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Abstract

Capability of generalization in learning of neural networks from examples can be modelled using regular-
ization, which has been developed as a tool for improving stability of solutions of inverse problems. Such
problems are typically described by integral operators. It is shown that learning from examples can be refor-
mulated as an inverse problem defined by an evaluation operator. This reformulation leads to an analytical
description of an optimal input/output function of a network with kernel units, which can be employed to
design a learning algorithm based on a numerical solution of a system of linear equations.
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1 Introduction

Today’s technology provides many measuring and recording devices, which supply us with
a huge amount of data. Unfortunately, such machine-made data are not comprehensible
for our brains. We resemble the king Midas, whose foolish wish to transform everything he
touched into gold was fulfilled, which led to his starvation as his body could not be feeded
by gold. So we turn again to machines (computers) to help us to transform raw data into
patterns that our brains can digest.

As Popper [24] emphasized, no patterns can be derived solely from empirical data. Some
hypotheses about patterns have to be chosen and among patterns satisfying these hypothe-
ses, a pattern with a good fit to data has to be searched for. History of science presents
many examples of this approach, e.g., Kepler’s assumption that planets move on the most
perfect curves fitting to the data collected by Tycho de Brahe. Kepler found that among
perfect curves, ellipses are the ones best fitting to the data (better than circles, which he
tried first).

Also Gauss and Legendre searched for curves fitting to astronomical data collected from
observations of comets. They developed the least square method. In 1805, Legendre wrote
“of all the principles that can be proposed, I think that there is none more general, more
exact and more easy to apply than that consisting of minimizing the sum of the squares of
errors.” Many researchers of later generations shared Legendre’s enthusiasm and used the
least square method in statistical inference, pattern recognition, function approximation,
curve or surface fitting, etc.

In all these techniques, minimization of the average of squares of errors is used to find
coefficients of a linear combination of some fixed family of functions. Thus the best fitting
function is searched for in a linear hypothesis space. However, the assumption that empirical
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data can be approximated by a linear function is rather restrictive. Especially, it is not
suitable for high-dimensional data. It is known from theory of linear approximation that the
dimension of a linear space needed for approximation within accuracy ε is O (

( 1
ε )d

)
, where

d denotes the number of variables [21]. So complexity of linear models grows exponentially
with the data dimension d.

In contrast to the traditional applications of the least square method, in neurocomputing
this method is applied to nonlinear hypothesis sets. The hypothesis sets are formed by
linear combinations of parameterized functions, the form of which is given by the type of
computational units, from which a network is built. Originally the units, called perceptrons,
modelled some simplified properties of neurons, but later also other types of units (radial
and kernel units) with suitable mathematical properties for function approximation became
popular. The back-propagation algorithm developed by Werbos in 1970s and reinvented by
Rummelhart, Hinton and Williams in 1980s (see [29]) calculates how the gradient of the
average square error depends on coefficients of the linear combination as well as on inner
parameters of functions forming their linear combination. The algorithm iteratively modifies
all network parameters until a sufficiently well fitting input/output function of the network
is found.

Neurocomputing brought to data analysis also a new terminology: searching for param-
eters of their input/output functions is called learning, samples of data training sets and a
capability to satisfactorily process new data that have not been used for learning is called
generalization.

Capability of generalization depends on the choice of a hypothesis set of input/output
functions, where one searches for a pattern (a functional relationship) fitting to empirical
data. So a restriction of the hypothesis set to only physically meaningful functions can
improve generalization.

An alternative approach to modelling of generalization was proposed by Poggio and Girosi
[22]. They modified the least square method by Tikhonov’s regularization, which adds to
the least square error a term, called stabilizer, penalizing undesired input/output functions.
Girosi, Jones and Poggio considered stabilizers penalizing high frequencies in the Fourier
representation of the hypothetical solutions [11].

