpos(x) =

4− 4x

2x− 1

Then the inverse functions to fneg, fpos are

f−1
neg(x) =

x

2x− 4
f−1

pos(x) =
x+ 4

2x+ 4

The function f is defined from fneg, fpos as follows:

f(x) =


fneg(x) if 0 < x < 1

2

0 if x = 1
2

fpos(x) if 1
2 < x < 1

and the inverse function to f is

f−1(x) =


f−1

neg(x) if x < 0

1
2 if x = 0

f−1
pos(x) if x > 0
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Using f , define an isomorphic copy of the ordered field of reals on (0, 1): let R0 =
〈(0, 1),+0, ·0, 00, 10〉, where for x, y ∈ (0, 1) the operations of R0 are as follows:

x+0 y = f−1(f(x) + f(y))

x ·0 y = f−1(f(x) · f(y))

00 = 1
2

10 = 5
6

and x ≤0 y is strictly order-reversing on (0, 1
2 ) and on ( 1

2 , 1) and order-preserving
otherwise.

As R0 is an isomorphic copy of the ordered field of reals, their theories coincide. We
now define a function that assigns to each open RCF-formula Φ a term in the language
of [0, 1]ŁΠ1

2
. The function is defined by induction on formula structure.

A first observation to be made is that comparisons =, ≤ and < on [0, 1] can be ex-
pressed by equations in the language of ŁΠ1

2 -algebras. In particular, x = y corresponds
to4(x↔Ł y) = 1 (denote t=(x, y) the term on the left-hand side), x ≤ y corresponds
to4(x→Ł y) = 1 and x < y corresponds to4(x→Ł y) &Ł ∼4(x↔Ł y) = 1.

Recall that for x, y ∈ (0, 1) we have x ≤0 y iff either x ≤ 1
2 ≤ y or y ≤ x and

either x, y < 1
2 or 1

2 < x, y. So x ≤0 y on (0, 1) can be expressed as t≤0(x, y) = 1,
where t≤0(x, y) is

4(x ∨ ∼y →Ł
1
2 ) ∨ (4(y →Ł x) ∧ (∼4( 1

2 →Ł x ∨ y) ∨ ∼4(x ∧ y →Ł
1
2 )))

Suppose Φ is an open RCF-formula. We will need to assume that Φ is without
compound terms; Subsection 3.3 shows how to polynomially eliminate compound terms
from a given formula (the statement there is given for existential sentences; apply it to a
negation of the universal closure of Φ).

LEMMA 6.5.3. The functions 00, 10, +0, ·0 are term-definable in [0, 1]ŁΠ1
2

.

Proof. Clearly 0? is 1
2 and 1? is 5

6 .20 For +0, ·0, it is enough to recall that these functions
are piecewise rational; their definability in [0, 1]ŁΠ1

2
follows.

So for each term t in the language of RCF, we have a defining term t? in [0, 1]ŁΠ1
2

;
if Φ has no compound terms, then in particular for each term t in Φ, |t?| is polynomial
in |t|. Now assume Φ is an open RCF-formula without compound terms. We define tΦ

as follows:
– if Φ is s = u, then tΦ is t=(s?, u?);
– if Φ is s ≤ u, then tΦ is t≤

0

(s?, u?);
– if Φ is ¬Θ, then tΦ is ∼tΘ;
– if Φ is Θ ∧Ψ, then tΦ is tΘ ∧ tΨ.

LEMMA 6.5.4. Let Φ be an open RCF-formula. Then Φ holds in the ordered field of
reals iff tΦ = 1 holds in [0, 1]ŁΠ1

2
.

20See the proof of Lemma 6.5.7 for the definition of rationals in [0, 1]ŁΠ1
2

.
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We have shown:

THEOREM 6.5.5. Th∀(R) �P THM([0, 1]ŁΠ1
2
).

Combining the results, we get

THEOREM 6.5.6. THM(ŁΠ1
2 ) ≈P Th∀(R).

We close this subsection by pointing out how logics with rational constants can be
interpreted in the logic ŁΠ1

2 (and hence also ŁΠ).

