New view on continuous probability distributions

Zdeněk Fabián

December 5, 2020

回 と く ヨ と く ヨ と

3

Continuous random variables $X \sim (\mathcal{R}, f)$

Pearson's system:

$$\frac{f'(x)}{f(x)} = \frac{a + yx}{c_0 + c_1 x + c_2 x^2}$$

・ロ・ ・四・ ・ヨ・ ・ ヨ・

= 990

Some basic concepts

I. Probability: numerical characteristics are moments

$$EX^k = \int_{\mathcal{X}} x^k f(x) \, dx$$

mean value: EXvariance: $VarX = E(X - EX)^2$

◆□ → ◆ 三 → ◆ 三 → の へ ()

Some basic concepts

I. Probability: numerical characteristics are moments

$$EX^k = \int_{\mathcal{X}} x^k f(x) \, dx$$

mean value: EXvariance: $VarX = E(X - EX)^2$

II. Information and uncertainty:

Information theory: mean uncertainty of a distribution is differential entropy $H_F = -\int_{\mathcal{X}} f(x) \log f(x) dx$

Statistics: Fisher information (defined for parameters of parametric distributions only)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

But there are some problems:

New view on continuous probability distributions

▶ ★ 臣 ▶ …

= 990

Problem I: Moments

There are heavy-tailed distributions having neither variance nor even mean value

Cauchy distribution

$$f(x) = rac{1}{\pi\sigma(1+rac{x^2}{\sigma^2})}, \quad EX \sim x^{-1}$$

3

Problem II: Differential entropy

even in the case of the normal distribution

$$H_F = -\int_{\mathcal{X}} f(x) \log f(x) \, dx = \log \left(\sigma \sqrt{2\pi e}\right)$$

is negative if $\sigma < 1/\sqrt{2\pi e}$

2

Description of continuous distributions by classical probability theory is useful for distributions with neither too small nor too large variability

New view on continuous probability distributions

▲圖 → ▲ 注 → ▲ 注 →

э

Problem III. Typical value: mean, mode or median ?

New view on continuous probability distributions

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

= 900

Point estimation

$$X: \quad (x_1, ..., x_n) \neq \mathcal{F}_{\theta} = \{F_{\theta} : \theta \in \Theta \subseteq \mathcal{R}^m\}, \theta = (\theta_1, ..., \theta_m)$$

Moment method

$$\hat{\theta}_n: \quad \frac{1}{n} \sum_{i=1}^n x_i^k = E X^k(\theta) \quad k = 1, ..., m$$

Inference function $\psi(x; \theta)$

$$\frac{1}{n}\sum_{i=1}^{n}\psi_{k}(x_{i};\theta)=E\psi_{k}(\theta) \qquad k=1,...,m$$

classical: ML $\psi_k = \frac{\partial}{\partial \theta_k} \log f(x; \theta)$ Fisher score, $E \psi_k^2 FI$ robust: $\tilde{\mu}, \tilde{\sigma}$: $\psi(x; \tilde{\mu}, \tilde{\sigma})$ a bounded function

Zdenčk Fabián New view on continuous probability distributions

New view

Every model has a finite center and variability and their estimates are the center and variance of a random sample from them

э

Starting position

We have find a "natural" inference function S_F(x) of the model F and study random variables S_F(X) instead of X

New view on continuous probability distributions

э

Starting position

We have find a "natural" inference function S_F(x) of the model F and study random variables S_F(X) instead of X

• Let
$$G: g(y - \mu)$$

 $\frac{\partial}{\partial \mu} \log g(y - \mu) = -\frac{1}{g(y - \mu)} \frac{d}{dy} g(y - \mu) = S_G(y - \mu)$

New view on continuous probability distributions

э

Starting position

We have find a "natural" inference function S_F(x) of the model F and study random variables S_F(X) instead of X

Let
$$G: g(y - \mu)$$

 $\frac{\partial}{\partial \mu} \log g(y - \mu) = -\frac{1}{g(y - \mu)} \frac{d}{dy} g(y - \mu) = S_G(y - \mu)$
score function $S_F(y) = -\frac{g'(y)}{g(y - \mu)} S_F(y) = \frac{1}{2} - \frac{2y/\sigma}{g(y - \mu)}$

