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a b s t r a c t

Model complexities of shallow (i.e., one-hidden-layer) networks representing highly varying multi-
variable f�1;1g-valued functions are studied in terms of variational norms tailored to dictionaries of
network units. It is shown that bounds on these norms define classes of functions computable by
networks with constrained numbers of hidden units and sizes of output weights. Estimates of
probabilistic distributions of values of variational norms with respect to typical computational units,
such as perceptrons and Gaussian kernel units, are derived via geometric characterization of variational
norms combined with the probabilistic Chernoff Bound. It is shown that almost any randomly chosen
f�1;1g-valued function on a sufficiently large d-dimensional domain has variation with respect to
perceptrons depending on d exponentially.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

A widely used type of a neural-network architecture is the one-
hidden-layer network. Typical computational units in the hidden
layer are perceptrons, radial, and kernel units. Recently, one-
hidden-layer networks have been called shallow networks, in
contrast to deep ones, which contain two or more hidden layers
(see, e.g., [1,2]).

A variety of learning algorithms for shallow networks were
developed and successfully applied (see, e.g., [3] and the references
therein). In addition to applications, theoretical analysis confirmed
capabilities of shallow networks. For many types of computational
units, shallow networks are known to be universal approximators, i.e.,
they can approximate up to any desired accuracy all continuous or Lp

functions on compact subsets of Rd. In particular, the universal
approximation property holds for shallow networks with perceptrons
having non-polynomial activation units [4,5], and radial and kernel
units satisfying mild conditions [6–9].

However, the universal approximation capability requires poten-
tially unlimited numbers of hidden units. This number, which plays
the role of model complexity of a network, is a critical factor for
practical implementations. Since typical neurocomputing applications

deal with many variables, it is particularly important to understand
how quickly model complexities of shallow networks grow with
increasing input dimensions. Estimates of rates of approximation of
various classes of multivariable functions by networks with increasing
numbers of hidden units were derived and employed to obtain
bounds on model complexities (see, e.g., [10–16] and the references
therein).

On the other hand, limitations of computational capabilities of
shallow networks are much less understood. Only few lower bounds
on rates of approximation by these networks are known. Moreover,
the bounds are mostly non-constructive and hold for types of
computational units that are not commonly used [17,18]. Also the
growth of sizes of weights is not well understood, although it was
shown that in some cases, reasonable sizes of weights are more
important for successful learning than bounds on the numbers of
network units [19].

Recently, new hybrid learning algorithms for deep networks (such
as convolutional and graph networks) were developed and applied to
various pattern recognition tasks (see, e.g., [1,2,20–24]). However, a
theoretical analysis identifying tasks for which shallow networks
require considerably larger numbers of units and/or sizes of weights
than deep ones is missing. In [25,26], Bengio et al. suggested that a
cause of large model complexities of shallow networks might be in
the “amount of variations” of functions to be computed and they
focused their analysis on the d-dimensional parities on the d-dimen-
sional Boolean cube. Recently, Bianchini and Scarselli [27] investigated
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limitations of shallow networks by employing Betti Numbers from
algebraic topology.

In this paper, we investigate model complexity of shallow
networks implementing f�1;1g-valued functions on finite subsets
of d-dimensional spaces. Such functions represent binary classifi-
cation tasks. Following the above-mentioned conjecture by Bengio
et al. [25,26] about a connection between “amount of variations”
and large model complexities of shallow networks, we investigate
variations of functions in terms of variational norms tailored to
network units. This concept has been successfully used as a tool to
characterize classes of functions that can be approximated by
networks with reasonable model complexities (see, e.g., [28–33])
and to study infinite-dimensional optimization problems [34–36].
Besides playing a critical role in estimates of rates of approxima-
tion of multivariable functions by shallow networks, the size of the
variational norm of a function bounds from below the number of
hidden units or sizes of output weights in such networks. We
compare linear dependence on input dimension of variational
norm of the d-dimensional parity with respect to perceptrons with
an exponential growth of variational norm of the same function
with respect to Gaussian kernel units having centers in the d-
dimensional Boolean cube.