LEMMA 6.5.7. Q ∩ [0, 1] is polynomially term-definable in [0, 1]ŁΠ1
2

.

Proof. For each q = k
l ∈ Q ∩ [0, 1] we seek to find an ŁΠ1

2 -expression ϕ such that
for each evaluation e in [0, 1]ŁΠ1

2
we have e(ϕ) = q. Moreover, we demand that |ϕ| be

polynomial in |q| ≤ 2 log(l).
Choose n ∈ N the least such that l < 2n; then 2n−1 ≤ l < 2n ≤ 2l, therefore

log(l) < n ≤ log(l) + 1 and n ∈ O(log(l)).
First, for each n ∈ N: 1

2n = 1
2 ∗Π · · · ∗Π

1
2 (n times); the number of factors is n.

To define k
2n for k > 1, we cannot use k

2n = 1
2n ⊕ · · · ⊕

1
2n (k times), because then

the cardinality of the sum would be the value of k (which is exponential in |k|). Instead,
consider that k =

∑
i≤blog(k)c ci.2

i, where (cblog(k)c . . . c0) is the binary representation
of k. For k ≤ 2n, define k

2n =
⊕

i≤blog(k)c(ci ∗Π
1

2n−i ). Here, the cardinality of the
sum is |k| and each summand is in O(n).

Finally, put kl = k
2n →Π

l
2n .

The following corollary entails Theorem 6.3.6 concerning the logic Π(Q); however,
for Ł(Q) and G(Q), we were able to obtain a better upper bound in Subsection 6.3 than
the one implied by the following corollary.

COROLLARY 6.5.8. Let L be one of Ł, G, Π. Then THM(L(Q)) �P THM(ŁΠ1
2 ).

7 MTL and its axiomatic extensions

Despite the tumultuous research in the family of MTL and its extensions, complex-
ity results leave much to be desired for those logics that do not also extend BL. It follows
from [5] that MTL and its axiomatic extensions SMTL and IMTL are decidable since
the corresponding varieties of algebras enjoy the finite embeddability property (FEP);
in fact this implies that the universal theories of the respective varieties of algebras are
decidable. Hence, due to (strong) completeness of MTL (IMTL, SMTL) w.r.t. the class
of MTL-algebras (IMTL-algebras, SMTL-algebras respectively), both theorems and
provability from finite theories for each of the three logics are decidable. Apart from
that, theoremhood and provability in axiomatic extension ΠMTL of MTL is decidable
(though ΠMTL-algebras do not have the FEP), as shown in [28].

The problem with improving this upper bound seems to be our insufficient knowl-
edge of the structure of MTL-algebras (or even standard MTL-algebras). However,
for particular (classes of) MTL-algebras, whose structure is known, usual complexity
results can be obtained, as shown below.

Within this section, we work with the language {&,→,∧, 0}.
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7.1 (Weak) nilpotent minimum logic

MTL was introduced in [12], along with its axiomatic extensions WNM (weak
nilpotent minimum) and NM (nilpotent minimum). WNM is an axiomatic extension of
MTL with the axiom

(ϕ& ψ → 0) ∨ (ϕ ∧ ψ → ϕ& ψ)

and NM is the involutive extension of WNM, obtained by adding to WNM the axiom

¬¬ϕ↔ ϕ.

Let us look at the semantics of these logics. A unary function n : [0, 1] → [0, 1] is
a weak negation iff it is order-reversing, n(0) = 1, n(1) = 0, and x ≤ n(n(x)) for all
x ∈ [0, 1]). Given a weak negation n, one defines

x ∗n y =

{
0 if x ≤ n(y)

min{x, y} otherwise.

Then ∗n is a left-continuous t-norm and the (MTL-)algebra [0, 1]∗n is a standard WNM-
algebra. If one starts with the function 1− x in the role of n, the resulting t-norm is

x ∗NM y =

{
0 if x+ y ≤ 1

min{x, y} otherwise

and the corresponding standard algebra is denoted [0, 1]NM. If one starts from a different
involutive negation, then the whole algebra determined by it is isomorphic to [0, 1]NM.
The logic NM is strongly complete w.r.t. the algebra [0, 1]NM.