Girosi [10] showed that stabilizers of this type belong to a wider class formed by the
squares of norms on a special type of Hilbert spaces called reproducing kernel Hilbert spaces
(RKHS). Such norms can play a role of measures of various types of oscillations and thus
enable to model a variety of prior knowledge (conceptual data), which has to be added to
the empirical ones to guarantee a generalization capability. RKHS were formally defined by
Aronszajn [2], but their theory includes many classical results on positive definite functions,
matrices and integral operators with kernels. In data analysis, kernels were first used by
Parzen [19] and Wahba [28], who applied them to data smoothing by splines.

Aizerman, Braverman and Rozonoer [1] used kernels (under the name potential functions)
to solve classification tasks by transforming geometry of input spaces by embedding them
into higher dimensional inner product spaces [1]. Boser, Guyon and Vapnik [5] and Cortes
and Vapnik [6] farther developed this method of classification into the concept of the support
vector machine (a one-hidden-layer network with kernel units in the hidden layer and one
threshold output unit).

A variety of kernel methods and algorithms are of current interest, and their potential
uses are wide ranging; see, e.g., the recent applications-oriented monographs by Schöllkopf
and Smola [25] and by Cristianini and Shawe-Taylor [7], a theoretical article by Cucker and
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Smale’s [8] or a brief survey by Poggio and Smale [23].
So use of kernels in machine learning has two reasons: (1) norms on RKHSs can play

roles of undesirable attributes of input/output functions, the penalization of which improves
generalization, and (2) kernels define embeddings of input spaces into feature spaces with
geometries that allow to separate linearly data to be classified. In this paper, we add
to these two reasons a third one. We show that the Aronszajn’s definition [2] of RKHSs
(as Hilbert spaces with all evaluation operators continuous) determines precisely a class of
Hilbert spaces, where solutions of the least square problems of finding input/output functions
fitting to empirical data (minimization of empirical error functionals ) can be obtained as
Moore-Penrose pseudosolutions of linear inverse problems.

Tasks of finding unknown causes (such as shapes of functions, forces or distributions)
from known consequences (measured data) have been studied in applied science (such as
acoustics, geophysics and computerized tomography see, e.g., [13]) under the name inverse
problems. To solve such a problem, one needs to know how unknown causes determine known
consequences, which can often be described in terms of operators. In problems originating
from physics, such operators are typically integral (such as those defining Radon or Laplace
transforms [3], [9]).

In this paper, we reformulate minimization of the least square error as an inverse problem
defined by an evaluation operator. A crucial property for an application of tools from theory
of inverse problems is continuity of an operator. As the evaluation operator is defined in
terms of the evaluation functionals at the sample of input data, the class of Hilbert spaces,
where the theory can be applied, corresponds exactly to the class of reproducing kernel
Hilbert spaces. Thus reformulation of a learning problem as an inverse problem justifies the
use of RKHSs as suitable hypothesis spaces.

We show that this reformulation leads to analytical description of the optimal input/output
function of a network with kernel units, which can be employed to design a learning algo-
rithm based on a numerical solution of a system of linear equations.

The paper is organized as follows. In Section 2, learning from data is reformulated as
an inverse problem. Section 3 describes properties of reproducing kernel Hilbert spaces. In
Sections 4 and 5, main results on functions minimizing an empirical error functional and its
regularizations are presented.

2 Learning from empirical data as an inverse problem

A standard approach to learning from data used, e.g., in neurocomputing in the back-
propagation algorithm, is based on minimization of the least square error. For a sample
of input/output pairs of data (training set) z = {(ui, vi) ∈ Ω × R, i = 1, . . . , m}, where
Ω ⊂ Rd, a functional Ez called empirical error is defined for a function f : Ω → R as

Ez(f) =
1
m

m∑

i=1

(f(ui) − vi)2.

We show that minimization of this functional can be reformulated as an inverse problem.
For a linear operator A : X → Y between two Hilbert spaces X,Y (in finite-dimensional

case, a matrix A) an inverse problem determined by A is to find for g ∈ Y some f ∈ X such
that

A(f) = g,
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where g is called a data and f a solution [3].
When for some g ∈ Y no solution exists, one can at least search for a pseudosolution fo,

for which A(fo) is a best approximation to g among elements of the range of A, i.e.,

‖A(fo) − g‖Y = min
f∈X

‖A(f) − g‖Y .

