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Abstract

In this paper we investigate the propositional logic of standard
algebras for Hájek’s Basic Fuzzy Logic BL in a language expanded
with propositional constants for the idempotent elements delimiting
the  L-, G-, and Π-components of the algebra. We start from a fixed
standard BL-algebra; introduce new propositional constants; present a
suitable set of axioms; investigate completeness results; and give some
complexity results.

1 Introduction

Expansions of Basic Fuzzy Logic, or indeed of many other systems of many-
valued logic, with propositional truth constants have been studied from var-
ious points of view. Pavelka [19] defined a deductive system allowing for
reasoning with degrees of truth via including constants for all truth values
into the propositional language, and his completeness result (the so-called
Pavelka-style completeness) stated, for each theory and each formula, the
equality of the provability degree and the validity degree of the formula
with respect to the theory. In [11], Hájek presents a similar completeness
result for a simpler system over the standard MV-algebra with constants
for Q, with bookkeeping axioms added to propositional  Lukasiewicz logic (r
interpreted as r ∈ Q):

r& s ≡ r ∗ s

r → s ≡ r ⇒ s

These axioms yield both Pavelka-style completeness and a finite strong com-
pleteness with respect to the canonical algebra [0, 1] L.



The elegant simplicity of bookkeeping axioms motivated a subsequent
study of their effect in combination with logics other than  Lukasiewicz;
cf. [8], [15], [20], [7]. The last reference is particularly relevant for our
paper: the authors start from a standard BL-algebra [0, 1]∗ and introduce
propositional constants for a countable subalgebra C ⊂ [0, 1]∗; they restrict
their attention to cases where the continuous t-norm ∗ is a finite ordinal
sum, there is at least one constant inside each non-singleton component of
the sum, and constants in  L-components behave as rationals. They take
the logic L for [0, 1]∗ in the BL-language (which is finitely axiomatizable,
cf. [9]), add bookkeeping axioms for C, and study the properties of the re-
sulting deductive system L(C), mainly from a completeness point of view.
Interestingly, it turns out that the logic L(C) thus obtained is typically not
complete with respect to its canonical algebra, the only unconditional ex-
ceptions being  L(C), G(C), Π(C). (Meanwhile, only  L(C) enjoys the finite
strong canonical completeness.)

In this paper, also starting with a fixed standard BL-algebra [0, 1]∗, we in-
troduce propositional constants for idempotent elements delimiting its non-
singleton  L-, G-, and Π-components. We study the properties of the set
of tautologies of the given algebra in the expanded language, focusing on
axiomatizations. By way of comparison, the approach of [7] is more general
than ours in its initial choice of the set of truth values for the new constants.
Interestingly, as to axioms of the desired logic, [7] use the axioms of [0, 1]∗ in
the BL-language and bookkeeping. In this paper, we start with the axioms
of BL, bookkeeping, and an additional set of axioms obtained by translating
the axioms of the axiomatic extensions of BL into parts of the ordinal sum
(this additional set of axioms is thus infinite for infinite ordinal sums). A no-
table difference is that out axioms yield canonical completeness (though not
finite strong canonical completeness). While [7] is a comprehensive study of
the outcome of adding bookkeeping axioms to logics of continuous t-norm,
our paper is targeted towards canonical completeness.

It is worth stressing here that our approach relies strongly on decompo-
sition of BL-chains (particularly the standard ones) into well-known com-
ponents. For that reason, it applies best to Basic Logic, where suitable
decomposition theorems are available.

A particular case of the general setting of this paper was studied in [14],
where only one particular standard BL-algebra [0, 1] L⊕Π was considered; the
present paper can be viewed as a continuation of [14]. Let us now sketch a
broader context for the methods and results. Hájek’s paper on hedges [12]
presents a logic which makes it possible (like it is possible in our system)
to express the isomorphism type of the n-th component with a formula,
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for each n ∈ N; this provides a simple method of constructing algebras
whose tautologies in the expanded language are of arbitrarily high degree
of undecidability. A more general setting for these operators was presented
in [17]. In [21], the author uses hedges in BL to construct a Gentzen proof
system for BL; a recent comprehensive study along these lines is to be found
in [4]. In [16], the authors present a way of definining each continuous t-norm
that is a finite ordinal sum inside the logic  LΠ1/2.

This paper is organized as follows. A review of some basic definitions and
results is presented in Section 2. In Section 3, the language is expanded with
new propositional constants, and bookkeeping axioms, as well as algebraic
semantics and general and standard completeness results, are introduced.
The axioms and algebraization in this section are a rephrasing of [7] for the
case of C being component delimiters, except for the fact that we consider
also infinite ordinal sums; we prove the partial embeddability property for
this more general case in Lemma 3.6. Section 4 presents new axioms that
reflect the isomorphism type of the components, and gives canonical com-
pleteness results. Section 5 gives complexity results for the logics. Section 6
points out possible directions for continuation of the topic. Section 7 covers
some auxiliary statements.

2 Background

Well-known facts are presented in this section that form a necessary back-
ground against which the content of this paper is shaped. The presentation
is concise; throughout, references are given to comprehensive works on the
topics. Our approach is rather in the style of [11], taking BL as the base
logic, relying on Hilbert-style calculi, and understanding logics as sets of
formulas.

A propositional language is a set of propositional connectives (proposi-
tional constants being taken as nullary connectives). Formulas in a language
L are well-formed strings in an alphabet consisting of a countably infinite set
of propositional variables, propositional connectives in L, and parentheses.
If L is a propositional language, a logic in the language L is a set of formulas
in L closed under substitution and the rule of modus ponens. In particular,
if A is an L-algebra, then the logic of A is the set of tautologies of A.

A logic L is axiomatized by a set Ax ⊆ L iff each ϕ in L is provable
from the schemata Ax using modus ponens. A theory in a language L is a
set of formulas in L. If T is a theory, ϕ a formula, and L a logic, all in a
language L, we write T `L ϕ and say T proves ϕ in L iff ϕ is provable from
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the axioms T ∪ L using modus ponens.
If L1 is a logic in a language L1 and L2 is a logic in the language L2, we

say L2 is an axiomatic1 expansion of L1 iff L1 ⊆ L2 (entailing L1 ⊆ L2); if
L1 = L2 we speak about extensions rather than expansions. In particular,
if Ax1 ⊆ Ax2 are two sets of formulas, then the logic axiomatized by Ax2

is an axiomatic expansion of the logic axiomatized by Ax1. If a logic L2 in
a language L2 expands a logic L1 in a language L1, we say the expansion is
conservative iff L2 � L1 = L1 (i.e., L1 is the L1-fragment of L2).