Also the logic WNM enjoys strong completeness w.r.t. the above standard algebras,
but this class is not tangible enough for our purpose. It turns out that we can prove
completeness with respect to a narrower class.

For k ∈ N \ {0}, define Ik = {0, 1
k , . . . ,

k−1
k , 1}. Let S ⊆ Ik be arbitrary such that

i
k ∈ S iff k−i−1

k ∈ S for i ≤ k
2 . Define on [0, 1] the following function nSk :

nSk (x) =

{
1− x if x ∈ [ ik ,

i+1
k ] for i

k ∈ S
k−i−1
k otherwise.

It is easy to check that nSk is a weak negation, which determines a corresponding standard
WNM-algebra [0, 1]WNMS

k
.

PROPOSITION 7.1.1 ([12]). The class of WNM-chains is partially embeddable into
the class of standard WNM-algebras [0, 1]WNMS

k
. In particular, each n-element partial

subalgebra of a WNM-chain is embeddable into a [0, 1]WNMS
n′

for some n′ ≤ 2n + 2

and some choice of S.

COROLLARY 7.1.2. The varietyWNM of WNM-algebras is generated by the class of
algebras [0, 1]WNMS

k
(where k ∈ N \ 0, S is an arbitrary subset of {0, 1

k , . . . ,
k−1
k , 1})

as a quasivariety, and the logic WNM enjoys finite strong standard completeness with
respect to this class of algebras.

We now explore complexity of the two logics; the results first appeared in [32].
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THEOREM 7.1.3. Th∀([0, 1]NM) is coNP-complete.

Proof. Hardness follows from Theorem 3.4.1. We show NP-containment of the set
Th∃([0, 1]NM).21

For any term t(x1, . . . , xn) and for any evaluation e in [0, 1]NM, the value e(t′) for
any subterm t′ � t will be among

V = {0, e(x1), . . . , e(xn),¬e(x1), . . . ,¬e(xn), 1}

and that operations on V are order-determined, i.e., the value e(t′) is fully determined
by the ordering of V . Note that the negation ¬ is involutive, and so e(x) < e(y) iff
¬e(y) < ¬e(x).

It follows that, given an existential sentence in the language of MTL, we may re-
place the existential quantification over all evaluations by an existential quantification
over all orderings of variables occurring in the input formula and of their negations (with
respect to the bottom and top elements of the algebra). The ordering must respect the in-
volutive negation, i.e., the pairs 〈e(x1),¬e(x1)〉, 〈e(x2),¬e(x2)〉, . . . , 〈e(xn),¬e(xn)〉
must be nested.

We describe a nondeterministic ALGORITHM EX-NM which accepts existential
sentences valid in [0, 1]NM. An existential sentence ∃x1 . . . ∃xnΦ(x1, . . . , xn) is given,
where Φ is a Boolean combination of identities. Guess a linear ordering ≤0 of the set
{0, x1, . . . , xn,¬x1, . . . ,¬xn, 1}, such that 0 ≤0 xi ≤0 1 for 1 ≤ i ≤ n, and in such a
way that the pairs induced by ¬ are nested. This is clearly polynomial in the input size.
Then compute the value of each identity in Φ: on the basis of ≤0, evaluate all terms
and subsequently also all atomic formulas. Then compute the value of the Boolean
combination in Φ, accept iff this value is 1.

Using finite strong standard completeness theorem for NM, proved in [12], we get

COROLLARY 7.1.4.

(i) SAT(pos)([0, 1]NM) is NP-complete.

(ii) TAUT(pos)([0, 1]NM) and CONS([0, 1]NM) are coNP-complete.

(iii) THM(NM) and CONS(NM) are coNP-complete.

THEOREM 7.1.5. For each choice of k and S, Th∀([0, 1]WNMS
k
) is coNP-complete.

Proof. Let k and S be fixed and let [0, 1]WNMS
k

be the standard WNM-algebra given by
these parameters. Hardness follows from Theorem 3.4.1. We show NP-containment of
Th∃([0, 1]WNMS

k
), in a manner similar to the proof of Theorem 7.1.3.