Using standard terminology from optimization theory, for a functional Φ : X → R and
M ⊆ X we denote by

(M,Φ)

the problem of minimizitation of Φ over M ; the set M is called a hypothesis set. An element
fo ∈ M such that

Φ(fo) = min
f∈M

Φ(f)

is called a solution of the problem (M,Φ) and

argmin(M,Φ) = {fo ∈ M : Φ(fo) = min
f∈M

Φ(f)}

denotes the set of all solutions of (M,Φ). So a pseudosolution is a solution of the problem

(X, ‖A(.) − g‖Y ).

The set argmin(X, ‖A(.) − g‖Y ) is convex and, hence, if it is nonempty, there exists a
unique pseudosolution of minimal norm, called the normal pseudosolution [12]). This normal
pseudosolution, denoted by f+, satisfies

‖f+‖X = min{‖fo‖X : fo ∈ argmin(X, ‖A(.) − g‖Y )}.
When for every g ∈ Y , the set argmin(X, ‖A(.) − g‖Y ) is non-empty (and thus there

exists a normal pseudosolution f+), then a pseudoinverse operator

A+ : Y → X

can be defined by setting
A+(g) = f+.

In 1920, Moore [18] described properties of the pseudoinverse of a matrix, which were
rediscovered in 1955 by Penrose [20]. In 1970s, the theory of Moore-Penrose pseudoinversion
has been extended to the infinite-dimensional case – it was shown that similar properties
as the ones of Moore-Penrose pseudoinverses of matrices also are possessed by continuous
linear operators with closed ranges [12].

We can employ theory of inverse problems to investigation of minimization of an empirical
error functional. To reformulate minimization of such a functional as an inverse problem,
for an input data vector u = (u1, . . . , um) ∈ Ωm and a Hilbert space X of functions on Ω,
define an evaluation operator

Lu : X → Rm

by

Lu(f) =
(

f(u1)√
m

, . . . ,
f(um)√

m

)
.
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It is easy to check that for every f on Ω,

Ez(f) =
1
m

m∑

i=1

(f(ui) − vi)2 = ‖Lu(f) − v√
m
‖2
2. (2.1)

So Ez can be represented as

Ez =
∥
∥
∥
∥Lu − v√

m

∥
∥
∥
∥

2

2

,

where ‖.‖2 denotes the l2-norm on Rm.
The representation (2.1) allows one to express the problem of minimization of the empir-

ical error functional Ez as the problem of finding a pseudosolution L+
u ( v√

m
) of the inverse

problem given by the operator Lu for the data v√
m

. As the range of the operator Lu is finite
dimensional, it is closed in Rm. Thus to employ the extension of Moore-Penrose pseudoin-
version to the domain of infinite dimensional spaces, it remains to find proper hypothesis
spaces, on which operators Lu are continuous for all input data vectors u.

3 Reproducing kernel Hilbert spaces

Neither the space C(Ω) of all continuous functions on Ω ⊂ Rd nor the Lebesgue space
L2(Ω) of square integrable functions are suitable as the hypothesis spaces: the first one
is not a Hilbert space and the second one is not formed by pointwise defined functions.
Moreover, Lu is not continuous on any subspace of L2(Rd) containing the sequence of
functions

{
nde−(

‖x‖
n )2

}
: all elements of this sequence have L2-norms equal to 1, but the

evaluation functional at zero maps this sequence to an unbounded sequence of real numbers
and thus it is not continuous.

Fortunately, there exists a large class of Hilbert spaces, on which all evaluation functionals
are continuous and moreover, norms on such spaces can play roles of measures of various
types of oscillations of input/output mappings.

