Noname manuscript No.
(will be inserted by the editor)

Complexity Issues in Basic Logic

S. Aguzzoli', B. Gerla?, Z. Hanikova?

1 DSI, University of Milano, Italy, aguzzoli@dsi.unimi.it (corresponding author)

2 DMI, University of Salerno, Italy, bgerla@unisa.it

3 1CS, Academy of Sciences of the Czech Republic, zuzana@cs . cas. cz

The date of receipt and acceptance will be inserted by the editor

Abstract We survey complexity results concerning a
family of propositional many-valued logics. In particu-
lar, we shall address satisfiability and tautologousness
problems for H&jek’s Basic Logic BL and for several
of its schematic extensions. We shall review complexity
bounds obtained from functional representation results,
as well as techniques for dealing with non-trivial ordinal
sums of continuous t-norms.

1 Introduction

In this paper we give an overview of known propositional
complexity results for some important logics. In partic-
ular, we consider the logics given by each of t-norm al-
gebras; these include BL, Lukasiewicz logic, Godel logic,
Product logic, as well as some logics with the A connec-
tive.

Research into this area has been undertaken in the
last three decades, starting with a pioneering work [30]
of Mundici in 1987 regarding NP-completeness of Lu-
kasiewicz logic and flourishing during the nineties, with
some problems still left open.

Our aim is to go over main results on the topic and
methods which have been developed and used for anal-
ysis of propositional complexity of t-norm logics. We do
not go into details of proofs, referring the reader to the
ample literature available.

In [30] Mundici first introduced a functional repre-
sentation argument, inspired by McNaughton’s theorem
[26], to state complexity of Lukasiewicz logic. This tech-
nique has been further applied to other many-valued log-
ics, Godel and Product among them [4]. The functional
representation theorems are deeply linked to the study
of free algebras.

Results on the coNP-completeness of BL and logics
given by single t-norm algebras have been obtained by a
technique developed in the paper [7], where an algorithm

capable of working with a t-norm algebra which is a non-
trivial ordinal sum is first outlined. It has been further
developed in [24].

1.1 Basic notions

Unless specified otherwise, our propositional language is
that of BL; the alphabet has countably many proposi-
tional variables, basic connectives 0, &, —, and defined
connectives A, V, =, 1, =. Formulas are built up as usual.
Connectives are defined from &, —, and 0 as follows:

- is p—0

A s p&(p—)

VY is ((p—=¥) =) A (Y — ») = @)
=y is (¢ —)& (P —)

1 is 0—0

Let L = (L,A,V,*,=,0,1) be a BL-algebra. An L-
evaluation of propositional variables is a mapping e, as-
signing to each propositional variable p an element of
L. Each evaluation of propositional variables extends
uniquely to propositional formulas as follows:

e(0)=0
e(p &) = e(p) *e(y)
elp =) = e(p) = e(¥)

The t-algebra given by a continuous t-norm * is the
BL-algebra [0, 1], = ([0, 1], *,=>,0), where * is a continu-
ous t-norm and = is its residuum. The terms ‘t-algebra’,
‘standard algebra’ and ‘t-norm algebra’ are all used in
literature and have the same meaning.

For Lukasiewicz, Gédel and Product t-norms we shall
use the notation [0, 1]y, [0, 1] and [0, 1];7 respectively,
to denote the standard algebras. Further, we shall use
the symbols BL, L, G, IT to denote propositional Basic,
Lukasiewicz, Godel and Product logics.

There is a 1-1 correspondence between formulas of
propositional BL. and terms in the language of BL-al-
gebras; the term results from the formula by replac-
ing all connectives with the operations which evaluate
them (and by replacing propositional variables by indi-
vidual variables), and is called the associated term of
the formula. Conversely, if operation symbols in a term
are replaced by propositional connectives (and individ-
ual variables in the term are replaced by propositional
variables), the result is referred to as the associated for-
mula of the term.

Definition 1 (i) A formula ¢ is a 1-tautology of a
BL-algebra L (an L-tautology) iff e(p) = 1 for all
L-evaluations e (i. e., iff its associated term always
has the value 1).

(i) A formula is a t-tautology iff it is a 1-tautology
of each t-algebra.

1.2 SAT and TAUT problems in a many-valued setting

To be able to compare results on classical and many-
valued logic, let us suppose that the (basic) connectives
of formulas of the classical propositional logic are &, —
and 0.

Then we define

TAUT = {g;Ve(e(p) = 1)}
SAT = {p; Je(e(p) = 1)}

where ¢ runs over all formulas in the basic lan-
guage, and e over evaluations in the classical two-valued
Boolean algebra on {0, 1}.

Obviously TAUT = {-p;¢ ¢ SAT} and (conse-
quently, considering the semantic equivalence of ¢ and
——,) SAT = {—~p;¢ ¢ TAUT}. Here —¢ is as usual,
¢ — 0. Thus TAUT is reducible to the complement of
SAT and vice versa.

It is well known (Cook’s theorem) that the set SAT
is NP-complete, thus TAUT is coNP-complete.

With a many-valued logic £, or a L-algebra A, one
might wonder about the definition of the SAT and TAUT
problems, as the classical dichotomy is no longer at
hand. For a fixed semantics given by an algebra A, it
makes sense to distinguish the following sets of formulas
(cf. [21]). In all cases ¢ stands for propositional formulas
in the BL-language and ea runs over evaluations in A.

TAUTP = {¢: Vealea(p) =1)}
TAUT},, = {¢: Vealea(p) > 0)}
SAT = {¢: Jealea(p) = 1)}
SATA:, = {¢: Jealealyp) > 0)}

These sets are referred to as 1-tautologies, positive tau-
tologies, 1-satisfiable formulas and positively satisfiable
formulas of A.

S. Aguzzoli et al.

For a class K of algebras of the same type, one may
generalize (as suggested in [7] for the SAT problems):

TAUTY = {¢: VA € KVea(ea(p) =1)}
TAUTS,, = {¢: VA € K Vea(ea(y) > 0)}
SATE = {p:3A € K3ea(ea(p) =1)}
SATffOS ={p:3A € KJealealp) > 0)}

Unlike in classical logic, for a many-valued semantics
there need not be a simple relationship between its
TAUT and SAT problems. The 1-tautologies will prob-
ably be of most interest (so we often omit the index 1);
however, the other sets present themselves to be inves-
tigated as well.

In this paper we give an overview of known pro-
positional complexity results for some important lo-
gics/algebras. Note that the logics L, G, IT and BL all
enjoy single standard completeness, (i.e., they are com-
plete with respect to a unique t-algebra, see Section 2.1),
thus it is unnecessary to distinguish provability and 1-
tautologousness in the standard algebra.

2 Tools and methods

The result of Mundici regarding NP-completeness of Lu-
kasiewicz logic (see [30]) is obtained by a direct inspec-
tion of truth tables of Lukasiewicz formulas that are a
particular class of [0, 1]-valued functions over a suitable
power of [0,1]. In [5], Mundici’s method has been ex-
tended to Godel and Product logic, but complexity re-
sults for these logics have been obtained first in a differ-
ent way and can be found in [6] and [21].

In this section we survey basic tools used to establish
complexity results, i.e., functional representation argu-
ments, reductions to mixed integer programming tools
and analysis of t-norm logic based on the decomposition
in ordinal sums. We also give all necessary definitions.

2.1 Free algebras and functional representation

From universal algebra [8] we know that if an algebra A
generates a variety V), then the free algebra in the subva-
riety of the n-generated algebras in V is the subalgebra
of AA" generated by the projections.

Chang’s completeness theorem implies that all stan-
dard MV-algebras (i.e. those having [0, 1] as their sup-
port), are isomorphic to [0,1];. In this case we have
TAUT[IO’HL = TAUT}Y and we shall denote this set
by TAUTE.

All schematic extensions of BL. whose corresponding
subvariety of BL-algebras is singly generated by a stan-
dard algebra [0, 1], — we call this property single stan-
dard completeness — are amenable to an analysis which

Complexity Issues in Basic Logic

can yield a concrete representation of the free algebras
over finitely many generators.

This property is not always granted: consider for
instance BL plus the precancellation axiom —-—} —
(((p&) — (P&19)) — (¢ —)). The only standard
algebras in the variety determined by this schematic ex-
tension are [0, 1]§, and [0, 1] 7, but clearly neither of these
singly generates the variety.

If £ is a single standard complete logic whose corre-
sponding variety is singly generated by a standard alge-
bra A, we shall set TAUTY = TAUT%. The same kind
of notation will be applied to the other problems in our
classification. Moreover, an A-evaluation e4 may be de-
noted by e..

Single standard completeness theorems also hold for
Basic Logic and its extensions Godel and Product logic.

This means that free algebras in varieties of BL,
Godel and Product algebras, as well as in the variety
of MV-algebras, are subalgebras of [0, 1][0’1]n generated
by projections, in particular, free algebras are algebras
of real-valued functions. Each function belonging to the
free algebra F of a variety V. corresponding to the logic
L can be thought of as a class of logically equivalent for-
mulas of £, exactly as every function in {0, 1}{®1}" is
the equivalence class of a boolean formula.

Functional representation theorems tackle the prob-
lem of functional incompleteness for t-norm based logics
(where the single standard completeness holds): In con-
trast with propositional boolean logic where each func-
tion f : {0,1}"™ — {0,1} is definable with a formula in
n variables, t-norm based logics are functionally incom-
plete, that is not every function f : [0,1]" — [0,1] is
definable. A functional representation theorem for logic
L describes precisely which functions are definable with
formulas of L.

Let £ be a schematic extension of BL for which stan-

dard completeness holds with respect to a t-norm *. We
consider for any formula ¢ of £ with n variables, the
function ¢* : [0,1]" — [0,1] given by the associated
term in the algebra [0, 1]..
Evaluations in the standard algebra are canonically iden-
tified with points of [0,1]": if es(z;) = ¢; for all ¢ €
{1,...,n}, then es(¢) = @*(t1,...,t,). We shall freely
speak of points and functions determined by formulas
in contexts related to free algebras and functional rep-
resentation, and of L-evaluations when dealing directly
with standard algebras, chains, ordinal sums.