Clearly for any term t(x1, . . . , xn) and for any evaluation e in [0, 1]WNMS
k

, the value
e(t′) for any subterm t′ � t will be among

V = {0, e(x1), . . . , e(xn),¬e(x1), . . . ,¬e(xn),¬¬e(x1), . . . ,¬¬e(xn), 1}

and operations on V are order-determined, i.e., the value e(t′) is fully determined by
the ordering of V . Therefore again, we take an existential quantification over particular
orderings.

21Cf. also the proof of Theorem 5.1.1.
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We describe a nondeterministic ALGORITHM EX-WNM which accepts existential
sentences valid in [0, 1]WNMS

k
. Let an existential sentence ∃x1 . . . ∃xnΦ(x1, . . . , xn)

be given, where Φ is a Boolean combination of identities. Guess a linear ordering
≤0 of a set consisting of 0, 1 and terms xi, ¬xi and ¬¬xi for 1 ≤ i ≤ n such that
0 ≤0 xi ≤0 1 for 1 ≤ i ≤ n, such that the pairs 〈¬x1, {x1,¬¬x1}〉, 〈¬x2, {x2,¬¬x2}〉,
. . . , 〈¬xn, {xn,¬¬xn}〉 are nested, satisfy xi ≤ ¬¬xi and conform to functionality
of ¬, namely, if for any expressions a, b we have a =0 b, then ¬a =0 ¬b. This can be
done in time polynomial in |Φ|. Then compute the value of each atomic formula in Φ:
on the basis of ≤0, evaluate all terms and subsequently also all atomic formulas. Then
compute the value of the Boolean formula Φ, accept iff the value is 1.

THEOREM 7.1.6.
(i) SAT(pos)(WNM) is NP-complete.

(ii) TAUT(pos)(WNM) and CONS(WNM) are coNP-complete.

(iii) THM(WNM) and CONS(WNM) are coNP-complete.

Proof. Hardness follows from Theorem 3.4.1. Due to Proposition 7.1.1, we may limit
ourselves to algebras [0, 1]WNMS

k
for k bounded polynomially by the length of the input,

as follows. (i) Given a formula ϕ with n variables as an instance of SAT(pos)(WNM),
guess a k ≤ 2n + 2 and ask whether ϕ ∈ SAT(pos)([0, 1]WNMS

k
); the latter is in NP.

This algorithm solves the problem correctly: If a formula ϕ is (positively) satisfiable
in any WNM-algebra, then it is also (positively) satisfiable in some WNM-chain. The
evaluation of subterms forms a partial subalgebra, which is embeddable into an algebra
[0, 1]WNMS

k
for some k ≤ 2n + 2 and some choice of S by Proposition 7.1.1. Hence

ϕ ∈ SAT(pos)(WNM) iff there are k and S (both polynomial in |ϕ|) such that ϕ ∈
SAT(pos)([0, 1]WNMS

k
). (ii) If a formula is not a tautology, then this shows in some

WNM-chain. The rest is as in (i). The case for CONS is analogous.

We remark that one can obtain these complexity bounds also for tautologies of each
of [0, 1]NM and of [0, 1]WNMs

k
for k ∈ N \ 0 and a choice of S enriched with con-

stants for Q; hence, e.g., the logic NM(Q) (expansion of NM with rational constants,
axiomatized by adding bookkeeping axioms as valid in the standard NM-algebra) is
coNP-complete. Details can be found in [15].

8 Overview of results and open problems

Table 1 gives a summary of results obtained for logics (i.e., theoremhood and prov-
ability from finite theories); it omits results obtained for the corresponding classes of
algebras (i.e., satisfiability, tautologousness, and finite consequence relation), both for
spatial reasons and because these results do not add much new information.

The presentation is rather condensed, therefore it merits some explanation. The
rows of the table represent logics considered in this chapter. For each of these, the
column entries specify the complexity result for theoremhood/provability (these are, for
all cases, identical). The ‘–’ character means the logic has not been considered within
this chapter. However, one can still use Lemma 3.1.2 to obtain bounds on complexity of
fragments/expansions.
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Open problems and directions. As already observed, BL and its extensions have re-
ceived quite a thorough treatment as to basic questions of computational complexity of
theoremhood and provability in the propositional case. (Chapter XI addresses arithmeti-
cal complexity of first-order calculi.) From these basic results, roughly speaking one
can move in several directions.