Now we define the propositional Basic Fuzzy Logic, denoted BL, which
has been introduced and discussed in detail in [11]; see also [10], [1]. The
basic language of BL is {0, & ,→}, and one defines:

¬ϕ as ϕ→ 0
ϕ∧ψ as ϕ& (ϕ→ ψ)
ϕ∨ψ as ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ)
ϕ≡ψ as (ϕ→ ψ) & (ψ → ϕ)

1 as 0→ 0

Definition 2.1. (The Basic Fuzzy Logic BL) The propositional logic BL
is axiomatized by the following schemata of axioms.2

(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(A2) (ϕ&ψ)→ ϕ
(A3) (ϕ&ψ)→ (ψ&ϕ)
(A4) (ϕ& (ϕ→ ψ))→ (ψ& (ψ → ϕ))
(A5a) (ϕ→ (ψ → χ))→ ((ϕ&ψ)→ χ)
(A5b) ((ϕ&ψ)→ χ)→ (ϕ→ (ψ → χ))
(A6) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)
(A7) 0→ ϕ
The deduction rule of BL is modus ponens.

 Lukasiewicz logic  L is axiomatized by BL plus the axiom schema ¬¬ϕ→
ϕ. Gödel logic G is axiomatized by BL plus the axiom schema ϕ → ϕ&ϕ.
Product logic Π is axiomatized by BL plus the axiom schema (ϕ → χ) ∨
((ϕ→ (ϕ&ψ))→ ψ).

Definition 2.2. (BL-algebra)
A BL-algebra is an algebra A = 〈A,∧,∨, ∗,⇒, 0A, 1A〉 such that:

1Since all extensions/expansions used in this paper are axiomatic (i.e., no new rules
are added), the term ‘axiomatic’ is sometimes omitted.

2See [3] for a revised set of axioms.
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(i) 〈A,∧,∨, 0A, 1A〉 is a bounded lattice
(ii) 〈A, ∗, 1A〉 is a commutative monoid
(iii) for all x, y, z ∈ A, z ≤ (x⇒ y) iff x ∗ z ≤ y
(iv) for all x, y ∈ A, x ∧ y = x ∗ (x⇒ y)
(v) for all x, y ∈ A, (x⇒ y) ∨ (y ⇒ x) = 1A

Linearly ordered BL-algebras are called BL-chains.

The variety BL of BL-algebras forms the equivalent algebraic semantics
of BL (cf. [2]), where ∗ interprets the strong conjunction & , the residuum
⇒ interprets the implication →, 0A interprets the constant 0. Evaluations
are defined in the usual way, and we say a formula ϕ is a tautology of an
algebra A (or that it is valid in A), and write |=A ϕ, iff ϕ yields the value
1A under all evaluations in A. Analogously, for a theory T and a formula ϕ,
we write T |=A ϕ iff ϕ yields the value 1A under all A-evaluations satisfying
T .

If L is an axiomatic extension of BL, an L-algebra is a BL-algebra vali-
dating all formulas in L. Each axiomatic extension of BL corresponds to a
subvariety of BL. In particular, the variety of MV-algebras (Gödel algebras,
product algebras) corresponds to  Lukasiewicz logic (Gödel logic, product
logic respectively).

Theorem 2.3. (Strong completeness theorem) [11] Let L be an ax-
iomatic extension of BL. Let T ∪ {ϕ} be a set of formulas of BL. Then
T `L ϕ iff T |=A ϕ for each (linearly ordered) L-algebra A.

BL-algebras whose domain is the real unit interval [0, 1] are of special
interest as they constitute the intended semantics of BL. If ∗ is a continuous
t-norm on [0, 1] (i.e., a binary operation that is associative, commutative,
nondecreasing, satisfies boundary conditions x ∗ 0 = 0, x ∗ 1 = x and is
continuous), then [0, 1]∗ = 〈[0, 1],∧,∨, ∗,⇒, 0, 1〉, where ∧, ∨ are order-
determined and x ⇒ y = max{z |x ∗ z ≤ y} (the residuum of ∗), is a
BL-algebra (fully determined by ∗). It turns out that in any BL-algebra on
[0, 1], the monoidal operation ∗ is always continuous, and that BL-algebras
on [0, 1] coincide with algebras given by continuous t-norms on [0, 1]. They
are commonly referred to as standard BL-algebras. The standard BL-algebra
given by a continuous t-norm ∗ is denoted [0, 1]∗.

The continuous t-norms corresponding to the three abovementioned ex-
tensions of BL are as follows:

x ∗ y x⇒ y for x > y

 Lukasiewicz max(x+ y − 1, 0) 1− x+ y

Gödel min(x, y) y

product x.y y/x
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The next theorem, due to Mostert and Shields (cf. [18]) and often re-
ferred to as the representation theorem for continuous t-norms, explains the
importance of the three examples above. For a continuous t-norm ∗, the set
of its idempotents is a closed subset of [0, 1], its complement is a union of
countably many pairwise disjoint open intervals; denote this set of intervals
Io. Let I be the set of closures of the elements of Io.

Theorem 2.4. [18] Let ∗ be a continuous t-norm.
(i) For each [a, b] ∈ I, ∗ � [a, b] is isomorphic either to the product t-norm
on [0, 1] or to the  Lukasiewicz t-norm on [0, 1].
(ii) For x, y ∈ [0, 1], if x, y 6∈ [a, b] ∈ I, then x ∗ y = min(x, y).

For each continuous t-norm, the maximal, closed intervals which are
isomorphic copies of the  Lukasiewicz, Gödel, or product t-norm are called
the non-singleton components of the t-norm; we use the terms  L-, G-, or
Π-components and the three letters to denote the isomorphism type of a
component. Not every element of [0, 1] belongs to a non-singleton compo-
nent; those that do not are called the singleton components. We use ⊕ as
the addition symbol for components.

Apart from the algebraic completeness given above, the logics BL,  L, G,
and Π enjoy standard completeness, which rests on partial embeddability
results and (in the case of BL) on a variant of the above representation
theorem for saturated BL-chains (defined below). For A and B two algebras
with the same signature, we say A is partially embeddable into B iff every
finite partial subalgebra of A is embeddable into B, that is, for each finite
set A0 ⊆ A there is a one-to-one mapping f : A0 −→ B such that for each
n-ary function symbol g in the language, if for a1, . . . , an ∈ A0 we have
g(a1, . . . , an) ∈ A0, then f(gA(a1, . . . , an)) = gB(f(a1), . . . , f(an)). For K,
L two classes of algebras with the same signature, we say K is partially
embeddable into L iff each finite partial subalgebra of a member of K is
embeddable into a member of L.