Functional representation of formulas of a many-
valued logic £ can give insights in understanding com-
plexity problems of L. Indeed if a formula ¢ with
var(p) C {p1,...,pn} is not a tautology then there ex-
ists a critical point x € [0,1]" such that p*(x) < 1.
We are interested in showing that a critical point x can
be guessed in such a way that the calculus of % (x)
is polynomial in the length ||p|| of the input formula
. We define ||¢|| as the total number of occurrences

of connectives in ¢ and |p| as the total number of oc-
currences of propositional variables in ¢. Note that the
actual length of the string representing a formula given
any reasonable coding of propositional variables, is obvi-
ously > ||| > || — 1. Note also that the total number
of (occurrences) of subformulas of ¢ is [|¢|| + |#].

As we shall see later, we will be mainly involved
in finding critical points that are rational, i.e., are tu-
ples x = (b1/dy,b2/da,...,b,/dy) € (]0,1] N Q)™, for
all b; > 0 and d; > 0 being integers. Forming the low-
est common denominator d of the components b; /d; we
write x = (¢1/d, ..., c,/d), for suitably computed inte-
gers ¢;, and we call the integer d > 0 the denomina-
tor of x (den(x) = d) and the (n + 1)-tuple of integers
(c1,y...,¢n,d) homogeneous coordinates of x.

Since we are interested in bounding denominators,
we define size(x) = log, den(x), this quantity being pro-
portional to the number of bits needed to store the value
of each component x; (the choice of the basis of the log-
arithm is immaterial, as long as it guarantees a coding
of numeric information which is not unary).

Hence, the algorithm guess and check G&C' for the
complement of TAUT# consists of these two steps:

1. Guess a critical point x of ¢*.
2. Check that ¢~ (x) < 1.

To establish NP-containment of this algorithm it is
only needed to show that there exists a one variable poly-
nomial p such that, for all non-tautological ¢, there al-
ways exists a critical point x with size(x) < p(]|¢||). As
a matter of fact, in this case each one of the polyno-
mially many (w.r.t. ||¢]|) operations needed to compute
©*(v) can be performed in polynomial time (as long as
each one of these operations is not more complex than
adding or comparing two numbers of size(x) bits each),
and hence the whole checking step is polynomial time
computable by some deterministic Turing machine.

All the problems considered in our classification can
be formulated by adapting in the obvious ways the non-
deterministic algorithm given above, hence the matter is
reduced to the study of sizes of critical points.

2.2 Mixed integer programming

In order to prove coNP containment of TAUT¥ it is pos-
sible to shorten the analysis of the piecewise linear ge-
ometry of functions in the appropriate free algebras in at
least two ways. Having already achieved the coNP con-
tainment for a logic at least as combinatorially complex
as Lukasiewicz logic (for instance, Godel logic is too sim-
ple, in this context), one can try to work with embed-
dings between logics and other algebraic constructions
like ordinal sum representations in such a way to reduce
the problem to the already known results.

The second approach consists in shortening the anal-
ysis of functions: instead of working out explicitly the

size of critical points for a formula ¢, this method re-
duces to the construction of a set of systems of linear con-
straints inductively built from subformulas of ¢. Each
one of these systems can be thought of as a linear pro-
gram whose size is polynomial in . If at least one of
the systems in this set is solvable, that is, it has a solu-
tion x, then ¢%(x) < 1 and then ¢ ¢ TAUT¥. Checking
solvability of linear programs is a problem known to be
in P, but here we have to deal in general with expo-
nentially many such programs, as each occurrence of a
binary connective generally introduces two mutually ex-
clusive sets of linear constraints in each partially built
system, thus splitting each one of them into two new
systems. Guessing one of the solvable programs gives us
a coNP algorithm for TAUT¥. Interestingly, Hihnle in
[18,19] (see also the paper [20]), introduces techniques
from disjunctive linear programming in order to combine
all the exponentially many systems into one mixed inte-
ger program of polynomial size with respect to . Mixed
integer programming requires that there is at least one
unknown among those of the system which is obliged
to take on only integer (or boolean) values. Mixed in-
teger programming has the same complexity as Integer
programming, that is, both problems are NP-complete.

In order to avoid splitting of sets of linear constraints,
Hahnle introduces in the system additional boolean val-
ued control variables, which allow to encode both sets of
linear constraints introduced by an occurrence of a con-
nective in one set of linear constraints: each one of the
two original sets of constraints is recovered in solvable
solutions, which one of the two depending on the value
the boolean control variable assumes.

Héhnle technique [18], when applicable, allows to ex-
port semantic sets-as-signs tableaux calculi for finite-
valued logics to the infinite-valued setting, thus yielding
for a given t-norm logic a decision procedure which hav-
ing in input the formula ¢ uses tableau rules to generate
the appropriate Mixed integer program to be checked for
solvability.

2.3 Finite-valued logics

For each integer n < 0, let
of truth-values defined as
1)/n,1}.

Whenever S,, is closed under a t-norm x and its
residuum = we can consider the (n 4 1)-valued alge-
bra S¥ = (S, * [Sn, = Sp,0). Then, if a t-norm logic
L has single standard completeness we can consider the
(n + 1)-valued logic £,, having S? as algebraic seman-
tics. We call £,, a finite-valued logic approximating £ or
a finite-valued £ logic.

One can immediately check the existence of all finite-
valued logics {G;};~o approximating G and {L;};>0 ap-
proximating L, while the only finite-valued Product logic
is Il = L; = Gy, that is, Boolean propositional logic.

0, 1] be the finite set

n C |
= {0,1/7172/7%”'7(77‘_

S
S

S. Aguzzoli et al.

Applying the non-deterministic algorithm scheme
G&C introduced before, we trivially see that for a
(n 4+ 1)-valued logic £,, we have size(x) < n for each
critical point x for a formula ¢, and then all SAT*»
problems are in NP and all TAUT%" problems are in
coNP.

2.4 Ordinal sums

According to the decomposition theorem for continuous
t-norms [29], each t-algebra is an ordinal sum of isomor-
phic copies of [0, 1]y, [0, 1]¢ and [0, 1];7 (the so-called E-,
G-, and IT-segments). Contact points between intervals
in an ordinal sum are habitually called cutpoints.

A generalization of this theorem for saturated BL-
chains can be found in [22] and [10]. (See also [1] for a
hoop decomposition of BL-chains).

Regarding decomposition of t-algebras into the three
types of segments, we take each maximal interval of
idempotents as a single Godel segment; thus [0,1]q is
a sum consisting of one element and [0, 1]pgqq 7 is & t-
algebra consisting of three segments (Lukasiewicz, Godel
and Product). We denote the three types of segments by
L, G, and II.

An important result from [1] states that a t-algebra
generates the whole variety BL iff its first segment is L
and the sum contains infinitely many L-segments.

3 Complexity results for Lukasiewicz, Godel and
Product logics

In next sections we shall describe the proofs that firstly
appeared for complexity results of logics £ € {II, G, L}.

In Section 3.1 we summarize Mundici’s proof: re-
quired definitions and results will be given in Sections
3.1.1 and 3.1.2. Then in Section 3.2 results for Godel
and Product logic will be given, taken from [17], [21],
[6].

3.1 Complexity of Lukasiewicz logic

3.1.1 McNaughton’s Representation Theorem for Luka-
stewicz infinite-valued logic From Section 2.1 we know
that the free MV-algebra over n generators is M,, =
(M,,,®,—,0), where M, is the smallest set of func-
tions f : [0,1]* — [0,1] containing all projections
(1,...,2n) — x; and closed under the operations &
and —, that are defined by applying the operations of
[0, 1];, pointwise, that is, for all x € [0, 1]™:

(f ®9)(x) = f(x) © g(x) = min(1, f(x) + g(x)),

() =~f(x) =1 fx).

Note that, following tradition, when dealing with
MV-algebras and Lukasiewicz logic, we prefer to choose

Complexity Issues in Basic Logic

as primitive the ¢ — conorm operation @ instead of the
t-norm z @y = max(0, z+y —1). Involutiveness of nega-
tion and DeMorgan duality between @ and ® guarantees
that each one of the following subsets of {®, &, —,—,0}
is sufficient to derive all the remaining MV-operations:

{697 ﬂ}7{®a _‘}’{_)’ _‘}'

McNaughton [26] was the first to characterize the set
M,, in more concrete terms:

Theorem 1 For all integers n > 0, M, is the set of
all continuous functions f : [0,1]" — [0,1] which are
piecewise linear, each of the finitely many pieces having
integer coefficients: that is, there ezist linear polynomials
Diy---,Du, €ach p; being of the form pi(x1,...,z,) =
2?21 ai;x; + by with all a;; and by in Z, such that, for
all (t1,...,tn) € [0,1]™ there exists k € {1,...,u} for
which f(tl, ce ,tn) = pk(tl, ce ,tn).

Members of the free MV-algebra M,, are then called
McNaughton functions. Showing that each function in
M,, satisfies McNaughton’s requirements is an easy in-
duction on the structure of formulas. The other side of
the proof is more difficult, and in McNaughton’s original
proof involves at a certain stage a reductio ad absurdum
that destroys constructivity. The first constructive proof
is due to Mundici [31] and is based on the machinery of
Schauder hats (see also [9]).

In both proofs the first step is showing that each
clipped hyperplane, that is, a function of the form
max((),min(l,2:?=1 a;xz; + b)) belongs to M,. This is
easily seen by proving by induction on 2?21 |a;| the fol-
lowing equation, due to Rose and Rosser [33]:

max (0, min(1, g(x) + z1)) =

(max(0, min(1, g(x))) ® x1) ® max(0, min(1, g(x) + 1))

where, without loss of generality, we assume |a1]| =
max; |a;| and g(21, ..., 2,) = (a1 =121 4375 ajz;+b.