The greatest itch, no doubt, is the lack of complexity results for MTL and its exten-
sions (that are not at the same time extensions of BL). The same is true for semilinear
extensions of other substructural logics introduced in this book, some of whom are not
known to be decidable; this is the case of Uninorm Logic UL. Another track of research
can be taken by modifying the language. This has been done in a degree, but the picture
is still very incomplete both ways—shifting to fragments of the basic language, or to its
expansions, or both. Moreover, one can pass from tautologousness and provability to
more intricate problems involving propositional or first-order formulas. This includes
admissible rules, quantified propositional formulas, etc. One can also look at (fragments
of) algebraic theories for classes of algebras among the equivalent algebraic semantics
for the logics. This is what has been, to a degree, presented in this chapter, but our
approach has been a utilitarian one, while the topic is of independent interest.

9 Historical remarks and further reading

Earlier chapters of this book present fuzzy logics within the broader framework
of substructural logics. In particular, the concept of semilinearity is introduced as an
essential trait of fuzzy logics, and it is shown how some prototypical fuzzy logics can
be obtained as semilinear extensions of well-known substructural logics, or as axiomatic
extensions thereof. To exemplify, MTL is the semilinear extension of the logic FLew

and G is the semilinear extension of intuitionistic logic INT.
Semilinearity put aside, there is a substantial amount of complexity results on sub-

structural logics (out of the scope of this chapter). Remarkably, the full Lambek cal-
culus FL, and logics obtained by adding the structural rules of exchange, weakening
and contraction to FL, possess streamlined Gentzen-style calculi, some of whom admit
proofsearch in PSPACE (due to the subformula property: each formula occurring in
the proof of ϕ is a subformula of ϕ). This is the case of FL itself, as well as FLew;
for both these logics, theoremhood is in fact PSPACE-complete. Unfortunately, the
virtue of polynomial-space proof search seems to be lost when semilinearity is assumed.
Instead, we have relied on completeness with respect to a suitable class of algebras and
on sufficient understanding of the structure of these algebras. It has hopefully been
demonstrated why, for many logics discussed in this chapter, one can work with the
universal fragment of the full algebraic theory of standard algebras to obtain the same
complexity result as for the equational, or the quasiequational, fragment. We stress that
in a general case, provability from finite theories may be computationally much harder
than theoremhood. For example, provability from finite theories in FL is undecidable.

Interestingly, the paper [6] also shows PSPACE-containment for theoremhood
and provability in the logic GBLewf . This logic is obtained from FLew by adding the
divisibility axiom; adding semilinearity to GBLewf , one obtains BL. It is shown in the
paper that provability in GBLewf is PSPACE-hard.
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Finally, let us mention a classic result of R. Statman [41]: theoremhood in intu-
itionistic logic INT (which is exactly FLewc) is PSPACE-complete (and, because this
logic enjoys the deduction theorem, so is provability).

We now turn to the story of unravelling computational complexity of propositional
fuzzy logics presented in this chapter. It begins with D. Mundici’s result establishing
NP-completeness of satisfiability of propositional formulas in the standard Lukasiewicz
algebra, presented in [37] in 1987. Mundici’s method was proving an upper bound by
reasoning about the functions represented by formulas. Our method is a rather straight-
forward reduction to the INEQ problem; however, we try to recover the geometry behind
the small-model theorem that gives upper bounds for both LP and INEQ. Thus our ap-
proach rather resembles the proof presented in [20], where a reduction to the bounded
version of MIP problem is used. Mundici’s pioneering work laid a basis for results
in other logics given by continuous t-norms, to be obtained much later; at the time of
Mundici’s result, mathematical fuzzy logic, as a homogeneous branch of formal non-
classical logics, had yet to be developed.