6 simple score functions: 6 different types

type	$S_G(y)$	g(y)	distribution
UE	$\sinh y = \frac{e^y - e^{-y}}{2}$	$\frac{1}{K}e^{-\frac{1}{2}(e^{y}+e^{-y})}$	hyperbolic
UP	У	$\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}y^2}$	normal
ΒU	e^y-1	$e^{y}e^{-e^{y}}$	Gumbel
UB	$1 - e^{-y}$	$e^{-y}e^{-e^{-y}}$	extreme value
BB	$ anh rac{y}{2} = rac{e^y-1}{e^y+1}$	$\frac{e^{y}}{(1+e^{y})^2}$	logistic
BR	$\frac{2y}{1+y^2}$	$\frac{1}{\pi(1+y^2)}$	Cauchy

3 x 3

Normal distribution

▲圖> ▲屋> ▲屋>

2

'Prototype beta'

◆□ > ◆□ > ◆三 > ◆三 > 三 のへの

Zdenčk Fabián New view on continuous probability distributions

Hyperbolic and normal

<ロ> <同> <同> <同> < 同>

문어 문

Gumbel and extreme value

イロト イヨト イヨト

< ≣ ▶

2

Score random variable $S_G(Y)$

$$S_G(y) = -\frac{g'(y)}{g(y)}$$

typical value $y^* : S_G(y) = 0$ (mode)

score moments: $ES_G^k = \int_{\mathcal{X}} S_G^k(y)g(y) \, dy$ are finite

 $ES_G = 0, ES_G^2$ Fischer information for y^*

Zdenčk Fabián New view on continuous probability distributions

▲ロ → ▲ 圖 → ▲ 国 → ▲ 国 → の Q ()

Score random variable $S_G(Y)$

$$S_G(y) = -\frac{g'(y)}{g(y)}$$

typical value $y^* : S_G(y) = 0$ (mode)

score moments: $ES_G^k = \int_{\mathcal{X}} S_G^k(y)g(y) \, dy$ are finite

 $ES_G = 0, ES_G^2$ Fischer information for y^*

- suggested measure of variability: score variance $\omega_G^2 \equiv \frac{1}{ES_G^2}$

parametric estimates: SM method $(y_1, ..., y_n)$ from G

$$\frac{1}{n}\sum_{i=1}^{n}S_{G}^{k}(y_{i};\theta)=ES_{G}^{k}(\theta), \quad k=1,...,m$$

Zdeněk Fabián New view on continuous probability distributions Why this approach is not used in statistics ?

• Why the score function is not taken as inference function ?

New view on continuous probability distributions

▲御▶ ▲臣▶ ★臣▶ 三臣 - 釣�?

Why this approach is not used in statistics ?

Why the score function is not taken as inference function ?

• The reason is that $-\frac{f'(x)}{f(x)}$ for F on $\mathcal{X} \neq \mathcal{R}$ does not work:

回 と く ヨ と く ヨ と

э

Scalar score function on $\mathcal{X} \neq \mathcal{R}$

Idea: Scalar score (influence) function of F on X ≠ R exists. It is given by different formulas on different X.

Key word: Transformation

New view on continuous probability distributions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

Scalar score function on $\mathcal{X} \neq \mathcal{R}$

■ Idea: Scalar score (influence) function of F on X ≠ R exists. It is given by different formulas on different X.

Key word: Transformation

• Y na \mathcal{R} , G, g, S_G . η^{-1} : $\mathcal{R} \to \mathcal{X}$ strictly increasing continuous

Transf. r.v. $X = \eta^{-1}(Y)$ has density $(y \to \log x, x \to e^y)$

 $f(x) = g(\eta(x))\eta'(x)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

Scalar score function on $\mathcal{X} \neq \mathcal{R}$

■ Idea: Scalar score (influence) function of F on X ≠ R exists. It is given by different formulas on different X.