The difficult step is proving that each McNaughton
function f is obtained by assembling clipped hyperplanes
via Lukasiewicz connectives. Mundici showed that f is
indeed an @-sum of a suitably chosen family of finitely
many Schauder hats.

To understand Mundici’s construction we need to in-
troduce some notions of polyhedral geometry (see [14]
for further background). A polyhedral complex is a set of
polyhedra that contains all their faces and such that any
two polyhedra intersect in a common face (possibly ().

An n-simplex is the convex hull of (n + 1) many
affinely independent points (its vertices). The convex
hull of a finite set S C R* is the set {2 pes P | 0 <
Ap < 1lforeachp € S,> oAp =1} An n-simplex S
with rational vertices in [0,1]™ is unimodular when the
(n+1) x (n+1) integral matrix Mg, whose rows are the
homogeneous coordinates of the vertices of S, is such
that | det(Mg)| = 1.

For any piecewise linear function f : [0,1]" — [0, 1],
with each piece having integer coefficients, the unit hy-
percube [0, 1]™ can be partitioned with a suitable polyhe-
dral complex C (in the sense that [J{P € Cy} = [0,1]")
of finite cardinality, such that the function f is linear
over every polyhedron in Cy and all vertices of poly-
hedra in C} are rational. Any such polyhedral complex
is said to be linearly adequate to f. An application of
Minkowski’s convex body Theorem from geometry of
numbers allows to refine C'y by finitely many polyhedral
subdivisions until one gets a unimodular partition Uy of
[0,1]™, which is a polyhedral complex linearly adequate
to f and such that all its full dimensional polyhedra are
unimodular simplexes.

The family SH(U) of Schauder hats determined by
a unimodular partition U of [0,1]™ is the set of all func-
tions H such that:

— there is one vertex v of U such that H(v) =
1/den(v).

— H(w) = 0 for all vertices w # v of U.

— H is linear over each simplex of U.

Note that the pair (U,v) uniquely determines one
Schauder hat. We may denote H by H, stressing the
dependence on the aper v while considering U fixed
by the context. Observe that U is linearly adequate to
each hat in SH(U). The restriction of the Schauder hat
H to each simplex S of U having v among its ver-
tices coincides with the restriction to S of a hyper-
plane). Here unimodularity of S guarantees that @
has integer coefficients, hence it coincides over S with
a clipped hyperplane @Q’. Having collected all formu-
las which represent such clipped hyperplanes, a gen-
eral —although somewhat complex— argument of lattice-
ordered abelian group theory allows to write down each
hat H as H = (Nier Viesn @[Jij)L, for suitable finite
index sets I, J(I), where each 1);; represents a clipped
hyperplane (see [9] for the detailed construction). More-
over, SH(U) constitutes a base for all McNaughton func-
tions for which U is linearly adequate, that is, given such
a function f, it is possible to identify a multiplicity map
py: SH(U) — N such that f = oV for

v= P wHH=

HeSH(U)

@ Nf(Hv)Hv

v is a vertex of U

where by m1 we mean the ®-sum 9 I P --- G 9 with
¥ taken m times and 0 < py(Hy) < den(v). This con-
cludes Mundici’s argument.

It is worth noting that Mundici’s construction re-
quires in input, as specification of the function f, only
the values f takes on a sufficiently large set of points
(see Section 3.1 for numerical estimates). If in addition
we are explicitly given an effective description of a poly-
hedral complex { Py }rex linearly adequate to f, we can

skip construction of Schauder hats and write down f as
f = (/\reR vseS(R) %(r,s))L where each wb(r,s) = wk isa
clipped hyperplane coinciding over some Py with f (see
[2] for further details).

Knowing {Py}rex allows proving McNaughton’s
Theorem via a patching technique (see [32] for a simi-
lar construction). Each McNaughton function f is ex-
pressed as f = (\/,cx AV b)Y, where 1 represents
the clipped hyperplane coinciding over P with f, while
¥y is 1 over Py and strictly < 1 elsewhere (such func-
tions exist for all Py), and quickly going to 0; finally
0 < Ax € Z is a suitably large integer having the effect
to increase sufficiently the slopes with which 19},; goes to
0.

2.1.2 SATE

pos 18 NP-complete and derived results Mc-
Naughton’s Theorem 1 is the main tool used by Mundici

in [30] to prove that SAT}};OS is in NP.

From linear algebra (or operational research) we
know that the maximum (and the minimum) of a lin-
ear function [defined over a polyhedron P is attained in
a vertex of P. Passing to McNaughton piecewise linear
geometry, we have that relative maxima (and relative
minima) of a McNaughton function g € M,, are attained
in some vertices of members of a polyhedral complex C,,
linearly adequate to g. Hence the critical point x such
that o¥(x) > 0 to be guessed by our candidate NP-
algorithm G&C of Section 2.1 is among the vertices (of
polyhedra) of C,.

While polyhedral complexes linearly adequate to for-
mulas are not unique, in [30] it is shown that we may
always choose C, as to have nice bounds on the size of
vertices of its polyhedra (we recall that each such vertex
v is rational).

More precisely, C,, can be always chosen in such a
way that any vertex w of any polyhedron in C, arises as
the solution of a system of n many linear equations, each
one of them either of the form p;(x) = 0 or p;(x) = 1
or pi(x) = pj(x) or x, = 0 or xp, = 1, for p1,...,py
be the finitely many linear polynomials given by Theo-
rem 1 for the McNaughton function <pL. Actually, such
a C, can be built by induction on subformulas of ¢
as the roughest polyhedral complex linearly adequate
to each subformula of ¢. We shall be more explicit in
this construction in Section 5.4. Let us display each p;
as pi(x) = Y_7_, aijrj + bi. An easy induction on the
structure of ¢ shows that |a;;| < |¢| for every coefficient
a;j. (Actually, in [3] is proved that |a;;| < the number
of occurrences of z; in ¢, see also Section 5.4). Then, for
each ! € {1,...,n}, the Ith linear equation in the system
can be written down as ¢j1x1+- - -+ ¢ xy, = d; with each
lcii] < 2|¢|. Forming the integral n X n matrix My, =
{cii}]i=, and the integral vector d = (di,...,dn) asso-
ciated with the system, we have w = M'd and hence
den(w) < |det(My)|. Using Hadamard’s inequality we
may conclude den(w) < (4n|p|?)"/2 < 221¥D* and thus

S. Aguzzoli et al.

the guessed vertex v is such that size(v) < 2|p|? and
SATL | € NP.

The polynomial reduction 7 from satisfiability in
Boolean logic to SATII;OS is defined for all formulas ¢

of Boolean logic in the variables p1, ..., p, as the map

T(W) = (p1V-p1)°> @ O (pn V —pp)? © P>

where 9™ denotes the formula 9©I9®---®J for 9 occur-
ring m times. It can be verified [21] that ¢ is satisfiable in

Boolean logic if and only if 7(¢) € SATL . Then SATY

pos* pos
is NP-hard. We can now state the following theorem:

Theorem 2 SAT%0 is NP-complete.

S

A more detailed analysis on the size of entries of My,
allows to have a smaller bound on the size of guessed
vertices. We shall sketch the technique used for the im-
proved bounds in Section 5.4.

Consider now, for 6 € [0, 1], the set

SATY = {p:¥x €[0,1]",p"(x) > 6}.

NP-containment of the SAT% problem can be dealt
with in the same way for each 6 (again, it is sufficient to
guess a vertex v such that o(v) > 6). NP-hardness of
SAT%‘ can be showed by reducing Boolean satisfiability
to SAT%‘ via the previously defined map 7. Finally, ¢ €
TAUT% if and only if - & SATY | and thus TAUT%

pos’
is in coNP.

Theorem 3 SAT%‘ is NP-complete for each 6 € [0,1]N
Q. in particular SAT{‘ is NP-complete, TAUT% and

L
TAUT,,s are coNP-complete.

3.2 Complexity of Géddel and Product logic

In this section we consider complexity results for Godel
and Product logic, as appeared in [6] and later in [21].
In section 5.2 we shall investigate the same problem by
using methods based on functional representation of log-
ics.

We start by giving some results from [21].

Theorem 4 SAT{ = SAT{ . = SATY = SATL., and
all these sets are equal to (classical) SAT.

The proof is easy: as obviously SAT C SAT%G’H} C
SATE,SS’H H we only need to show that if ¢ is positively
satisfiable in G (IT), then it is classically satisfiable. Hav-
ing any evaluation in G (IT) which gives a positive value
on ¢, to obtain a classically satisfying evaluation replace
all nonzero values by 1.

Theorem 5 TAUTS = TAUT/ = TAUT

pos pos

Complexity Issues in Basic Logic

The method of proof is analogous to the above (see
[21]).

We now concentrate on the 1-tautologies of either of
the two logics.

Let ¢ be a formula with variables p1,...,p, and let
I C{p1,...,pn}. We define the formula ! be induction
on complexity:

pf =0ifp; € ; pf = p; otherwise
of =0, 1'=1,;

(P1&1p2)! = 0 if at least one of 11,y is 0;
(P1&ipe)! = i &ipd otherwise;
0= =1

) = 0if ¢! is not 0;
(o —) = ¢! — ¢! otherwise.

Then it is possible to prove that the formula ¢! is
either equal to 0 or to 1 or it does not contain any 0.

In other words, in fixing I we set some variables equal
to 0 and by ¢! we denote the translation of ¢ obtained
by setting all variables in I equal to 0 and then making
a sort of simplification (for example instead of writing
0 — v we write directly 1).

Let C be G or II. If e is an evaluation such that
e(p;) = 0 if and only if p; € I, then it is easy to prove
that ec(p) = ec(¢!) and ec(p!) = 0 if and only if !
is the formula 0. Further, if there exists ec such that
ec(p) > 0, then by setting I = {p; | e(p;) = 0} we have
then that ¢! is not equal to 0.

Vice-versa, if there exists a set I such that ¢! is dif-
ferent from 0 then the evaluation e such that e(p;) = 0
if p; € I and e(p;) = 1 otherwise is such that ec(y) > 0.