The following theorem is elementary (but cf. Proposition 11 of [7], con-
ditioning the converse implication).

Theorem 2.5. Let L be an axiomatic extension (or an algebraizable ax-
iomatic expansion) of BL. If the class of all L-chains is partially embeddable
into the class of all standard L-algebras, then L enjoys the finite strong
standard completeness (FSSC): for a finite theory T and a formula ϕ in the
language of L, T `L ϕ iff T |=A ϕ for each standard L-algebra A.

All MV-chains are partially embeddable into [0, 1] L (the standard MV-
algebra, given by the  Lukasiewicz t-norm), a result due to Chang; it follows

6



that  Lukasiewicz logic  L is complete w.r.t. tautologies of [0, 1] L, and the
completeness extends to finite theories over  L. Likewise, Gödel chains are
partially embeddable into [0, 1]G, hence Gödel logic G enjoys FSSC (in fact,
G is the only logic given by a continuous t-norm that has strong standard
completeness also for infinite theories); product chains are partially embed-
dable into [0, 1]Π, and product logic Π enjoys FSSC; see [11] for details.

On the basis of that, one can show partial embeddability of BL-chains
into standard BL-algebras, using the following results from [10] and [5]. A
BL-chain A is saturated iff for each cut X, Y in A, there is an idempotent
d s. t. x ∈ X and y ∈ Y implies x ≤ d ≤ y, where a pair X, Y forms a cut
in A iff X ∪ Y = A, x ∈ X and y ∈ Y implies x ≤ y, Y is closed under ∗,
and x ∈ X, y ∈ Y implies x ∗ y = x. Each BL-chain can be embedded in a
saturated BL-chain in such a way that the image is dense.

Let A be a BL-chain, a ∈ A. For any x, y ∈ A we denote x ⇒a y =
min(x ⇒ y, a). If c, d are idempotent elements of A, then A|[c, d] denotes
the BL-algebra 〈A,∧[c,d],∨[c,d], ∗[c,d], (⇒d)[c,d]c, d〉, where f [c,d] denotes the
restriction of the operation f on A to [c, d].

Lemma 2.6. [5] Let A = 〈A,∧,∨, ∗,⇒, 0, 1〉 be a saturated BL-chain and
E ⊆ A be the set of idempotent elements of A.
(i) For each a < b ∈ E, A|[a, b] is a BL-chain
(ii) If a ∈ E, then there is a greatest closed interval [c, d] ⊆ E such that
a ∈ [c, d] (where c = d is an option); A|[c, d] is a Gödel algebra
(iii) If a < b ∈ E, (a, b)∩E = ∅, then A|[a, b] is an MV-algebra or a product
algebra.

One can decompose saturated BL-chains into components in a way anal-
ogous to standard BL-algebras, taking maximal (nontrivial) Gödel chains as
single components.

Theorem 2.7. Let A be a saturated BL-chain. Then A =
⊕

j∈J Aj, where
each Aj, j ∈ J is an MV-chain, a product chain, a maximal Gödel chain,
or a singleton.

From this one immediately gets (componentwise) partial embeddability
of BL-chains into standard BL-algebras, and hence FSSC for BL. See Corol-
lary 7.4 in the Appendix for a general FSSC result for extensions of BL given
by a single continuous t-norm.

Needless to say, expansions of BL correspond to expansions of BL-
algebras with the corresponding operations. If L1 ⊆ L2 are two (algebraic)
languages and the algebra A is an L2-structure, we denote A � L1 its L1-
reduct.
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3 Logic of constants

According to Theorem 2.4, each continuous t-norm determines a set of com-
ponents on the real unit interval [0, 1]. Each component is delimited by two
endpoints.

Definition 3.1. (Endpoints of ∗) For a given continuous t-norm ∗, let
EP0(∗) denote the set of elements of [0, 1] that are idempotent w.r.t. ∗ and
delimit its non-singleton  L-, G-, and Π-components. Further, let EP(∗) =
EP0(∗) ∪ {0, 1}. The elements of EP(∗) are called endpoints of ∗.

For each ∗, the set EP(∗) is countable (while this need not be the case
for all idempotents of ∗, even if ∗ has no non-singleton Gödel components).
The union of all non-singleton components of ∗ forms a dense set in [0, 1].
If, for two standard BL-algebras [0, 1]∗1 and [0, 1]∗2 , their sets of endpoints
EP(∗1) and EP(∗2) are order-isomorphic via an f and for x, y ∈ EP(∗1) we
have [x, y] is an  L-component, (G-component, Π-component) in [0, 1]∗1 iff
[f(x), f(y)] is an  L-component (G-component, Π-component respectively)
in [0, 1]∗2 , then [0, 1]∗1 and [0, 1]∗2 are isomorphic.

It is convenient to enumerate the endpoints with rational numbers. In-
deed, from a class of pairwise isomorphic continuous t-norms, one can choose
a representative ∗ with EP(∗) ⊆ Q (cf. Lemma 7.1 in the Appendix). For
any continuous t-norm ∗ under consideration, we shall assume all elements of
EP(∗) to be rational, unless explicitly stated otherwise. Note that EP(∗) is
closed under the operations of the BL-algebra [0, 1]∗: the elements of EP(∗)
are idempotent, hence the operations are determined by the total ordering
of [0, 1]∗.

Definition 3.2. (Successor function for EP) Fix ∗ with endpoints EP(∗).
Let + : EP(∗) −→ EP(∗) be the function assigning to each r ∈ EP(∗) an
r′ ∈ EP(∗) s. t. r′ = min{x : x ∈ EP(∗) and r < x}; set +(r) = r if no such
r′ exists. We write r+ for +(r).

Given a continuous t-norm ∗ with rational endpoints EP(∗), introduce
a set of new propositional truth constants C∗ = {cr : r ∈ EP(∗)} into the
propositional language of BL. (As for the new constants c0 and c1, we shall
stipulate c0 ≡ 0 and c1 ≡ 1 in the set of axioms.) The canonical semantics
in [0, 1]∗ is e(cr) = r for any evaluation e. We can define the + function on
C∗, by putting c+

r = c(r+).