Key word: Transformation

• Y na \mathcal{R} , G, g, S_G . $\eta^{-1} : \mathcal{R} \to \mathcal{X}$ strictly increasing continuous

Transf. r.v. $X = \eta^{-1}(Y)$ has density $(y \to \log x, x \to e^y)$

 $f(x) = g(\eta(x))\eta'(x)$

• Definition: **t-score** of $F(x) = G(\eta(x))$

$$T_F(x) = S_G(\eta(x))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

Transformed distributions

・ロン ・回 と ・ ヨ と ・ ヨ と …

2

Exponential distribution $Y = \eta(X) = \log X$

Zdenčk Fabián New view on continuous probability distributions

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 臣 の Q ()~

Exponential distribution $Y = \eta(X) = \log X$ 'Prototype'

$$g(y) = e^{y}e^{-e^{y}} \qquad S_G(y) = e^{y} - 1$$

transformed

Transformed distributions

type	$S_G(y)$	$T_F(x)$	f(x)	
UE	$\frac{e^{y}-e^{-y}}{2}$	$\frac{1}{2}(x-\frac{1}{x})$	$\frac{1}{Kx}e^{-(x+1/x)}$	inv. Gaussian
UP	У	$\log x$	$\frac{1}{\sqrt{2\pi}x}e^{-\frac{1}{2}\log^2 x}$	lognormal
ΒU	$e^y - 1$	x - 1	e ^{-x}	exponential
UB	$1-e^{-y}$	1-1/x	$\frac{1}{x^2}e^{-1/x}$	Fréchet
BB	$\frac{e^y-1}{e^y+1}$	$\frac{x-1}{x+1}$	$\frac{1}{(1+x)^2}$	loglogistic
BR	$\frac{2y}{1+y^2}$	$\frac{2\log x}{1+\log^2 x}$	$\frac{1}{\pi x(1+\log^2 x)}$	log-Cauchy

副 🖌 🗶 🖻 🕨 🖉 👘

= 990

$$\frac{y-\mu}{\sigma} \to \frac{\log x - \log \tau}{\sigma} = \log \left(\frac{x}{\tau}\right)^c$$

□ > < E > < E > E - のへで

$$\frac{y-\mu}{\sigma} \to \frac{\log x - \log \tau}{\sigma} = \log \left(\frac{x}{\tau}\right)^{c}$$

문제 문

• Let
$$\frac{1}{\tau}f(x/\tau)$$

Fisher score
=
$$\frac{\partial}{\partial \tau} \log(\frac{1}{\tau}f(x/\tau)) = \frac{1}{\tau}[-1 - \frac{f'}{f}\frac{x}{\tau}]$$

$$\frac{y-\mu}{\sigma} \to \frac{\log x - \log \tau}{\sigma} = \log \left(\frac{x}{\tau}\right)^c$$

□→ ★ Ξ → ★ Ξ → Ξ =

• Let
$$\frac{1}{\tau}f(x/\tau)$$

Fisher score

$$= rac{\partial}{\partial au} \log(rac{1}{ au} f(x/ au)) = rac{1}{ au} [-1 - rac{f'}{f} rac{x}{ au}]$$

• t-score

$$T_F(x/\tau) = -\frac{\tau}{f(x/\tau)} \frac{d}{dx} [x \frac{1}{\tau} f(x/\tau)] = -1 - \frac{x}{\tau} \frac{f'}{f}$$

$$\frac{y-\mu}{\sigma} \to \frac{\log x - \log \tau}{\sigma} = \log \left(\frac{x}{\tau}\right)^c$$

• Let
$$\frac{1}{\tau}f(x/\tau)$$

Fisher score
=
$$\frac{\partial}{\partial \tau} \log(\frac{1}{\tau}f(x/\tau)) = \frac{1}{\tau}[-1 - \frac{f'x}{f\tau}]$$

t-score

$$T_F(x/\tau) = -\frac{\tau}{f(x/\tau)} \frac{d}{dx} [x \frac{1}{\tau} f(x/\tau)] = -1 - \frac{x}{\tau} \frac{f'}{f}$$

t-score is proportional to the Fisher score for central parameter

回 と く ヨ と く ヨ と …

3

For given *F*: which $\eta : \mathcal{X} \to \mathcal{R}$?

a) universal:

$$\eta(x) = \begin{cases} \log x & \text{pro } \mathcal{X} = (0, \infty) \\ \log \frac{(x)}{(1-x)} & \text{pro } \mathcal{X} = (0, 1) \end{cases}$$

b) innate:

loggamma on $\mathcal{X}=(1,\infty)$

$$f(x) = \frac{c^{\alpha}}{\Gamma(\alpha)} (\log x)^{\alpha - 1} \frac{1}{x^{c+1}}$$