Spaces from this class are called reproducing kernel Hilbert spaces (RKHSs). A RKHS is
a Hilbert space formed by functions on a nonempty set Ω such that for every x ∈ Ω, the
evaluation functional Fx, defined for any f in the Hilbert space as

Fx(f) = f(x),

is bounded [2]. RKHS can be characterized in terms of kernels, which are symmetric positive
semidefinite functions K : Ω×Ω → R, i.e., functions satisfying for all m, all (w1, . . . , wm) ∈
Rm, and all (x1, . . . , xm) ∈ Ωm,

m∑

i,j=1

wi wj K(xi, xj) ≥ 0.

A kernel is positive definite if
∑m

i,j=1 wiwjK(xi, xj) = 0 for any distinct x1, . . . , xm implies
that for all i = 1, . . . ,m, wi = 0. In such a case {Kx : x ∈ Ω} is a linearly independent set.

The RKHS defined by a kernel K on Ω × Ω is denoted by

HK(Ω).
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It is formed by linear combinations of functions from {Kx : x ∈ Ω} and limits of all Cauchy
sequences with respect to the norm ‖.‖K on the RKHS induced by the inner product defined
on generators by 〈Kx,Ky〉K = K(x, y).

For a positive integer m and a vector u = (u1, . . . , um), by K[x] is denoted the m × m
matrix defined as

K[u]i,j = K(ui, uj),

which is called the Gram matrix of the kernel K with respect to the vector u.
A paradigmatic example of a kernel is the Gaussian kernel Gρ(x, y) = e−ρ‖x−y‖2

on
Rd ×Rd. For this kernel, the space HGρ

(Rd) contains all functions computable by radial-
basis function networks with a fixed width equal to ρ.

4 Optimal solution of the learning task

Using tools from the theory of inverse problems, we can describe the unique function in
the reproducing kernel Hilbert space given by a kernel K minimizing an empirical error
functional, which has the smallest K-norm. The next theorem states that this function is
the image of the vector of normalized output data v√

m
under the pseudoinverse operator L+

u

(for the proof see [14]).

Theorem 4.1
Let K : Ω × Ω → R be a kernel, m be a positive integer and z = (u, v), where u =
(u1, . . . , um) ∈ Ωm, u1, . . . , um are distinct and v = (v1, . . . , vm) ∈ Rm, then:
(i) L+

u ( v√
m

) ∈ argmin(HK(Ω), Ez), and for every fo ∈ argmin(HK(Ω), Ez),
‖L+

u ( v√
m

)‖K ≤ ‖fo‖K ;
(ii) L+

u ( v√
m

) =
∑m

i=1 ciKui
, where c = (c1, . . . , cm) = K[u]+v.

So for every kernel K and every sample of empirical data z, there exists a function f+

minimizing the empirical error functional Ez over the whole RKHS defined by K. This
function is formed by a linear combination functions Ku1 , . . . ,Kum

:

f+ = L+
u

(
v√
m

)
=

m∑

i=1

ciKui
.

f+ can be interpreted as an input/output function of a neural network with one hidden layer
of kernel units and a single linear output unit. The coefficients of the linear combination
c = (c1, . . . , cm) (corresponding to so called output weights) can be computed applying the
pseudoinverse of the Gram matrix of the kernel K with respect to the input data vector u
on the output data vector v:

c = K[u]+v.

Capability of generalization of such a network can be studied in terms of stability of f+

against a noise. Recall that the condition number of a symmetric positive definite matrix is
the ratio between the largest and the smallest eigenvalue. So when this ratio is for the matrix
K[u] small, the solution f+ is robust against a noise. The condition number measures the
worst magnification of data errors, while a more realistic description of ill-conditioning can
be derived from inspection of all the eigenvalues of K[u]. For K positive definite, the row
vectors Ku1 , . . . ,Kum

of the matrix K[u] are linearly independent. But when the distances
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between the data u1, . . . , um are small, the row vectors might be nearly parallel and the
small eigenvalues of K[u] might cluster near zero. In such a case, small changes of v, can
cause large changes of f+.