Using an argument based on the probabilistic Chernoff Bound, we
show that for many common dictionaries, a representation of almost
any uniformly randomly chosen f�1;1g-valued function on a suffi-
ciently large finite domain by a shallow network requires intractably
large number of units and/or sizes of output weights. For the
dictionary of signum perceptrons, we derive on the network complex-
ity lower bounds that depend on the ratio between the size of the
domain of a function to be computed and the input dimension. In
particular, we prove that every representation of a randomly chosen
function on a discretized d-dimensional cube by a shallow network
requires number of units and/or sizes of output weights that depend
on d exponentially. A preliminary version of some results appeared in
conference proceedings [37,38].

The paper is organized as follows. Section 2 presents basic
concepts on shallow networks and dictionaries of computational
units. Section 3 introduces variational norms and describes their main
properties. In Section 4, lower bounds on variation with respect to
Gaussian kernel units are derived. In Section 5, estimates of probabil-
istic distributions of sizes of G-variations are proven for various
dictionaries, including those formed by signum perceptrons and
generalized parities. Section 6 is a conclusive discussion.

2. Preliminaries

A widely used network architecture is a one-hidden-layer net-
work with a single linear output, also called shallow network. Such a
network with n hidden units computes input–output functions
from the set

spann G≔
Xn
i ¼ 1

wigi wiAR; giAG
��( )

;

where G, called dictionary, is a set of functions computable by a
given type of units. The linear span of G is denoted by span G, i.e.,

span G≔
Xn
i ¼ 1

wigi wiAR; giAG; nAN
��( )

:

By X we denote the domain of functions computable by a
network. Generally, X is a subset of Rd and card X denotes its
cardinality. Shallow networks with perceptrons compute functions
of the form σðv � :þbÞ : X-R, where σ : R-R is an activation
function. We denote by ϑ the Heaviside activation function, defined

as

ϑðtÞ≔0 for to0 and ϑðtÞ≔1 for tZ0

and by sgn the signum activation function sgn : R-f�1;1g, defined
as

sgnðtÞ≔�1 for to0 and sgnðtÞ≔1 for tZ0:

We denote by Hd(X) the dictionary of functions on X �Rd compu-
table by Heaviside perceptrons, i.e.,

HdðXÞ≔fϑðv � :þbÞ : X-f0;1gjvARd; bARg
and by Sd(X) the dictionary of functions on X computable by
signum perceptrons, i.e.,

SdðXÞ≔fsgnðv � :þbÞ : X-f�1;1gjvARd; bARg:
Note that HdðRdÞ is the set of characteristic functions of half-spaces
of Rd. We use the signum activation function as for X finite, all
elements from Sd(X) have the same norm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
card X

p
, which is often

convenient. From the point of view of model complexity, there is
only a minor difference between dictionaries of signum and
Heaviside perceptrons, as sgnðtÞ ¼ 2ϑðtÞ�1 and ϑðtÞ ¼ sgnðtÞþ1

2 . So
any network having n signum perceptrons can be replaced with a
network having nþ1 Heaviside perceptrons and vice versa.

For X;UDRd, we denote by

Ka
dðX;UÞ≔fe�a J :�u J 2

: X-RjuAUg
the dictionary of Gaussian kernel units on X with centers in U and
width 1=a. In Support Vector Machine (SVM), U ¼ fui; i¼ 1;…; lg is
the set of points to be classified, among which some play the role
of support vectors. When X¼U, we write shortly Ka

dðXÞ.
By Pdðf0;1gdÞ we denote the dictionary of generalized parities

defined as

Pdðf0;1gdÞ≔fpdu : f0;1gd-f�1;1gjuAf0;1gdg;
where pdu : f0;1gd-f�1;1g satisfies for every u; xAf0;1gd

pduðxÞ≔ð�1Þu�x:
In the case where ui¼1 for all i¼ 1;…; d, pdu is the d-dimensional
parity and we write shortly pd ¼ pdu.

We denote by

F ðXÞ≔ff j f : X-Rg
the set of all real-valued functions on X and by

BðXÞ≔ff j f : X-f�1;1gg
the set of all functions on X with values in f�1;1g. It is easy to see
that when card X ¼m and X ¼ fx1;…; xmg is a linear ordering of X,
then the mapping ι : F ðXÞ-Rm defined as ιðf Þ≔ðf ðx1Þ;…; f ðxmÞÞ is
an isomorphism. So, on F ðXÞ we have the Euclidean inner product
defined as