→ □ → → 三 → → 三 → ○ へ ⊙

For given *F*: which $\eta : \mathcal{X} \to \mathcal{R}$?

a) universal:

$$\eta(x) = \begin{cases} \log x & \text{pro } \mathcal{X} = (0, \infty) \\ \log \frac{(x)}{(1-x)} & \text{pro } \mathcal{X} = (0, 1) \end{cases}$$

b) innate:

loggamma on $\mathcal{X}=(1,\infty)$

$$f(x) = \frac{c^{\alpha}}{\Gamma(\alpha)} (\log x)^{\alpha - 1} \frac{1}{x^{c+1}} = \frac{c^{\alpha}}{\Gamma(\alpha)} (\log x)^{\alpha} \frac{1}{x^{c}} \frac{1}{x \log x}$$
$$\eta(x) = \log \log x$$

Lognormal

12 14 16

◆□> ◆□> ◆臣> ◆臣> ○臣

$$c = 1/\sigma$$

Zdenčk Fabián New view on continuous probability distributions

Type BU: Weibull, Type BU: gamma

Type UE: gen. inverse Gaussian, Type UB: Fréchet

Type UB: beta-prime

$$f(x) = \frac{1}{B(p,q)} \frac{x^{p-1}}{(x+1)^{p+q}} \qquad T_F(x) = \frac{qx-p}{x+1}$$

2

-

Distributions on (0, 1): **Type UP**: Johnson

・ロト ・回ト ・ヨト ・ヨト

÷.

Type BB: beta

$$h(x; p, q) = \frac{1}{B(p, q)} x^{p-1} (1-x)^{q-1} \qquad T_H(x; p, q) = (p+q)x - p$$

with $x^* = p/(p+q)$

<ロ> <同> <同> < 回> < 回>

2

Kumaraswamy

$$h(x) = \lambda \varphi x^{\lambda - 1} (1 - x^{\lambda})^{\varphi - 1} \qquad T_H(x) = (1 + \lambda) x - \lambda + \lambda (\varphi - 1) \frac{(1 - x) x^{\lambda}}{1 - x^{\lambda}}$$

回 と く ヨ と く ヨ と

2

Systematics of distributions

Zdeněk Fabián New view on continuous probability distributions 문어 문

Mean, mode or median ?

$$EX = \int xf(x) dx$$

문어 문

∰ ► < ≣ ►

Typical value is x^* : $T_F(x) = 0$

score mean $x^* = \eta^{-1}(y^*)$ is the image of the mode of the prototype

Mean *EX* and score mean x^*

Score average

$$ar{S}_F = rac{1}{n}\sum_{i=1}^n S_F(X_i)$$

 $S_F(\hat{x}^*) = ar{S}_F$ so that $\hat{x}^* = S_F^{-1}(ar{S}_F)$

In case of some distributions \hat{x}^* is a known statistic:

distribution	\hat{x}^*
normal, gamma, beta	\bar{x}
lognormal	$\bar{x}_{Geometric}$
Weibull (<i>c</i> const.)	$\frac{1}{n}(\sum x_i^c)^{1/c}$
heavy tails	 XHarmonic

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Zdenčk Fabián New view on continuous probability distributions Score variance $\omega_F^2 = 1/ES_F^2$

▲日 → ▲園 → ▲目 → ▲目 → ○○ のへの

beta-prime $f(x) = \frac{1}{B(p,q)} \frac{x^{p-1}}{(x+1)^{p+q}}$

Central and variability characteristics:

Euclidean $EX = \frac{p}{q-1},$ $VarX = \frac{p(p+q-1)}{(q-2)(q-1)^2}$ Scalar-valued score $x^* = \frac{p}{q}$ $\omega_F^2 = \frac{p(p+q+1)}{q^3}$

3

Estimates of the score mean and score variance in a contaminated beta-prime model

New characteristics of continuous random variables

scalar-valued score: likelihood score for the typical value of distribution, the **score mean**

and score variance, representing variability

New view on continuous probability distributions

白 ト イヨト イヨト

э