For each continuous t-norm ∗ we define a propositional logic BLEP(∗)
in the language of BL expanded with C∗. Our new axioms will capture
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the idempotence and the ordering of the endpoints, but not yet the type
of components. As a matter of fact, the axioms for constants introduced
are (equivalent to) bookkeeping axioms for the set EP(∗), as given in [7].
Therefore the results of that paper (obtained for a much more general case)
hold for the logic BLEP(∗).

Definition 3.3. Let ∗ be a continuous t-norm with endpoints EP(∗). The
logic BLEP(∗) expands the language of BL with a set of new propositional
constants C∗. The axioms of the logic BLEP(∗) are the axioms of BL plus
the following formulas:

(EPr
1) cr & cr ≡ cr for each r ∈ EP(∗)

(EPr,s
2 ) cr → cs for each r, s ∈ EP(∗) s.t. r ≤ s

(EPr,s
3 ) (cs → cr)→ cr for each r, s ∈ EP(∗) s.t. r < s

(EP4) c0 ≡ 0, c1 ≡ 1

The deduction rule is modus ponens.

Definition 3.4. (BLEP(∗)-algebra) Let ∗ be a continuous t-norm with end-
points EP(∗). A BLEP(∗)-algebra is a structure

A = 〈A,∧,∨, ∗,⇒, 0A, 1A, {rA}r∈EP(∗)〉

such that 〈A,∧,∨, ∗,⇒, 0A, 1A〉 is a BL-algebra and all axioms of BLEP(∗)
hold under e(cr) = rA for all r ∈ EP(∗) and all evaluations e.

A standard BLEP(∗)-algebra is any BLEP(∗)-algebra on [0, 1]. A canonical
BLEP(∗)-algebra is a standard algebra where e(cr) = r for all r ∈ EP(∗) and
all evaluations e.

In any BLEP(∗)-algebra A, some of its constants may coincide with 1A.
In particular, any BL-algebra A can be viewed as a BLEP(∗)-algebra for any
∗, where rA = 1 for all r ∈ EP(∗), r 6= 0. Moreover, the following is easily
observed:

Lemma 3.5. Let A be a BL-algebra and a ≤ b two idempotent elements of
A. Then (b⇒ a)⇒ a = 1A in A iff a < b ≤ 1A or a = 1A.

The following is straightforward (using [7] if needed):

• BLEP(∗)-algebras are the equivalent algebraic semantics of BLEP(∗)

• BLEP(∗)-algebras form a variety
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• Strong completeness: for theory T and any formula ϕ in the lan-
guage of BLEP(∗), T `BLEP(∗) ϕ iff T |=A ϕ for each (linearly ordered)
BLEP(∗)-algebra A.

• Each BL-algebra can be expanded to a BLEP(∗)-algebra by setting
e(cr) = 1 for each e and for each r ∈ EP(∗), r > 0.

• BLEP(∗) is a conservative expansion of BL.

We now prove finite strong standard completeness for BLEP(∗), using par-
tial embeddability of BLEP(∗)-chains into standard BLEP(∗)-algebras. Note
that strong standard completeness cannot be hoped for as even the fragment
of the logic in the language of BL typically does not enjoy it. Also, BLEP(∗)
is not strong enough to yield canonical completeness; the reason is that the
axioms of BLEP(∗) do not reflect the isomorphism type of each of the com-
ponents of ∗, as can be observed by considering an ∗ where EP(∗) = {0, 1}.

Lemma 3.6. Let ∗ be a continuous t-norm with endpoints EP(∗). The class
of BLEP(∗)-chains is partially embeddable into the class of standard BLEP(∗)-
algebras.

Proof. Let A be a BLEP(∗)-chain and A0 = {a1 < · · · < am} a finite set of
elements from A. We may assume A is saturated, so A =

⊕
j∈J Aj . For

each i = 1, . . . ,m, choose ci and di in such a way that if ai is an idempotent
then let ci = di = ai, otherwise let [ci, di] be the component Aj containing
ai. Let V = {rA : r ∈ EP(∗)} ∪ {ci, di}mi=1 ∪ {0A, 1A}. Then V is a
countable set and, as an ordered subset of A, it is order-embeddable into
[0, 1] via some f that sends 0A to 0 and 1A to 1. Now define a standard BL-
algebra [0, 1]∗1 as follows: for each b ∈ V , let f(b) idempotent of ∗1; for each
b1, b2 ∈ V , if [b1, b2] is an MV-component (G-component, Π-component) in
A, then let [f(b1), f(b2)] be a (standard) MV-component (ditto respectively)
in [0, 1]∗1 (thus f(b1) and f(b2) are idempotent elements of ∗1); if for any
y ∈ [0, 1], y = lim f(xn), xn ∈ V , then let y be an idempotent of ∗1; for any
two consecutive idempotents y, y′ of ∗1 obtained in the above manner, if the
component [y, y′] has not been determined, then let it be an MV-component.
Let r[0,1]∗1 = f(rA). Then ∗1 is a well-defined continuous t-norm and, with
the interpretations of constants, it is a standard BLEP(∗)-algebra. Moreover,
there is an embedding of the partial algebra on 0, a1, . . . , am, 1 into [0, 1]∗1 ,
obtained component-wise.

Corollary 3.7. (FSSC for BLEP(∗)) Let ∗ be a continuous t-norm and
EP(∗) its endpoints. Let T be a finite theory and ϕ a formula in the language
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of BLEP(∗). Then T `BLEP(∗) ϕ iff T |=A ϕ for each standard BLEP(∗)-algebra
A.

4 Logic of components

For a given continuous t-norm ∗, we work in a propositional language ob-
tained by expanding the language of BL with new truth constants for the
elements of EP(∗) (as explained in the previous section). Our aim is to give
an axiomatization in the expanded language that, under the canonical inter-
pretation of constants, would yield completeness with respect to the given
algebra [0, 1]∗. The union of non-singleton components of ∗ is dense in [0, 1],
and hence, in order to identify a standard BL-algebra up to an isomorphism,
it is sufficient to specify the isomorphism type of each of its components. In
this section, we suggest a way of describing the latter by means of a suitable
translation of formulas.