Results on TAUTH are based on the embeddability
of Lukasiewicz logic in Product logic, as depicted in the
following lemma [21].

Lemma 1 For each a such that 0 < a < 1, the MV-
algebra [0, 1]y, is isomorphic to ([a, 1], %4, —a, a, 1) where

T *q y = max(a, - y)

T —q Yy = —.y (Product implication).

Let ¢ be a formula not in TAUT. Hence there is an
evaluation e such that e;7(p) < 1 and so there exists a
subset I of propositional variables of ¢ and an evaluation
¢/ such that for every subformula 1 of ! (¢ < ©f),
e (p!) <1 and €' (1) > 0 (for the fact that in ¢! no 0’s
appear). Hence, by Lemma 1, by choosing the element
a smaller then e/ (1) for every ¢ < ¢!, we have ¢ ¢
TAUTY if and only if there exists I such that

N ¥ A-(o) € SATY,. (1)

=l

This reduces polynomially the complement of TAUT{!
to SATE

pos» hence by Theorem 2, we have

Theorem 6 TAUT/! is coNP complete.

In the formula (1) we have replaced the infimum on
variables not belonging to I, which appears in the origi-
nal proof in [6] or in [21], by the infimum taken on all sub-
formulas of ¢!, thus fixing a small bug: to exemplify why
the original formula does not always work, we consider
@ = —p — ((p — (p&p)) — p) that is a tautology of
Product logic. For I =), we have ¢! = (p — (p&p)) — p
and

vi= \vA-(e") =pA-((p— (pkp)) — p) € SAT,
vl

since ¥l (1/3) = 1/3.

Concerning Godel logic, in the paper [17] Godel
shows that there is an infinite descending chain of logics
between the classical propositional logic A and the intu-
itionistic propositional logic H, and that H (and hence
Godel infinite-valued logic) cannot be viewed as a finite-
valued logic. This chain is

A=G2D0G3D...0G,D...0G, D H,

where each G,, is the set of formulas valid in every n-
elements linearly ordered Gdédel algebras and it is ax-
iomatized by axioms of Gddel logic plus n 4 1 variables

axiom
F7L+1 - \/
1<i<k<n+1

Pi < Pk

Formula F,;; is valid only when variables are inter-
preted in sets with less than n+1 elements. Then Fj,; is
an example of a formula with n + 1 variables that is not
a tautology of Godel logic and of G,,, but is a tautology
of Gl, ey Gn—l-

We further investigate 1-tautologies of Gédel logic as
n [21]. If ¢ is not a 1-tautology, there exists an evalua-
tion v of propositional variables p1, ..., p, of ¢ such that
v(p) < 1. Consider the set D = {v(p1),...,v(pn)} C
[0,1]. By checking truth tables of Godel connectives,
it is easy to see that for every subformula 1 of ¢,
v(¢) € DU{0,1}. Hence we can consider, without loss
of generality, that

1 n
D=S =90, ——,...,——,1;.
n+1 {an+17 7n+17}

Then consider the following procedure:

1. Guess a subset {z1,...,2,} of [0,1].
2. Put v(p;) = x; for every i = 1,...,n and calculate

v(p).
3. Check if v(yp) < 1.

The above procedure assures that the TAUT$ problem
is in coNP, since we can suppose that {z1,...,z,} C D.

4 Complexity of Basic logic and individual
t-norm logics

4.1 Basic logic and t-tautologies

We use the notation TAUT] for the set of t-tautologies.
In the propositional case, BL-provable formulas coincide
with TAUT7 thanks to standard completeness theorem
of [10]. Here we reproduce the results of [7], showing that
TAUTY] is coNP-complete.

Lemma 2 A propositional formula is a t-tautology iff it
1s a 1-tautology of all t-algebras which are finite ordinal
sum of L-segments.

The proof in [7] is based on Lemma 1.
Theorem 7 The set of t-tautologies is coNP-complete.

The coNP-hardness of the t-tautology problem is es-
tablished by reduction of TAUT%7 namely: a formula
©(p1,-..,pn) is in TAUTY iff o(—py,. ..
tology of each finite sum of L-segments.

To show the coNP-containment of the problem, a
nondeterministic algorithm, running in time polynomial
in the length of ¢ and accepting the complement of
TAUTY], is presented. Here we give its slight modifica-
tion.

The following lemma comes from [25] and strength-
ens a similar result in 7], where the bound was 4k + 1.

,) IS a tau-

Lemma 3 If o(p1,...,px) is not a t-tautology, then it
18 not a 1-tautology of some t-algebra which is a sum of
(at most) k + 1 L-segments.

Consequently, to find out whether a formula ¢(p;,
.., Pr) is a t-tautology, it is enough to consider its 1-
tautologousness in a single t-algebra, namely, a k + 1-
potent sum of L-segments.
Preliminaries and notation. For a propositional formula
p, let m denote the number of subformulas in ¢. Further,
k denotes the number of propositional variables in .

// algorithm T-TAUT accepting
// the complement of TAUT]

input: ¢

begin

Set n = k+ 1 and let A be the t-algebra which is an
ordinal sum of n L-segments.

nameSubformulas () Fix an arbitrary enumeration of all
subformulas of ¢; introduce variables z; ..., z,,, and as-
sign the variable x; to the subformula ¢; of .

cutpointVariables() Introduce variables zg, ..., 2, for
the cutpoints of A, enumerated so that z; represents the
i-th cutpoint of A in the ordering of reals; z; is intended
for 0 and z, is intended for 1.

Set V.={z0,...,2nt U{21,...,2m}.

S. Aguzzoli et al.

guessOrder () Guess a linear ordering = of variables
in V: write the variables down in a sequence, for each
consequent pair a and b decide whether a = b or a < b.

checkOrder () Check that < satisfies basic natural con-
ditions: first, that it preserves the ordering of the z-
variables, i. e., if i < j, then z; < z;. Second, any variable
assigned to the constant 0 must be ~-equal to zg. Third,
the variable assigned to ¢ must be strictly smaller than
zn (so that the evaluation whose existence the algorithm
verifies assigns value less than 1 to ¢).

We say that variables x; s. t. z; X x; < 241 belong to ¢
or are in 1.

checkExternal () Check external soundness of <: for
©;, @; subformulas of ¢ (1 <1i,5 <m),

—if p; & p; is a subformula ¢; of ¢ for some k €
{1,...,m} and, for some [€ {1,...,m}, we have z; <
2 R x4, then z ~ x;;

—if ¢; — ¢; is a subformula ¢}, of ¢ for some k €

{1,...,m} and z; < z;, then z} ~ 2z,;
—if ¢; — ¢; is a subformula ¢}, of ¢ for some k €
{1,...,m} and, for some [€ {1,...,m}, we have z; <

21 2 x4, then z, = x;.

checkInternal() Check internal soundness of < for
each interval [z;,z;41], 4 = 0,...,n — 1 in <. Consider
variables in 7. Construct a system S; of equations and
inequalities; S; is initially empty. For each subformula
¢; which is p;&py (or ¢; — @), if z; and z are in
i, check x; is also in ¢ and put equation z; *x z = x;
(or z; = x = x; respectively) into S;. Further, put all
equations and inequalities defined by =< for the variables
in 7 into §;. Check whether the system S; has a solution
in the i-th segment of A, such that z; and z; 1 evaluate
to the cutpoints delimiting the i-th segment of A.

end

Obviously the system S; in the checkInternal()
step is solvable in the i-th segment of the algebra iff
it is solvable in the standard Lukasiewicz algebra.

The ordering =< contains clusters of mutually =-
equivalent variables; choose one representative from each
cluster and replace with it all the occurrences in S; of all
the other variables in the cluster; accordingly in < we
consider only the strict ordering of these representatives.
The total number of representatives is j < m + 2. We
retain the notation S; for this modified system: S; has
j variables, a strict ordering of length j, and number of
equations at most m.

The following lemma is Hahnle’s result [19], obtained
by a reduction to a particular Mixed Integer Program-
ming problem (cf. 2.2); see also [7] for comments.

Lemma 4 The problem of solvability of each S; in the
standard Lukasiewicz algebra is in NP.

In [7] it is also shown that SATY coincide with the
classical SAT and thus are NP-complete.

Complexity Issues in Basic Logic

4.2 Individual t-norm logics

In this section we establish coNP-completeness of the set
TAUT[lo’l]* for any t-algebra [0, 1].. The result comes
from [24]. We note in passing that, as shown in [25],
for each t-algebra [0, 1], the problems SAT] and SAT}
are NP-complete and the problem TAUT; is coNP-
complete.

Moreover, it is not difficult to show that for an arbi-
trary t-algebra, TAUT] is coNP-hard: the algebra either
has a first segment L, or has the strict negation. In case
of a first segment L, the set TAUTIOUL js polynomially
reducible to TAUT U+ as in [7], prefixing a negation to
each occurrence of a propositional variable. If [0, 1], has
the strict negation, the set TAUT of classical tautologies
can be polynomially reduced to TAUT U as described
in [21], prefixing a double negation to each occurrence of
a propositional variable. The latter reduction can be also
used for classes of algebras with the strict negation (for
example SBL): forming a translation ¢~ as above, we
have ¢ € TAUT iff o7 is a 1-tautology in all standard
SBL-algebras.

It remains to show the coNP-containment of the set
TAUT[lo’l]* for any *. The algorithm presented is a slight
modification the one in [24]. Generally, both are based
on the algorithm accepting non-t-tautologies, presented
in [7] (and its slight modification here in 4.1).

Theorem 8 Let A be an arbitrary t-algebra. Then

TAUTA is in NP.

First we give an algorithm for finite ordinal sums
of L, G, and IT-segments. Then we modify it for infinite
sums which generate the variety SBL. Finally we modify
it for other infinite sums.

4.2.1 Finite sums We present an algorithm FIN (for fi-
nite sums) which decides whether an input formula ¢
has an evaluation in A s. t. ea(y) < 1; if so, the output
is ‘yes’, otherwise it is ‘no’. So the set accepted by FIN is
the complement of TAUT®. Throughout a t-algebra A
which is a finite ordered sum is fixed and the type and
cardinality of the sum is used as a built-in information.