5 Generalization modelled as regularization

The function f+ =
∑m

i=1 ciKui
with c = K[u]+v provides the best fit to the sample of data z

that can be obtained using functions from the reproducing kernel space defined by the kernel
K. By choosing this RKHS as a hypothesis space, one imposes a condition on oscillations of
potential solutions. The type of such a condition can be illustrated by convolution kernels
K : Rd ×Rd → R satisfying K(x, y) = k(x − y) for some k : R → R with positive Fourier
transform k̃. For such kernels, K-norms can be expressed as high-frequency filters

‖f‖2
K =

1
(2π)d/2

∫

Rd

f̃(ω)2

k̃(ω)
dω

[10]. So to keep this norm small, f̃(ω) should decrease rather quickly with ‖s‖ increasing.
The restriction on high frequency oscillations can be strengthened by Tikhonov’s regu-

larization with ‖.‖2
K as a stabilizer, i.e., by replacing minimization of Ez with minimization

of
Ez + γ‖.‖2

K ,

where γ > 0 is called a regularization parameter.
The next theorem describes properties of regularized solutions fγ , their relationship to the

pseudosolution f+ and improvement of stability achievable using Tikhonov’s regularization
(for the proof see [14]).

Theorem 5.1
Let K : Ω×Ω be a kernel, m be a positive integer, z = (u, v), where u = (u1, . . . , um) ∈ Ωm,
u1, . . . , um are distinct, v = (v1, . . . , vm) ∈ Rm and γ > 0, then:
(i) there exists a unique solution fγ of the problem (HK(Ω), Ez + γ‖.‖2

K);
(ii) fγ =

∑m
i=1 ciKui

, where c = (K[u] + γmI)−1v;
(iii) when K is positive definite, then cond(K[u]+γmI) = 1+ (cond(K[u])−1)λmin

λmin+γm , where λmin

is the minimal eigenvalue of K[u].

Similarly as in the case of the function f+ minimizing the empirical error, the func-
tion fγ minimizing the regularized empirical error is a linear combination of the functions
Ku1 , . . . ,Kum

defined by the input data u1, . . . , um:

fγ =
m∑

i=1

cγ
i Kui

.

But the coefficients of the linear combination are different, their vector cγ = (cγ
1 , . . . , cγ

m) is
the image of the output data vector v under the inverse operator (K[u] + γmI)−1:

cγ = (K[u] + γmI)−1v.

This formula has been derived by several authors [28], [8], [23] using Fréchet derivatives
and called the Representer Theorem. Here, we obtained it directly from properties of regu-
larized solutions of inverse problems.
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So increase of “smoothness” of the regularized solution fγ is achieved by merely changing
the coefficients of the linear combination: while in the non regularized case, the coefficients
are obtained from the output data vector v using the Moore-Penrose pseudoinverse of the
Gram matrix K[u], in the regularized one, they are obtained using the inverse of a modified
matrix K[u] + γmI. So the regularization merely changes amplitudes, but it preserves the
finite set of basis functions from which the solution is composed. These basis functions can
be, for example, Gaussians with centers given by the input data.

Theorem 5.1 shows that continuous growth of the regularization parameter γ leads from
“under smoothing” to “over smoothing” and estimates how ill-conditioning can be improved
by the Tikhonov’s regularization. As

lim
γm→∞(1 +

cond(K[u] − 1)λmin

λmin + γm
) = 1,

the larger the product γm, the better improvement of stability.
However, the size of the regularization parameter γ is limited by the requirement of

fitting fγ to the sample of empirical data z, so γ cannot be too large. But m can be
increased by choosing a larger sample of empirical data. However for large m, computational
efficiency of iterative methods for solving systems of linear equations c = K[u]+v and c =
(K[u] + γmI)−1v might limit practical applications of learning algorithms based on the
Representer Theorem (Theorem 5.1 (ii)); see [23] for references to such applications.

In typical neural-network algorithms, networks with the number of hidden units n much
smaller than the size m of the training set are used. In [16] and [17], estimates of speed of
convergence of infima of empirical error over sets of functions computable by such networks
to the minimum described in Theorem 5.1 were derived. For reasonable data sets, such
convergence is rather fast.
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