Assume ∗ is a continuous t-norm with endpoints EP(∗). For each r, s ∈
EP(∗) such that r < s, we define a translation function operating on formulas
of the language of BL. (Note that we do not assume [r, s] is a component
of ∗.) The result of the translation of a formula ϕ will be denoted ϕ[cr,cs].
The translation function is defined by induction on formula structure in the
following manner:

0[cr,cs] = cr

1[cr,cs] = cs

p[cr,cs] = (p ∨ cr) ∧ cs
(ϕ&ψ)[cr,cs] = ϕ[cr,cs] &ψ[cr,cs]

(ϕ→ ψ)[cr,cs] = (ϕ[cr,cs] → ψ[cr,cs]) ∧ cs

Lemma 4.1. Let ∗ be a continuous t-norm, EP(∗) its endpoints, r < s ∈
EP(∗), and ϕ, ψ formulas in the language of BL. Then the following for-
mulas are provable in BLEP(∗):
(1) cr ∧ ϕ→ cr &ϕ
(2) cr → ϕ[cr,cs], ϕ[cr,cs] → cs
(3) ϕ[cr,cs] ≡ ((ϕ[cr,cs] ∨ cr) ∧ cs)
(4) (ϕ ∧ ψ)[cr,cs] ≡ ϕ[cr,cs] ∧ ψ[cr,cs]

(5) (ϕ ∨ ψ)[cr,cs] ≡ ϕ[cr,cs] ∨ ψ[cr,cs]
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Proof. All proofs carried out in BLEP(∗).
(1) cr ∧ ϕ→ ϕ, which is, by definition of ∧,
cr & (cr → ϕ)→ ϕ; then also
cr & (cr & (cr → ϕ))→ cr &ϕ, and, using idempotence of cr, we get
cr & (cr → ϕ)→ cr &ϕ, which is, by definition of ∧,
cr ∧ ϕ→ cr &ϕ.
(2), (3) by induction on formula structure.
(4) (ϕ ∧ ψ)[cr,cs] is, by definition of ∧,
(ϕ& (ϕ→ ψ))[cr,cs], which is, by definition of the translation functions,
ϕ[cr,cs] & ((ϕ[cr,cs] → ψ[cr,cs]) ∧ cs), which distributes to
(ϕ[cr,cs] & (ϕ[cr,cs] → ψ[cr,cs])) ∧ (ϕ[cr,cs] & cs), which, using (2) and (3), is
equivalent to
ϕ[cr,cs] ∧ ψ[cr,cs].
(5) From (2) we get ϕ[cr,cs] → cs and ψ[cr,cs] → cs, hence ϕ[cr,cs] ∨ ψ[cr,cs] →
cs.
Also, ((ϕ[cr,cs] → ψ[cr,cs])→ ψ[cr,cs])→ (((ϕ[cr,cs] → ψ[cr,cs])∧cs)→ ψ[cr,cs]).
This concludes the proof of the right-to-left implication.
On the other hand, using (1), the left-hand side is equivalent to
(((ϕ[cr,cs] → ψ[cr,cs]) & cs)→ ψ[cr,cs]) & cs, i.e.,
cs & (cs → ((ϕ[cr,cs] → ψ[cr,cs])→ ψ[cr,cs]), which clearly entails
((ϕ[cr,cs] → ψ[cr,cs])→ ψ[cr,cs]).

Theorem 4.2. Let ∗ be a continuous t-norm and r < s ∈ EP(∗). Let A be
a BLEP(∗)-chain, so rA, sA are the values of cr, cs in A, respectively. Let
ϕ, ψ be BL-formulas. Then ϕ[cr,cs] ≡ ψ[cr,cs] is a tautology of A iff ϕ ≡ ψ
is a tautology of A|[rA, sA].

Proof. Denote B = A|[rA, sA]. For each evaluation eA in A, define an eval-
uation eA↓B in B by eA↓B(p) = (eA(p)∨rA)∧sA. It is obvious that for each
evaluation e in B, there is an evaluation eA in A s. t. e = eA↓B. Moreover,
for any BL-formula ϕ and any evaluation eA in A, we have eA(ϕ[cr,cs]) =
eA↓B(ϕ). If ϕ[cr,cs] ≡ ψ[cr,cs] holds in A, take an evaluation e in B, find
a suitable eA s. t. e = eA↓B, and we get e(ϕ) = eA↓B(ϕ) = eA(ϕ[cr,cs]) =
eA(ψ[cr,cs]) = eA↓B(ψ) = e(ψ). Conversely, if ϕ ≡ ψ in B, then for each eA
we have eA(ϕ[cr,cs]) = eA↓B(ϕ) = eA↓B(ψ) = eA(ψ[cr,cs]).

Recall the result of [9]: each logic given by a standard BL-algebra is
finitely axiomatizable. Hence, to each standard BL-algebra [0, 1]∗, one can
associate a single BL-formula ϕ∗ in such a way that the axiomatic extension
given by BL ∪ {ϕ∗} corresponds to the subvariety Var([0, 1]∗) of BL (the
members of this variety let be called ϕ∗-algebras).
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In particular, we denote  L(ϕ) = ¬¬ϕ → ϕ the formula that yields
 Lukasiewicz logic as an axiomatic extension of BL, thus determining the
subvariety MV of BL. Analogously for the formula G(ϕ) = ϕ → ϕ&ϕ
with respect to Gödel logic, and the formula Π(ϕ,ψ, χ) = (ϕ→ χ) ∨ ((ϕ→
(ϕ&ψ))→ ψ) with respect to product logic.

Corollary 4.3. Let [0, 1]◦ be a standard BL-algebra given by a continu-
ous t-norm ◦ and let ϕ◦ be such that BL ∪ {ϕ◦} corresponds to the variety
Var([0, 1]◦). Let ∗ be an arbitrary continuous t-norm, EP(∗) its endpoints,
r < s ∈ EP(∗), and A any BLEP(∗)-chain. Then ϕ

[cr,cs]
◦ ≡ cs is a tautology

of A iff (A|[rA, sA]) � BL is an ϕ◦-chain.

We refine the calculus BLEP(∗) with axiom schemata specifying the iso-
morphism type of each of the components of ∗.

Definition 4.4. Let ∗ be a continuous t-norm with endpoints EP(∗). The
logic BLCOMP(∗) has the axioms of BLEP(∗) plus, for each r < r+ ∈ EP(∗)
and each triple of BL-formulas ϕ, ψ, and χ:

(COMP( L)r) ( L(ϕ))[cr,c+r ] ≡ c+
r iff [r, r+] is an MV-component of [0, 1]∗

(COMP(G)r) (G(ϕ))[cr,c+r ] ≡ c+
r iff [r, r+] is a G-component of [0, 1]∗

(COMP(Π)r) (Π(ϕ,ψ, χ))[cr,c+r ] ≡ c+
r iff [r, r+] is a Π-component of [0, 1]∗

The deduction rule is modus ponens.