We claim the nondeterministic algorithm FIN works
in polynomial time w. r. t. the length of ¢. The only step
requiring inspection is the last, checkInternal () step;
we will argue that this step is an NP subroutine for G-
and IT-segments (we already know this for L-segments
from 4.1).

Notation. Let n denote the number of segments in A.
For a propositional formula ¢, let m denote the number
of subformulas in ¢.

// algorithm FIN for finite sum A
input: @
begin

nameSubformulas ()

cutpointVariables()
guessOrder ()
checkOrder ()
checkExternal ()
checkInternal ()

end

We discuss the polynomial nature of the check-
Internal () step, considering the situation in the i-th
segment, for ¢ fixed. The step defines a system S; of
equations of type z *y = z and of type x = y = z, and
of equations and inequalities imposed by =< (see 4.1). [7]
presents an NP routine which checks solvability of S; in
[0, 1], so it remains to consider [0, 1] and for [0, 1]77. It
is shown in [24] that the solvability of the system S; in
[0,1]¢ can be checked in time linear in m. Namely, we
consider the variables themselves as a Gddel chain and
check that the equations are sound w. r. t. the ordering.

For the Product t-algebra we use the following
lemma, coming also from [24].

Lemma 5 The system S; is solvable in [0, 1] iff it is
solvable in a t-algebra [0, 1)gar, in such a way that x;,
is evaluated by Opgy,, Ti;_, 15 evaluated by lygr and
Tiy,...,2q,_, are evaluated in (1/2,1), where 1/2 is the
non-extremal cutpoint.

To check solvability in the Product t-algebra, we first
eliminate all equations involving y;o, it being possible to
check the soundness of any such equation “externally”.
Then we consider the remaining equations and strict in-
equalities in L, introducing a new inequality 0 < w1,
and check solvability of this system of equations and in-
equalities using the algorithm for solvability in [0, 1]y..

We conclude that there is a nondeterministic algo-
rithm, running in time polynomial in m, checking the
solvability of the system S; in [0,1].

Finally, it is obvious from the construction of the al-
gorithm that the output is ‘yes’ (on at least one branch)
iff the formula ¢ has a counterexample evaluation in A,
i. e., is not an A-tautology. Thus the algorithm solves
the problem and the set of A-tautologies is in coNP.

4.2.2 SBL-generic t-algebras The propositional logic
SBL, ‘S’ for ‘strict’, is a schematic extension of BL with
an axiom or axioms stating that the negation — is strict:
in any BL-chain—and particularly under the standard
semantics—its truth function is two-valued and assigns
1 to argument 0, while 0 is the value for all non-zero ar-
guments. One possible axiom that can be added to BL
to obtain this logic is the axiom IT2 (¢ A = — 0).

SBL has been investigated in [12]. Since it is a
schematic extension of BL, it enjoys completeness w. 1. t.
SBL-chains; moreover, standard completeness for SBL
has been proved in [10].

10

The following is an easy consequence of Lemma 1.
The converse implication also holds and has been proved
in [13]. We will not need it here.

Lemma 6 Let A = @, ; A; be an SBL t-algebra. If
there are infinitely many i’s s. t. A; is an L-segment,
then A generates the variety SBL.

Proof Assume A is as above, ¢ is not an SBL-tautology,
and let B be an SBL t-algebra in which ¢ does not hold.
We may assume B is a finite sum of L-segments and
IT-segments only (starting with a IT). Then the coun-
terexample evaluation on B can be locally embedded in
A, mapping 0 to 0, for the semi-open initial II segment
of B using any L-segment of A, for each of the following
L-segments of B using an L-segment of A, and for each
of the following IT-segments of B using two (not neces-
sarily adjacent) L-segments of A, all in increasing order
w. 1. t. the ordering of the segments in [0, 1]. This gives
a counterexample in A.

Now we show that SBL is in coNP, thus solving the
complexity problem for all t-algebras which generate the
variety SBL.

If ¢ is not an SBL-tautology, then it has a coun-
terexample in a standard finite sum whose first element
is not an L, and with a suitably small number of seg-
ments. In fact, it is an easy modification of Lemma 3
that ¢(p1,...,pk) is not an SBL-tautology, iff it is not a
1-tautology of a t-algebra of type Il @ L & --- L, with
k L-segments.

Thus we may modify the algorithm T-TAUT to work
with an ordinal sum A, determined by the input formula
©(p1,-..,pk): its number of segments is n = k + 1, the
first segment is I, the other segments are L.

// algorithm for SBL

input: ¢

begin

//the algorithm works with A, n=k+1
nameSubformulas ()

cutpointVariables()

guessOrder ()

checkOrder ()

checkExternal ()

checkInternal ()

end

It is obvious that this modification is an algorithm run-
ning in polynomial time and accepting SBL counterex-
amples, so the propositional tautology problem for the
logic SBL is in coNP.

S. Aguzzoli et al.

4.2.8 Other infinite sums Putting aside those t-
algebras which generate either BL (characterized in [1])
or SBL, we are left with algebras which have only finitely
many (possibly no) L-segments. We will show that this
property allows for a finite description of the tautologies
of each such t-algebra.

First a lemma showing that the tautologies of any
infinite sum without L-segments coincide with the tau-
tologies of an infinite sum of IT-segments only (all of
which also have the same set of tautologies).

Lemma 7 Let [0,1]. and [0,1]. be two standard alge-
bras which are infinite sums without L-segments. Then
TAUTI - = TAUTIO U

Proof Observe that there are infinitely many I7-seg-
ments in both sums and the presence/absence of G-
segments inbetween II-segments and the ordering type
do not matter. Thus each of the sums embeds counterex-
amples from the other one.

This can be generalized: let [0, 1], be an arbitrary
t-algebra with two non-extremal idempotents 0 < ¢; <
co < 1. Define two new t-algebras by substituting a copy
of two arbitrary infinite sums without L-segments into
the interval [c1,cz]. Then the resulting two t-algebras
will have the same sets of tautologies.

For each t-algebra which is an infinite sum, we now
encode the sets of its tautologies with a finite string. The
idea that this can be done comes from [24]; it has been
further developed in [13], where the concept of canonical
algebra is introduced, and shown that for each t-algebra
there is a canonical one with the same set of tautologies.

Definition 2 (canonical t-algebra) A t-algebra is ca-
nonical iff it is an infinite sum of L-segments only, or
a sum of a II-segment followed by infinite sum of E-
segments only, or a finite sum of segments of type L, G,
IT and oIl (standing for an infinite sum of II-segments
only), where each G-segment is not preceded or followed
by another G, and each segment ooll is not preceded or
followed by G, I or another ooll.

It follows from the above lemma and discussion that
canonical algebras cover all possible subvarieties of BL
generated by a single t-algebra; moreover, [13] shows
that distinct canonical algebras generate distinct vari-
eties. The strings in the alphabet {L, G, II, coIl} give
a nice finite-string representation of the subvarieties (or,
equivalently, sets of propositional tautologies) distinct
from both BL and SBL.

Now we show that the 1-tautologies of any canonical
t-algebra A which is an infinite sum with finitely many
E-segments are in coNP. Use I[(A) for the length of the
finite string in the alphabet {L,G,IT,00IT} representing
A.

As before, for a propositional formula ¢ the symbol
m denotes the number of subformulas in ¢, and k stands
for the number of propositional variables in .

Complexity Issues in Basic Logic

// algorithm INF for infinite sum A

input: ¢

begin

guessCardinality() Pick at random a natural n, 0 <
n<k+1.

guessLayout () Assign to each ¢ = 1,...,n one of the
symbols L, G, II, signifying the type of the ¢-th segment
of the sum.

We use the term ‘constructed sum’ and the symbol C to
denote this finite sum.

checkEmbedding () Check whether the constructed sum
is 1 — 1 embeddable into A (as a sequence of symbols
into a sequence of symbols, see the following lemma), in
such a way that a potential initial L. of the constructed
sum is mapped to an initial L in A.

// from now on the algorithm works with C
nameSubformulas ()

cutpointVariables()

guessOrder ()

checkOrder ()

checkExternal ()

checkInternal ()

end

Lemma 8 The embeddability of the constructed sum C
into A can be checked by an algorithm running in poly-
nomial time w. r. t. the length n of C.

Proof The algorithm works in two stages: first it guesses,
for each symbol in C, an index into the representation of
A, i. e., a natural number in [0,1(A) — 1]. If the guess is
sound, this should be a 1-1 embedding of C into A. Note
that the information guessed is polynomial since [(A)
is constant. Then it performs a verification of whether
the guess was sound: an (initial) L-segment in C may
only map to an (initial) L-segment in A; a G-segment
in C may only map to a G-segment in A, and a II-
segment in C may map either to a II segment or an
ooll-segment in A. The indices must be nondecreasing
(w. r. t. the sequence C), no two L-segments in C may
have the same index, no two G-segments in C may have
the same index, and two II-segments may have the same
index iff it specifies an coll-segment of A. Obviously this
check is polynomial in n since it is sufficient to consider
the indices of each two neighbouring segments in turn.

Note that checking the embeddability of C into A
can also be performed in deterministic polynomial time,
by easily adapting the algorithm for checking embed-
dability of a string in another one.

If there is a counterexample evaluation in A, then
there is a finite subsum of A harbouring it. We know it
is enough to search all finite subsums up to length £+ 1.
The algorithm works with each such subsum as finite
sum and works in exactly the same way as in the case
for finite sums.

11

5 Finite countermodels and reductions to
finite-valued logics

Finite-valued reduction for an infinitely valued logic £
allows to reduce the problem of tautologousness of a
generic formula ¢ in £ to the tautologousness problem
of ¢ in a finite set of finitely valued logics. From another
point of view, this amounts to limiting, in a uniform way,
the search space for finite countermodels for any formula
© that is not a tautology.