It was not until almost ten years later that the fundamentals of Hájek’s basic logic
were laid, which was the starting point of a focused and tumultuous research involving
also computational complexity issues. Theoremhood was addressed via tautologousness
in the corresponding (class of) standard algebras indicated by completeness theorems.
In our presentation, we use the ideas of the proofs in the respective papers to obtain a
more general result, shifting from identities in the algebraic theory to quasiidentities and
universal theories.

In 1998, the paper [2] determined the complexity of theoremhood in product logic,
showing it to be coNP-complete using a reduction to Łukasiewicz logic. This paper
also mentions Gödel logic, but disclaims the result as common knowledge. As to the
fact that (positively) satisfiable formulas and positive tautologies in the two standard
algebras coincide with classical satisfiability and tautologousness respectively, this step
was taken in [21]. The last reference gives a good overview of complexity results for
Łukasiewicz, Gödel, and product logics.

In 2002, the paper [3] settled the complexity of theoremhood for propositional BL,
relying on its standard completeness, Mostert–Shields theorem, and a simple but crucial
observation on the number of components needed to represent potential counterexam-
ples to tautologousness (incarnated here as Lemma 5.2.3). Later in the same year, a
similar method was adapted to work also for any propositional logic given by a standard
BL-algebra, in the paper [25]. The latter result, which implies there are only countably
many subvarieties of BL given by a single standard BL-algebra, was anticipated in the
strong result of [1] which characterizes those standard BL-algebras that generate the full
variety BL.

Another complexity result in the family of BL and its extensions concerned ax-
iomatic extensions of Łukasiewicz logic and was presented in [8]; it relies on Komori’s
characterization of subvarieties of MV, presented in [31]. The paper [30] also belongs
to this family, showing that admissibility of rules in Łukasiewicz logic is in PSPACE.

For logics in expanded or restricted languages, results are rather fragmentary and
some are negative. The computational complexity results for falsehood-free logics, as
presented here, are covered by the comprehensive paper [13]. For involutive negations
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added as an independent new connective, the result [26] shows that theoremhood and
provability in a logic given by some standard SBL-algebra and the class of all involutive
negations is coNP-complete. However, this result says nothing about individual combi-
nations of standard algebras and involutive negations, most notably, it says nothing about
[0, 1]ŁΠ. As to the logics ŁΠ and ŁΠ1

2 , containment in PSPACE for theoremhood was
shown in [23] using the universal/existential fragment of the RCF-theory; the latter was
shown to be in PSPACE in [7]. The result of polynomial equivalence of theorems
of ŁΠ1

2 and the universal fragment of the RCF theory comes from [33]. Intriguingly,
these problems are apparently not known to be PSPACE-complete. Computational
complexity for logics with rational constants has been addressed in [22]. In fact, the
scope of the paper is slightly broader than presented here, dealing also with finite sums
of particular properties. Moreover, rational expansions of standard WNM-algebras have
been studied in [15].

For MTL and its extensions (expansions), results are mostly limited to decidability,
obtained as in [5] for MTL and its axiomatic extensions SMTL and IMTL via finite
embeddability property, and in [28] for ΠMTL. Results given here on NM and WNM
are from [32].

We also mention Abelian logic, the logic of Abelian `-groups (see [35]). This
logic not only belongs to the family of semilinear substructural logics, but relates both
to Łukasiewicz logic (see [34]) and to product logic (because of its semantics). This
logic proves exactly all expressions ϕ in the `-group language for which ϕ ≥ 0 holds
in all `-groups, or equivalently, in Z. Using a variant of the small-model theorem for
integers, as given in Section 2.5, one can show that the universal theory of the additive
group on Z (and hence, due to a classic result of Y.S. Gurevich and A.I. Kokorin, of
all Abelian o-groups) is in coNP. V. Weispfenning ([42]) extended this result to `-
groups by extending the small-model theorem to incorporate also the width of the lattice
ordering: if a universal formula Φ is not valid in the class of all `-groups, then this can
be shown in an `-group with of width polynomially bounded by |Φ|. Hence, universal
theory of Abelian `-groups is coNP-complete.

To complement the account, we relied on [38] as a reference text on computational
complexity.
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