For any ∗, the logic BLCOMP(∗) is an axiomatic expansion of BL (and an
axiomatic extension of BLEP(∗)). A BLCOMP(∗)-algebra is a BLEP(∗)-algebra
such that all axioms of BLCOMP(∗) are its tautologies. It is immediate that
BLCOMP(∗)-algebras form a variety, and that they constitute the equivalent
algebraic semantics of the logic BLCOMP(∗).

Theorem 4.5. (Strong completeness for BLCOMP(∗)) Let T be a theory
and ϕ a formula in the language of BLEP(∗). Then T `BLCOMP(∗) ϕ iff
T |=A ϕ for each (linearly ordered) BLCOMP(∗)-algebra A.

Unlike BLEP(∗), the logic BLCOMP(∗) is generally not conservative over
BL; that is to say, not unless BL happens to be the logic of [0, 1]∗. In-
deed, consider the standard BL-algebra [0, 1] L⊕G, and the corresponding
logic BLCOMP( L⊕G). The formula (¬¬ϕ → ϕ) ∨ (ϕ → ϕ&ϕ) is obviously
valid in the canonical chain and in all BLCOMP( L⊕G)-chains, hence provable
by completeness theorem, but it is not a BL-tautology.

The following is proved in exactly the same way as Lemma 3.6.
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Lemma 4.6. Let ∗ be a continuous t-norm with endpoints EP(∗). The
class of BLCOMP(∗)-chains is partially embeddable into the class of standard
BLCOMP(∗)-algebras.

Corollary 4.7. (FSSC for BLCOMP(∗)) Let ∗ be a continuous t-norm with
endpoints EP(∗). Let T be a finite theory and ϕ a formula, all in the lan-
guage of BLCOMP(∗). Then T `BLCOMP(∗) ϕ iff T |=A ϕ for each standard
BLCOMP(∗)-algebra A.

Now we discuss canonical completeness. If ∗ is an ordinal sum of finitely
many components, then each standard BLCOMP(∗)-chain is a homomorphic
image of the canonical BLCOMP(∗)-chain (as is easily observed by taking into
account that the type of each component, delimited by two consecutive con-
stants, is fully determined by the axioms, cf. Corollary 4.3). It follows that
any formula valid in the canonical algebra is valid in all standard algebras.
This yields canonical completeness of BLCOMP(∗) for finite ordinal sums.

Theorem 4.8. Let ∗ be a continuous t-norm with finitely many compo-
nents, let EP(∗) be its endpoints. The logic BLCOMP(∗) is complete w.r.t. its
canonical algebra.

But it is equally obvious that finite strong canonical completeness of
BLCOMP(∗) fails: take a continuous t-norm ∗ with three components, de-
limited by 0, 1/3, 2/3, 1 (the isomorphism type of components does not
matter). Then, while c2/3 |= c1/3 in the canonical BLCOMP(∗)-algebra, one
can present other standard BLCOMP(∗)-algebras in which this fails to hold:
e.g., it does not hold in the algebra obtained from the canonical one by
sending [2/3, 1] to 1, because then the constant c2/3 is interpreted by the
value 1 in the new algebra, while the constant c1/3 is not. Using FSSC for
BLCOMP(∗), we get c2/3 6` c1/3.

If a continuous t-norm ∗ is an ordinal sum of infinitely many components,
it is not true that every standard BLCOMP(∗)-algebra is a homomorphic
image of the canonical one. As a matter of fact, both standard and general
BLCOMP(∗)-chains may contain components whose delimiting endpoints are
not denoted by any propositional constants in the language. To achieve
canonical completeness for infinite sums, we have to add more axioms. For
the following definition, recall that for any continuous t-norm ◦, we take ϕ◦
to denote the single BL-formula which (with the axioms of BL) provides a
complete axiomatization of the BL-algebra [0, 1]◦. Now if ∗ is a continuous t-
norm and c, d two of its idempotents, then [0, 1]∗|[c, d] is a BL-algebra that is
an isomorphic copy of some standard BL-algebra (unique up to isomorphism)
that we denote [0, 1]∗[c,d] .
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Definition 4.9. (The logic BLCOMP(∗)
?) Let ∗ be a continuous t-norm with

endpoints EP(∗). The logic BLCOMP(∗)
? has the axioms of BLEP(∗) plus, for

each r < s ∈ EP(∗), the formula (ϕ[0,1]∗[r,s]
)[cr,cs] ≡ cs. The deduction rule

is modus ponens.

Note that the logic BLCOMP(∗)
? extends the logic BLCOMP(∗), since the

axioms of BLCOMP(∗) are a special case of the above for s = r+. Therefore,
it enjoys its properties of algebraizability and (general) strong completeness.
We focus on the canonical completeness of BLCOMP(∗)

?.

Lemma 4.10. Let ∗ be a continuous t-norm with endpoints EP(∗). Each
BLCOMP(∗)

?-chain is partially embeddable into a homomorphic image of the
canonical BLCOMP(∗)

?-algebra [0, 1]∗.

Proof. Let A be a BLCOMP(∗)
?-chain. Denote F = {r ∈ EP(∗) : rA = 1A}.

Let [0, 1]∗1 be the homomorphic image of [0, 1]∗ determined by F on [0, 1]
(i.e., by sending all [r, r+], r ∈ F , to 1). Let A0 = {0A = a0 < · · · < am =
1A} be a finite set of elements from A. Denote A1 = {0A = aj0 < aj1 <
· · · < ajk

= 1A}, k ≤ m, the subset of A0 s. t. for each i = 0 . . . k, there is
an ri ∈ EP(∗) such that aji = rA); in other words, A1 is the set of elements
of A0 that interpret some propositional constant in A. Let f be a partial
mapping from A to [0, 1], assigning to each aji ∈ A1 the corresponding

value r[0,1]∗1
i in the BLCOMP(∗)

?-chain [0, 1]∗1 . The axioms of BLCOMP(∗)
?

guarantee that, for each i = 0 . . . k − 1 we have that (A|[aji , aji+1 ]) � BL

belongs to the variety generated by [0, 1]∗|[r
[0,1]∗1
i , r

[0,1]∗1
i+1 ] � BL (cf. Corollary

4.3). Therefore, for each i = 0 . . . k − 1, [aji , aji+1 ] is partially embeddable

into [r[0,1]∗1
i , r

[0,1]∗1
i+1 ] by Theorem 7.3. The statement follows.