In this section we shall survey results of [2],[3],[4]
for Lukasiewicz, Godel and Product logic, by describ-
ing functional representation of Gédel and Product logic
first.

Throughout this section ¢ will be a formula with
variables among pi,...,p,.

5.1 Functional representation for Gdadel logic

In this section we shall describe truth tables of Godel for-
mulas, thus giving a functional description of free Godel
algebras. Results of this section have been adapted from
results of [15].

We introduce a subdivision of [0, 1] taking into ac-
count the possible orders between components of each
point x = (x1,...,2,) € [0,1]™

Consider the following equivalence relations between
points of [0, 1]™:

— (21, Tn) =1 (Y1,...,yn) if, for every i € {1, ...,
n}, z; = 0 if and only if y; = 0.

— (21, ,2n) =2 (Y1,...,yn) if, forevery i, € {1, ...,
n},
o (x1,...,xn) =1 (Y1, -, Yn),

o z; < z; if and only if y; < yj,
o z; = x; if and only if y; = y;.

Then let C'(x) and C?(x) be the class of equivalence
of x with respect to equivalence relations =; and =,
respectively.

Then the formula

Por(x) = /\ —p; A /\ pj
z;=0 ;70

is a Godel formula such that the function gogl(x) is the
characteristic function of C*(x). On the contrary, it is
not possible to describe Godel functions that are char-
acteristic functions of regions C?(x).

Let C be the set of all C?(x), with x € [0, 1]". Note
that C is not a partition of [0, 1]™. The functional repre-
sentation for Godel logic is given by the following theo-
rem:

Theorem 9 The restriction of ¢© on every C € C is
either equal to 0 or to 1 or is a projection. Vice-versa, if
f is a function such that, restricted to an element of C
is either equal to 0 or to 1 or to a projection, then there
exists a Gddel formula ¢ such that f is the truth table

of .

12

For details on proof see [15]. It is worth noticing that:

(i) Regions of linearity of Gdédel functions can be de-
fined independently from formulas (apart from the
dimension n of the domain),

(ii) Godel functions are not continuous, but their discon-
tinuities are located only on boundaries of regions
Cecd.

5.2 Functional representation for Product Logic

Since negation has the same interpretation in both Godel
and Product logic, we can repeat the argument of Section
5.1, describing the characteristic function of regions with
some component equal to zero.

An integer monomial in the variables z1,...,z, is a
function x’fl ... xkn where Ky, ...k, € Z.

By piecewise monomial function we mean a continu-
ous function f such that there exist subsets D1, ..., D,
of (0,1]™ and monomial 71, ..., 7, such that the restric-
tion of f to each D; is either a monomial function or the
function constantly (on D;) equal to 0.

The functional representation theorem for Product
logic can be summarized in the following way:

Theorem 10 Let I be a subset of {1,...,n}, and
Cr={xe0,1]"|2; =0 forieI,0<z; <1,j &I}

Then let f :[0,1]™ — [0,1] be a function such that the
restriction of f on every Cy (for every I C {1,...,n})
1 a piecewise monomial function. Then there exists a
formula ¢ such that o' = f. Further, for any C; there
exists a formula vy in which only variables p; with j ¢ I
appear, and having length less or equal than the length
of v, such that the restriction of f to Cy is equal to the
restriction of Y to Cj.

For details see [16], [11].

In order to deal with Product logic by means of
piecewise linear functions, we shall introduce an infinite-
valued logic X~ whose domain of interpretation is the set
[0, 0] of nonnegative real numbers plus a distinct sym-
bol for infinity, and connectives are interpreted as sum
and truncated difference.

Interpretation of connectives in X is given by the
map

—1 .
vz €10,1] — log(z™), 1fx>Q
o0 otherwise

(the choice of the base of logarithms is immaterial, for
concreteness we assume we are dealing with natural log-
arithms) in such a way that for any evaluation e,

ex(p) = en(v))-

In this way ¢(z - y) = «(x) + ¢(y) and v(xz — y) = 0 if
v(x) > (y) and t(z — y) = t(z) — t(y) otherwise. If ¢

S. Aguzzoli et al.

is a tautology of IT then for any evaluation e, ex(p) =
Wen(9)) = 0.

Then truth tables of formulas of X' can be character-
ized by applying the logarithmic transformation to truth
tables of Product formulas.

A continuous piecewise linear function with each
piece of the form >_._; a;x; is a homogeneous piecewise
linear function.

iel

Theorem 11 Let I be a subset of {1,...,n}, and
Cr={xe€[0,00" | x; = 00,2; € [0,00) foriel,j&I}

Let f : [0,00]™ — [0,00] be a function such that the
restriction of f on every Cy (for every I C {1,...,n})
is either an homogeneous piecewise linear function with
integer coefficients or is identically equal to oo. Then
there exists a formula ¢ such that 0> = f. Further, for
any Cy there exists a formula 1y in which only variables
p; with j ¢ I appear, and having length less or equal
than the length of @, such that the restriction of f to Cy
is equal to the restriction of wIE to Cy.

5.8 Functional representation for Freegr on one
generator and Freepy, ,

In [27,28] Montagna undertakes the study of concre-
te functional representation of free BL-algebras. Let
m[0,1]§, be the algebra defined as the ordinal sum of
m copies of the standard MV-algebra [0, 1];,. The free
BL-algebra over n generators is the subalgebra B, of
((n+1)[0,1]3)((+DIOU)™ generated by the projections
(1,...,2n) — x;. The problem tackled by Montagna is
to characterize this subalgebra as an algebra of functions
from [0,n 4+ 1] — [0,n + 1]. While the full character-
ization is still an open problem, in [27] the problem is
completely solved for the free BL-algebra over 1 gen-
erator, while in [28] it is solved the easier problem of
characterizing free n-generated algebras in the variety
of BL s-algebras, obtained by adding to BL-algebras the

operator
1ifz=1
Alw) = {0 otherwise.

For all a € R we denote by i(a) the largest integer
b < a. For all integers ¢ > 0 let x ®; y = max{i,z +
y—1—itand z -, y = min{i + 1,1 —x + y + i}.
The algebra m[0,1];, = ([0,m], &, —,0) has operations
defined as follows:

_ 2Oy ifi(z) =i(y) <m
whoy = {min(x, y) otherwise,
m ifx <y
T—oy=qy if i(y) <i(z)
T —(z) Y otherwise.
The algebra m|0, 1]ﬁ = ([0,m], &, —, A,0) adds to the

set of operations above the unary operator A such that
A(m) =m and A(z) =0 for z # m.

Complexity Issues in Basic Logic

Let ©™Y denote the function in (m[0, 1]y,)(m(0:1)"
determined by formula ¢ in n variables (with no oc-
curences of A).

Let f be a McNaughton function of one variable (f €
My). Then the functions f1, fa : [0, 2] — [0, 2] are defined
as follows:

filw) = {f(x) ES@ZL) =14 fa—1).

2 otherwise
Then, [27] proves the following:

Theorem 12 (i) If ¢&(1) = 1, then there is a function
h € My (possibly, h # oY) such that h(1) =1 and

ap2L(m) _ @%(x) fo<z<l1
ho(x) otherwise.

(ii) If oH(1) = 0, then

L .
oL,y _ Jor(z)ifz <1
v(@) { 0 otherwise.

The free 1-generated BL-algebra is the algebra whose
domain is the set of all functions satisfying (i) and (ii)
with pointwise defined operations.

The cases of free BL-algebras with n > 1 genera-
tors are much more complex to deal with, since not all
relationships and dependencies linking the behaviour of
functions over different regions of the domain [0,n + 1]
are fully described. Free BL p-algebras allow an easier
analysis due to the expressive power of the A operator
which kills off those inter-dependencies.

Let I(n) denote the set of all t = (¢1,...,t,) € [0,n+
1™ such that {i(¢;) |j=1,...,n} U{0}\ {n+ 1} is an
initial segment of natural numbers. Let I,,41 = {n +
1} and I; = [j,j+ 1) for 0 < j < n. Observe that
I(n) is the disjoint union of all sets Iy, X I, X -+ X I,
for {0,k1,...,kn} \ {n + 1} being an initial segment of
{0,1,...,n}. Such sets are called cells.

Let y = (y1,--.,yk) be a k-tuple of variables among
Z1,...,Ty, let f € My be a McNaughton function and
fix i < n+1. The function f; ,, : IF — [i,i+1]U{0,n+1}
is defined as follows:

—If i = 0 then fi,(y) = f(y) if f(y) # 1, fin(y) =
n + 1 otherwise.

~If0<i<n,if f(1,...,1)=1and f(y, —1,...
i) # 1 then f; n(y) = f(y1 —i,...,yx —7) +i.

—Ifo<i<nm,if f(1,...,1)=1and f(y1 — 4, ...,y —
i) =1 then f; ,(y) =n+1.

—Ifi=n+1land f(1,...,1) =1 then f;,(y) =n+1.

—If0<i<n+1land f(1,...,1) =0 then f; ,(y) = 0.

y Yk —

A subset Y of a cell C'is linear semialgebraic if there
is a system E of linear inequations of the form f(x)<g(x),
for @ € {<, <}, such that Y is the subset of all solutions
in C of system E and the following conditions hold for
any inequation e = f(x) < g(x) in E:

13

i) There isi(e) € {0,1,...,n+1} such that for all j < n,
if either f or g depends on z;, then i(t;) = i(e) for all
teC.

ii) There is a k-tuple y = (y1,...,yx) of variables among
Z1,...,T, and McNaughton functions h, k € My, such
that f and ¢ only depend on y, and for all x € C' one
has f(x) = hj(e),n(y) and g(x) = kj(e),n(y). Moreover, if
i(e) >0, then h(1,...,1) = k(1,...,1).