Theorem 4.11. Let ∗ be a continuous t-norm with endpoints EP(∗). The
logic BLCOMP(∗)

? is complete with respect to its canonical algebra.

Proof. If a formula ϕ is not provable in BLCOMP(∗)
?, then by general com-

pleteness theorem it is not valid in some BLCOMP(∗)
?-chain. By Lemma

4.10, it is not valid in a homomorphic image of the canonical algebra; hence,
it is not valid in the canonical algebra.

5 Complexity issues

We look at computational complexity of the logics discussed in this paper; in
particular, of the sets of tautologies of the BLEP(∗)-algebras given by ∗, for
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a continuous t-norm ∗. Let us stress at this point that, given a continuous
t-norm ∗, we work with propositional formulas in the language of BLEP(∗);
thus, notions such as “tautology” assume the expanded language. As to
connectives of the language of BL, we restrict ourselves to the basic ones,
that is, 0, &, →.

Results presented here point out the gap discernible already in the pre-
vious sections: for finite ordinal sums, the results are straightforward and
follow the example of logics without constants, i.e., the sets of their tau-
tologies are coNP-complete; this is the first result presented in this section.
On the other hand, some continuous t-norms that are infinite ordinal sums
give rise to non-recursive sets of tautologies. Even worse: the expanded
language determined by some continuous t-norms ∗—that is to say, the set
(of rationals) EP(∗) and the corresponding set of propositional constants
C∗—is non-recursive (cf. Lemma 7.2), which leaves no room indeed for nice
complexity results in general. For this reason, in the case of infinite ordinal
sums, we restrict our investigation to presenting two examples. First, we
point out an infinite ordinal sum whose set of tautologies (in the language
of BLEP(∗)-algebras) is coNP-complete. Second, we show that an arbitrary
subset of N is m-reducible to the set of tautologies of a suitably chosen in-
finite ordinal sum (in the language of BLEP(∗)-algebras); hence, tautologies
given by continuous t-norms in the expanded language can be placed arbi-
trarily high in the arithmetical hierarchy, or can be non-arithmetical. Both
of these examples use continuous t-norms where components are ordered by
ω.

Let ∗ be a continuous t-norm and A be an arbitrary BLEP(∗)-algebra.
We define TAUT(A) = {ϕ : ∀eA(eA(ϕ) = 1A)} where ϕ runs through
propositional BLEP(∗)-formulas and eA runs through evaluations in A. The
formulas satisfying the condition are referred to as tautologies of the algebra
A.

Theorem 5.1. Let ∗ be a continuous t-norm which is a finite ordinal sum of
 L-, G-, and Π-components, and A the BLEP(∗)-algebra given by ∗ on [0, 1].
Then the set TAUT(A) is coNP-complete.

Proof. TAUT(A) is trivially coNP-hard as the tautologies of the standard
BL-algebra [0, 1]∗ in the language without constants (a coNP-complete set)
can be reduced to it (using identity). Containment in coNP is obtained as
a variant of the proof in [13]; we repeat parts of it here for the reader’s
convenience.

Let n be the number of components in A, and assume {i/n}0≤i≤n are the
endpoints of A. For any formula ϕ, let |ϕ| denote the number of occurrences
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of propositional variables or constants, and denote m = 2|ϕ| − 1 (so m is
the number of subformulas in ϕ). Fix an enumeration of all subformulas of
ϕ, assuming ϕ is assigned an index 1.

We present a nondeterministic acceptor of the complement of TAUT(A),
running in time polynomial inm. This entails coNP-containment of TAUT(A).
nameSubformulas() Introduce variables x1 . . . , xm, and assign the variable
xi to the subformula ϕi of ϕ (x1 is assigned to ϕ).
Set V = {i/n}0≤i≤n ∪ {x1, . . . , xm}.
guessOrder() Guess a linear ordering � of elements of V , such that x1 ≺ 1.
checkOrder() Check that � satisfies basic natural conditions: first, that
it preserves the ordering of constants {i/n}0≤i≤n on the real unit interval;
second, for i = 0, . . . , n, any variable assigned to the constant ci/n must be
≈-equal to i/n, the variable denoting the i-th endpoint.

We say that variables xj s. t. i/n � xj � (i+ 1)/n belong to i.
checkExternal() Check external soundness of �: for ϕi, ϕj subformulas

of ϕ ( 1 ≤ i, j ≤ m),
– if ϕi &ϕj is a subformula ϕk of ϕ for some k ∈ {1, . . . ,m} and, for

some l ∈ {0, . . . , n}, we have xi � l/n � xj , then xk ≈ xi;
– if ϕi → ϕj is a subformula ϕk of ϕ for some k ∈ {1, . . . ,m} and xi � xj ,

then xk ≈ n/n;
– if ϕi → ϕj is a subformula ϕk of ϕ for some k ∈ {1, . . . ,m} and for

some l ∈ {0, . . . , n}, we have xj ≺ l/n � xi, then xk ≈ xj .
checkInternal() Check internal soundness of� for each interval [i/n, i+ 1/n],
i = 0, . . . , n−1, in �. Consider variables belonging to i. Construct a system
Si of equations and inequalities; Si is initially empty. For each subformula
ϕl which is ϕj &ϕk, if xj and xk are in i, check xl is also in i and put equa-
tion xj ∗ xk = xl into Si. For each subformula ϕl which is ϕj → ϕk, such
that xk ≺ xj , if xj and xk are in i, check xl is also in i and put equation
xj ⇒ xk = xl into Si.

Further, put all equations and inequalities defined by � for the vari-
ables in i into Si. Check whether the system Si has a solution in the i-th
component of A.
end

It is shown in [13] that the last check can be performed (nondetermin-
istically) in polynomial time w.r.t. the size of S, for all three isomorphism
types of components. This concludes the proof.

Now we examine continuous t-norms with infinitely many endpoints.
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Theorem 5.2. Let ∗ be a continuous t-norm which is an infinite sum of
infinitely many  L-components and a singleton, with endpoints (2i − 1)/2i

for i ∈ N. Let A be the BLEP(∗)-algebra given by ∗ on [0, 1]. Then the set
TAUT(A) is coNP-complete.