A partition of I(n) into semialgebraic subsets of cells
is a BL a-partition. f is an elementary BLa-function if
its domain is an algebraic subset Y of some cell C' and
there are an i(f) € {1,...,n + 1} and a McNaughton
function g such that for j = 1,...,n, if g depends on
xj, then for all t € C™ we have i(t;) = i(f). Moreover
f=9ip)n-

Theorem 13 [28] The free BLa-algebra over n gen-
erators can be represented as (D(n),&,—,A,0) where
D(n) is the set of all functions from I(n) — [0,n + 1]
for which there are a BLa-partition {Py,...,P,} and
elementary BLa-functions fi,..., fu such that, for all
i €{1,...,u}, the domain of f; is P;, and f | P; is f;.
The operations &, —, A are defined pointwise.

Once we have Theorem 13, it is easy to find an
isomorphic representation of the free BL p-algebra over
n generators in terms of an algebra of functions from
[0,n 4+ 1]™ — [0,n + 1], since all information coded in
I°(n) := [0,n + 1]™ \ I(n) is actually redundant (see
Lemma 9 to get an idea, in a slightly different setting,
about how cells C I¢(n) are just replicas of cells C I(n).
From Theorem 13 it is also trivial to give an isomorphic
presentation of the same algebra as an algebra of func-
tions from [0,1]™ — [0,1]. An analogous representation
is explored in [5] for studying a class of functions which
properly contains all members of free n-generated BL-
algebras in order to achieve a finite-valued reduction of
Basic Logic: see 5.4 for some details of this construction.

5.4 Finite-valued reductions

As it is shown in [2,3], results of Section 3.1.2 can be
considerably improved by applying a technique which
has been generalized to other logics in [4]. In this sec-
tion we review cases in which the technique has been
successfully applied.

5.4.1 Lukasiewicz logic Our aim is to find a bound by, :
¢ — bp,(p) € N such that for any non-tautological ¢ a
rational point v € [0, 1] such that o (v) < 1 can always
be found with den(v) < b,(¢). As a matter of fact, for
Lukasiewicz logic, every vertex of a suitably constructed
polyhedral complex C’ij linearly adequate to ch is shown
to have denominator < (|p|/n)", for p1,...,p, being the
propositional variables occurring in ¢ ([3]). We give some
details about this result here.

14

We start by giving a canonical algorithm to form Cg;,
which proceeds by inductively combining the polyhedral
complexes linearly adequate to all subformulas of ¢, as
specified below (where we choose {6, =} as sufficient set
of connectives and where cl X denotes the topological
closure of set X):

— Cl =0,1]".

- ch, =ck.

— Chyy ={D*,D~ | D =DiNDy,Dy € CL. Dy €
Ch Dt ={xeD|@Wadlx)=1},D =d{xe
D (yod)kx) <1}}.

C% is the roughest polyhedral complex linearly adequate
to all subformulas of ¢, in the sense that any other com-
plex with the same property is obtained by polyhedral
subdivision of C%.

The construction in [3] consists in keeping track of
the resources used to build equations of boundaries of
polyhedra of C%.

As a matter of fact, in the inductive definition above,
the only place were we split polyhedra and introduce
new face boundaries, is when we describe the intersection
D" N D~ with the equation (v & ﬁ)L(x) = 1. On every
polyhedron D the form of this equation is p(x)+q(x) = 1
for linear polynomials with integer coefficients p, g such
that over D the function 1/}}“ coincides with p while b
coincides with q.

Each boundary equation r(x) = 1 of some poly-
hedron of C}a‘ has been introduced the first time by
some subformula 1, of . If ¥ introduces the bound-
ary r(x) = 1 we shall denote r by ry. Further, we can
express each boundary 7(x) as) ;c; +7y, (x) where the
collection {4; };¢1, is formed by mutually disjoint occur-
rences of subformulas of 1,..

Thus, let v be a generic vertex of C’};, and let M, be
the integral n x n matrix of the coefficients of a system
Myx = d, having v as its unique solution and whose
rows are as described in Section 3.1.2. Each one of the n
many rows of the system M, x = d, represents a bound-
ary 7 and has the form >, ; +ry,(x). Then, determi-
nant preserving multilinear operations, each one of them
consisting in subtracting from a row an integral linear
combination of the other rows, allows us to transform
M, into an integral matrix M’ which has the same de-
terminant of M, and it is such that the union of all
formulas 1); in all rows constitutes a set of mutually dis-
joint occurrences of subformulas of ¢ (see [2,3] for the
many technical details we are omitting here).

Properties of matrix M’ allows to relate Hadamard’s
bound on the determinant of M’ to the length of .
Indeed, let ry(x) = D1 ; a;z;: then an easy induction
on the structure of formulas shows that |a;| is always
smaller or equal to the number of occurrences of the
variable z; in ¢. Hence, the sum >, . |c;;| over all entries
¢;j of M’ is smaller or equal to |¢|. Thus, by Hadamard’s
inequality, den(v) < |det(M")| < (Je|/n)™.

S. Aguzzoli et al.

A continuity argument and boundedness of slopes of
linear pieces of gpL shows that whenever there is a ver-
tex v with den(v) < (|¢|/n)™ such that ¢¥(v) < 1 then
there exists a nearby rational point w with den(v) di-
viding 2/#I=1 such that ©™(w) < 1. Then:

Theorem 14 For any formula o in the variables p1, . . .,
Pn, L |E @ if and only if

Ly =@ forall k< (lol/n)" iff Lowi- = e
5.4.2 Gédel logic Functional representation of Godel
logic (see 5.1) allows to conclude, much more directly
than in the Lukasiewicz case, that each vertex of C’f
has denominator 1. Due to discontinuity at the inter-
section of faces of polyhedra in Cg , vertices does not
constitute a sufficiently large set of points where to test
©C: in order to form a sufficiently large set of critical
points, we need to add one point picked from the rel-
ative interior of each face of each polyhedron in C’g .
This can be accomplished easily by taking Farey me-
diants of sets of vertices: The Farey mediant of a set
X ={xy,...,Xx} of rational points in [0, 1] is the point
y, lying in the relative interior of the convex hull of
)(7 given by Yi = Z?:l hij/2§:1 dij for Tij = hlj/dt]
Hence, we have to check points up to denominator n+1.
Actually, we can always find a point of denominator ex-
actly n + 1 in the relative interior relintF’ of each face
F of Cg. Then, we find again:

Theorem 15 For any formula ¢ in the variables p1, ...,
Pn-

G ': P Zﬁ Gn-i-l): P-
5.4.8 Product logic The piecewise-linear formulation of
Product logic (see 5.2) is apt for applying our technique:
consider a function ¢* : [0, 00]™ — [0, co] determined by
a formula ¢ of Product logic.

Then, when dealing with the restriction of ¢ to
[0,00)™, one can limit the search space of test points to
any closed hypersurface S splitting [0, 00)™ in two halves,
one of which containing properly B(0,¢) N [0,00)™ for
some n-dimensional ball B(0,¢€) centered in 0 and hav-
ing as radius an arbitrary 0 < € € R. One convenient
choice for such a hypersurface S is defined by the union
of all outer faces of the unit hypercube [0,1]", that is,
S=U;cn Frfor N={1,...,n} and

Fr={xe0,1]" |z =1iffi eI}

It is sufficient to study separately the restriction of p* to
each one of the F; which is (n — 1)-dimensional, which is
equivalent to considering only singleton index sets Fj =
F{(Lk} .

Upon identifying Fy,,; with the unit hypercube
[0,1]"~!, we proceed analogously to what we have done
for L and define a rational polyhedral complex Cf lin-
early adequate to ¢ and all its subformulas, by setting

Complexity Issues in Basic Logic

sz; = F{wk}v Cij&ﬁ = {Dl N Do | D, € CE,D2 S 0192}
and le—’ﬂ = {D+,D7 | D = D1 ﬂDg,Dl S 057D2 S
Cy, Dt = c{x € D | (v — 9)*(x) > 0},D" =
{x € D| (¢ — 9)¥(x) = 0}}. Then [4] shows that
the maximum of denominators of vertices in Cf is not
larger than the maximum denominators of vertices in
C};, where & : [0,1]"71 — [0,1] is the McNaughton
function determined by the formula) obtained from ¢
by substituting all occurrences of p; with 1. The restric-
tion of ¢* to [0,00]™ \ [0,00)" is dealt with in a simi-
lar way: let us display [0, c0]™ \ [0,00)" = J;c Gr for
Gr = {x €[0,00]"\[0,00)" | z; = o0 iff ¢ € I'}. Then, for
each I C N, there exists a formula v; of Product logic,
not longer than ¢, in the variables p,(1), ..., p,(n—1)) for
t(h) being the hth smallest element of N \ I, such that
(¥ | Gp)(t) = ¥ (t'), for every t € G and where
ty, =ty forall 1 <h <n—|I].

Apart from Boolean logic, there are no naturally de-
fined finite-valued Product logics: the problem in the lin-
ear formulation of the logic is that the range of * | Fy
is not included in [0,1] and it may include values as
high as |¢|. Then, to state the finite-valued reduction in
terms of finitely valued approximating logics, we have
to introduce a family of mi-valued logics S, having
an additional unary connective ¢ whose semantics is
o(x) = [lz|/lm and not to deal directly with ¢ but with
the formula ¢ obtained by prefixing each occurrence of
variable with ¢ [4].

Theorem 16 For any formula o in the variables pq, .. .,
Dn (with n > 1):

(i) ¢ is not a tautology if and only if there exists
a point v € (([0,1] N Q) U {oo})™ such that den(v) <
((Jol = 1)/(n = 1))""" and p*(v) > 0.

(i) = if S, & ¢ form = lp| and | =
gm—L,

If n = 1 then (i) holds with den(v) = 1 and (i)
trivially holds.

5.4.4 Basic logic First we derive a finite-valued reduc-
tion for the logic L4+G obtained by considering all con-
nectives from both Lukasiewicz and Godel logics. Ac-
tually, we just add to Lukasiewicz connectives an addi-
tional unary connective ~ interpreted by Godel negation
(~EHG= —G) The set {@F, - ~ETCY is sufficient to
express all the other operations of L + G.

With every formula ¢ in the expanded language we
can canonically associate a polyhedral complex C’S%*G

linearly adequate to §0L+GZ we just replicate the analo-

gous definition given for the Lukasiewicz case and add
CE;;G = C’%*‘G. The maximum size of vertices of CSEH'G
turns out not being greater than the maximum size of
vertices of the complex C’ij. As in the case of Godel log-
ics one has to take into account discontinuity between
different faces of C%“‘G and use Farey mediants to get a
point from each relative interior of a face. Then:

15

Theorem 17 For any formula o in the variables py, . . .,
Pn, L+ G | ¢ if and only if

L+ G B foral k< (n+1)(Jo|/n)".

Theorem 17 allows to find a finite-valued reduction
of Basic Logic: in [5] the authors use a partial functional
representation of logics given by ordinal sums mkL of m
many copies of Lukasiewicz t-norm. This partial charac-
terization is strictly linked to functional representation
of free BL s-algebras. Even if the class of functions in-
troduced in [5] does not coincide neither with the free
(m — 1)-generated BL-algebra nor with the free (m — 1)-
generated BL p-algebra, however yields a finite-valued
reduction of Basic Logic to finite-valued logics mLy. The
aim is to show that each critical point v for cme is
mapped to a critical point w for 1/)L+G, for a suitably
constructed formula 1 not longer than ¢, in such a way
that den(v) = mden(w).

Functions associated with formulas of m[0,1];, are
defined over [0, 1]™ (instead of [0, m]™ as it has been done
in [28] for free BL a-algebras: this change is immaterial,
compare with the end of 5.3), hence [0, 1]" is partitioned
into m”™ semi-closed cubic cells each of them having the
form

—_— Jm m m
Dk—Ikl x[k2X"‘kan

where each k; € {1,...,m} and each I" is an interval
I = [(j —1)/m, j/m) apart from I} = [(m —1)/m,1].

Let o™ : [0,1] — clI™ be defined by o/ (z) = (i —
1+2)/m. The behavior of function ™ determined by a
formula ¢ in m[0, 1]j, can be studied separately over each
cell Dy. For this purposes it is convenient to introduce
an equivalence relation between cells as follows:

Two functions 7, «’ : {1,...,n} — {1,...,m} are
equivalent if

- (1) =7""H(1),
— For every 4,5 € {1,...,n}, 7(¢) < w(j) if and only if
7' (i) < 7'(j) and 7 (i) = w(j) if and only if #’'(i) =
7(j)-
Given 7 : {1,...,n} — {1,...,m} we let D, = D for
k = (7(1),...,m(n)). Two cells D, and D,/ are equiva-
lent if 7 and 7’ are equivalent.

For instance, the cell Iy x I x I3 is equivalent to
Igx I3 x 15, but it is not equivalent to any of the following;:
IQXI4><13,I4X11X[37I4><I2XIQ.

Lemma 9 Let 7o (21, 2n) = (T]1)00)(@1), -,

Tty (ny (@n)) and 77 = o (o)~ If m and @ are

equivalent then for every x € D,

—if 9"E(x) € Lnpsy, then Trym@ (9™F(x) = o™
(Trrr (X)),
- Zf (me(X) =be {Oa 1}7 then @mL(Tﬂ'ﬂ" (X)) =b.

Furthermore,

16

Lemma 10 Let S C D, be a k-dimensional polyhedron
in the canonical polyhedral complex C’glL linearly ade-

quate to o™, for some k € {0,...,n} and some T.
Then gomL [relint S depends only on variables (having
indezes) in w1(j) for a unique j € {1,...,m}.

Ifx € Dy then o™b(x) € Uj=1 Ix(5U{0, 1}. Further,

if gamL(x) € I;, there exists a formula ¥ not longer than
© such that

" (x) = 0 (WP (01 (x)).

Moreover, for each vertex x of CgLL, the point o1 (x) is
a vertex of C};*‘G.

Lemma 10 states that each critical point for a func-
tion cme in n variables can be found as the inverse im-
age under a map o; of a critical point for a formula
shorter than ¢ in the logic L + G. Hence, denominator
upper bounds for L+ G can be used to derive bounds for
logic mL. Since evaluating ¢ in (n + 1)L is all we need
to check whether it is a tautology we finally have:

Theorem 18 For any formula ¢ in the variables x4, . . .,
Zn, BL = ¢ if and only if

(n+ 1)Ly E ¢ forall k< (n+1)(Je|/n)".

Acknowledgments

The third author acknowledges gratefully a partial sup-
port of the Ministry of Education of the Czech Repub-
lic under Research and Development project LNOOA056,
Institute of Theoretical Computer Science — IT1.

References

1. P. AGLIANO, F. MONTAGNA, Varieties of BL-algebras
I: general properties, Journal of Pure and Applied Al-
gebra, 181, 105-129, 2003.

2. S. AcuzzoLl, Geometric and Proof-Theoretic Issues in
Lukasiewicz Propositional Logics. PhD thesis, Univer-
sity of Siena, Italy, 1998.

3. S. AcuzzoLri, A. CIABATTONI, Finiteness in Infinite-
valued Lukasiewicz Logic, Journal of Logic, Language
and Information, 9, 5-29, 2000.

4. S. Acuzzorl, B. GERLA, Finite-Valued Reductions of
Infinite-Valued Logics, Archive for Mathematical Logic,
41, 361-399, 2002.

5. S. Acuzzorl, B. GERLA, On Countermodels in Basic
Logic. Neural Network World, 12, 407-420, 2002.

6. M. Baaz, P. HAJEK, J. KrRAJICEK, D. SVEIDA, Em-
bedding logics into Product logic, Studia Logica, 61,
35—42, 1998.

7. M. Baaz, P. HAJEK, F. MoONTAGNA, H. VEITH, Com-
plexity of t-tautologies, Annals of Pure and Applied
Logic, 113, 3-11, 2002.

8. S. BURRIS, H.P. SANKAPPANAVAR, A Course in Uni-
versal Algebra, Springer, 1981.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

S. Aguzzoli et al.

R. CigNorr, I. M. L. D’OTTaviaNo, D. Munbpici, Al-
gebraic Foundations of Many-Valued Reasoning,
Trends in Logic, vol. 7, Kluwer, Dordrecht, 2000.

R. CigNour, F. EsTEvA, L. Gopo, A. TORRENS, Ba-
sic Logic is the Logic of Continuous t-norms and Their
Residua, Soft Computing, 4, 106-112, 2000.

P. CiNnTULA, B. GERLA, Semi-normal Forms and Func-
tional Representation of Product Fuzzy Logic. Fuzzy
Sets and Systems, to appear.

F. EsTEvVA, L. Gopo, P. HAJEK, M. NAVARA, Resid-
uated fuzzy logics with an involutive negation, Archive
for Mathematical Logic, 39, 106-112, 2000.

F. EsTEvA, L. GopDO, F. MONTAGNA, Equational char-
acterization of the subvarieties of BL generated by t-
norm algebras, preprint 2003.

G. EwALD, Combinatorial convexity and alge-
braic geometry, Graduate texts in Mathematics. vol.
168, Springer Verlag, Berlin, 1996.

B. GERLA, A Note on Functions Associated with Godel
Formulas, Soft Computing, 4, 206-209, 2000.

B. GERLA, Functional representation of many-valued
logics based on continuous t-norms. PhD thesis, Uni-
versity of Milano, Italy, 2000.

K. GODEL, Zum intuitionistischen Aussagenkalkiil,
Anzeiger Akademie der Wissenschaften Wien, Math.-
naturwissensch. Klasse 69, (1932), 65-66. Also in Ergeb-
nisse eines matematischen Kolloguiums 4:40, 1933

R. HAHNLE, Automated Deduction in Multiple-
Valued Logics, Oxford University Press, Oxford, 1993.
R. HAHNLE, Many-valued logic and mixed integer pro-
gramming, Annals of Mathematics and Artificial Intel-
ligence, 12, 231-264, 1994.

R. HAHNLE, Proof theory of many-valued logic—linear
optimization—logic design: connections and interac-
tions, Soft Computing, 1, 107-119, 1997.

P. HAJEK, Metamathematics of Fuzzy Logic,
Kluwer, Dordrecht, 1998.

P. HAJEK, Basic Fuzzy Logic and BL-algebras, Soft
Computing, 2, 124-128, 1998.

7. HANIKOVA, Standard algebras for fuzzy proposi-
tional calculi, Fuzzy Sets and Systems, 124, 309-320,
2001.

7. HANIKOVA, A note on the complexity of proposi-
tional tautologies of individual t-algebras, Neural Net-
work World, 12, 453-460, 2002.

7. HANIKOVA, Mathematical and Metamathematical
Properties of Fuzzy Logic, PhD Thesis, Charles Univer-
sity in Prague, 2003.

R. McNAUGHTON, A theorem about infinite-valued
sentential logic, Journal of Symbolic Logic, 16, 1-13,
1951.

F. MONTAGNA, The Free BL-algebra on One Generator,
Neural Network World, 5, 837-844, 2000.

F. MONTAGNA, Free BLa Algebras, in Lectures on
Soft Computing and Fuzzy Logic, Antonio Di Nola
and Giangiacomo Gerla editors, 159-171, 2001.

P. S. MoOSTERT, A. L. SHIELDS, On the structure of
semigroups on a compact manifold with boundary, An-
nals of Mathematics, 65, 117-143, 1957.

D. MunbIcl, Satisfiability in Many-valued Sentential
Logic is NP-complete, Theoretical Computer Science,
52, 145-153, 1987.

Complexity Issues in Basic Logic

31.

32.

33.

D. Munbict, A constructive proof of McNaughton’s
Theorem in infinite-valued logics. Journal of Symbolic
Logic, 59, 596-602, 1994.

V. NovAk, 1. PERFILIEVA, AND J. MOCKOR.
Mathematical Principles of Fuzzy Logic. Kluwer,
Boston/Dordrecht/London, 1999.

A. ROSE AND J.B. ROSSER, Fragments of many-valued
statement calculi. Trans. Amer. Math. Soc., 87:1-53,
1958.

17