Proof. Modify the algorithm from the preceding proof. Depending on the
input formula, the algorithm will start with an ordinal sum which is a suffi-
ciently large initial part of A. It must contain all constants occurring in ϕ,
so if (2i − 1)/2i for some i is the largest constant in ϕ, then the algorithm
will work with a subsum that includes the whole of [0, (2i− 1)/2i] (that is, i
components, linearly many in the binary representation of the largest con-
stant) and sufficiently many more components of ∗ (no matter which ones
as they are all of type  L) to harbour all the subformulas of ϕ that might
come out greater than the largest constant; this number is linear in m.

However, the following statement holds for ordinal sums whose endpoints
are also ω-ordered, but with both  L- and Π-components.

Theorem 5.3. Let S be any subset of N. Let ∗ be a continuous t-norm with
endpoints (2i − 1)/2i for i ∈ N. Assume ∗ has two types of non-singleton
components,  L and Π, and for each i ∈ N, we have [(2i − 1)/2i, (2i+1 −
1)/2i+1] is an  L-component iff i ∈ S. Let A be the BLEP(∗)-algebra given by
∗. Then S is m-reducible to TAUT(A).

Proof. The proof of this statement was inspired by [12]. Take a formula λ
which is valid in [0, 1] L but not in [0, 1]Π. Then one can reduce membership
is S to tautologousness in A by asking, for a given i ∈ S, about the validity
of of λ[(2i−1)/2i,(2i+1−1)/2i+1] in A.

The last statement shows that tautologies of BLEP(∗)-algebras can be
placed arbitrarily high in the arithmetical hierarchy and that they can be
non-arithmetical.

6 Closing remarks

This paper is a contribution to research in logics expanding propositional
Basic Fuzzy Logic BL with truth constants. Under the particular restric-
tions on the set of constants (namely, that they denote only non-singleton
component delimiters), it obtains canonical completeness.

Possible directions for a follow-up include relaxing the conditions on
the t-norm or on the set of constants. In particular, one may investigate
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(standard) ordinal sums of MTL-chains, with constants for non-singleton
component delimiters. As for constants, one might want to combine the
strong results there are on introducing constants into standard BL-algebras
with only one component ( L, G, or Π) with the present approach: given a
continuous t-norm ∗, it is possible to introduce propositional constants for
all component delimiters and for, say, rationals in some of the components.

In yet another direction, a first-order rendering of the logics described
in this paper is still to be investigated.

7 Appendix

We present a few facts that form a useful background for this paper. The
propositional and algebraic language considered in this section is that of BL.

Lemma 7.1. Let [0, 1]∗ be a continuous t-norm and let EP(∗) be its end-
points. Then there is a continuous t-norm ∗′ isomorphic to ∗ and with
EP(∗′) ⊆ Q.

Proof. Take the set (EP(∗) ∪ Q) ∩ (0, 1). As a dense, countable set, it is
order-isomorphic to Q ∩ (0, 1) via some f0. Extend f0 to f : [0, 1] −→ [0, 1]
by taking, for x ∈ [0, 1], some {xn}n∈N such that limxn = x and for each
n ∈ N we have xn ∈ (EP(∗)∪Q)∩ (0, 1). Set f(x) = lim f0(xn). Then f is a
well-defined, increasing bijection of [0, 1] onto itself, hence continuous, and
so is f−1. Therefore, ∗′ defined by x∗′y = f(f−1(x)∗f−1(y)) is a continuous
t-norm isomorphic to ∗, with rational endpoints; namely, all endpoints of ∗′
are among f0(c) for c an endpoint of ∗.

The following lemma shows, among other things, that there are uncount-
ably many classes of pairwise non-isomorphic continuous t-norms and that
this is due to the ordering of the components as well as to their isomorphism
type. In particular, there are uncountably many pairwise non-isomorphic
continuous t-norms with only one type of non-singleton component.

Lemma 7.2. There is a continuous t-norm ∗ such that, for each of its
isomorphic copies ∗′ with EP(∗′) ⊆ Q, the set EP(∗′) is not recursive.

Proof. The statement is obtained by a cardinality argument. Each countable
ordinal number α is embeddable into Q ∩ [0, 1] via an order-preserving iso-
morphism f , and one can define a continuous t-norm on {f(β), β ∈ α} (using
only one type of component, say  L). It is obvious that distinct countable or-
dinals yield pairwise non-isomorphic continuous t-norms (in particular, the
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sets of idempotents of the resulting continuous t-norms are non-isomorphic).
There are uncountably many countable ordinals, while the set of countable
ordinals α such that at least one continuous t-norm whose idempotents are
ordered by α has recursive endpoints in Q is countable.

The following result is useful in particular for proving standard com-
pleteness of logic in expanded languages.

Theorem 7.3. Let A be a standard BL-algebra, and let B ∈ Var(A) be a
BL-chain. Then B is partially embeddable into A.

Proof. The proof is based on the results in [9]. Assume B ∈ Var(A) is a
BL-chain and b1 < · · · < bn ∈ B. Consider B =

⊕
i∈I Bi as an ordinal sum

of Wajsberg hoops (cf. [1]) and let B′ result from B by deleting all members
of the sum except the initial one and each Bj such that bi ∈ Bj for some
i = 1 . . . , n, and some j ∈ I; so B′ is a finite ordinal sum of Wajsberg hoops,
namely B′1 ⊕ · · · ⊕B′m for some m ≤ n + 1. Since B′ is a BL-algebra that
is a subalgebra of B, we have B′ ∈ Var(A).
Define a finite ordinal sum of hoops B′′ = B′′1 ⊕ · · · ⊕B′′m, where B′′i is
– the standard cancellative hoop iff B′i is an unbounded Wajsberg hoop;
– the two-element hoop 2 if B′i is two-element hoop 2;
– the standard Wajsberg algebra iff B′i is a bounded Wajsberg hoop distinct
from 2.
Observe the partial subalgebra of B on b1 < · · · < bn is embeddable into
B′′ componentwise. Now consider the identity eB′′ (see [9], Definition 3.6).
This identity is not valid in B′′ nor in B′ (see [9], Lemma 3.7). Thus, it is
not valid in Var(A) (as B′ ∈ Var(A)). As Var(A) = Var(Fin(A)) by [9],
Lemma 3.1, there is a C ∈ Fin(A) such that eB′′ is not valid in C. Then
by [9], Lemma 3.7, B′′ ∈ Fin(A). This concludes the proof, observing that
all members of Fin(A) are partially embeddable into A.

Corollary 7.4. If A is a standard BL-algebra, then Var(A) is generated
by A as a quasivariety, and the logic given by A enjoys the finite strong
standard completeness.

Proof. Combine Theorems 3.8 and 3.2 of [6].
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