〈f ; g〉≔
X
uAX

f ðuÞgðuÞ

and the Euclidean norm J f J≔
ffiffiffiffiffiffiffiffiffiffi
〈f ; f 〉

p
: If f AF ðXÞ, then

f o≔f =J f J

denotes its normalization. In contrast to the inner product 〈�; �〉 on
F ðXÞ, we denote by � the inner product on X �Rd, i.e., for u; vAX,

u � v≔
Xd
i ¼ 1

uivi:

3. Functions highly varying with respect to dictionaries

In this section, we show that the concept of “highly varying
function”, suggested by Bengio et al. [26] as a possible cause of
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intractable complexity of shallow networks computing such func-
tions, must be considered with respect to a type of network units.
We formalize this concept in terms of a “variational norm”,
tailored to a given dictionary. We investigate such a norm with
respect to the dictionary formed by Gaussians centered in f0;1gd,
considered by Bengio et al. [26].

As an example of a class of functions having “high-variations”,
Bengio et al. [26] considered parities on d-dimensional Boolean
cubes f0;1gd. They proved that a classification of points in f0;1gd
according to their parities by Gaussian kernel units of any fixed
width having centers in f0;1gd cannot be accomplished with less
than 2d=2 units. The following theorem is a reformulation of their
result [26, Theorem 2.4].

Theorem 3.1. Let d be a positive integer, a40, and fui j i¼ 1;…;2dg
an ordering of the set f0;1gd. If for some bias bAR and weights
fwi j i¼ 1;…;2dg �R, sgnðP2d

i ¼ 1 wie�a Jx�ui J 2 þbÞ ¼ pdðxÞ for all
xAf0;1gd, then at least 2d�1 coefficients wi are non-zero.

Theorem 3.1 shows that sometimes the maximal generalization
capability (maximal margin) is obtained at the expense of intrac-
tably large model complexity. The theorem implies that if, for
some bAR, a function f Aspann F

a
dðf0;1gdÞ satisfies f ðxÞ�b¼ pdðxÞ

for all xAf0;1gd, then nZ2d�1. On the other hand, it is well-
known that when units in a shallow network are Heaviside or
signum perceptrons, then merely dþ1 units are sufficient to
computate any generalized parity. Indeed, for all xAf0;1gd one has

pduðxÞ ¼
Xd
i ¼ 0

ð�1Þi ϑðu � x� iþ1=2Þ: ð1Þ

Geometrically, pdu can be represented as a plane wave orthogonal
to the vector u. In particular, the parity pd can be considered as a
plane wave orthogonal to the diagonal of the cube.

The example of parities shows that the effect of high variations
of a function on network complexity depends on a type of network
units. In theory of approximation of functions by neural networks,
the concept of variation of a function with respect to a dictionary
was introduced by Barron [39] for Heaviside perceptrons as
variation with respect to half-spaces. In Ku̇rková [40], this notion
was extended to general bounded sets of functions, in particular
dictionaries of computational units. For a bounded subset G of a
normed linear space ðX ; J � JX Þ, G-variation (variation with respect
to the set G), denoted by J � JG, is defined as

J f JG≔inf cARþ
f
c
AclXconvðG [ �GÞ

����
� �

;

where �G≔f�gjgAGg, clX denotes the closure with respect to the
topology induced by the norm J � JX , and conv is the convex hull.
For properties of variation and its role in estimates of rates of
approximation, see [13,15,29–31,33,36].

The next proposition, which follows easily from the definition
of G-variation, shows that J f JG reflects both the number of hidden
units and the sizes of output weights in a shallow network with
units from G representing f (see [41]).

Proposition 3.2. Let G be a bounded subset of a normed linear space
ðX ; J :J Þ. Then, for every f AX one has

ðiÞ J f JGr
Xk
i ¼ 1

jwi j f ¼
Xk
i ¼ 1

wigi;wiAR; giAG; kAN

�����
( )

;

(ii) for G finite with card G¼ k,

J f JG ¼min
Xk
i ¼ 1

jwi j f ¼
Xk
i ¼ 1

wigi;wiAR; giAG

�����
( )

:

Hence, any representation of a function with large G-variation
by a network with units from a dictionary G must have large
number of units and/or the absolute values of some output
weights must be large.

To derive lower bounds on variational norms, we shall exploit
the following bound from [41] (see also [33]), which shows that
functions nearly orthogonal to all elements of a dictionary G have
large G-variations. By G? is denoted the orthogonal complement
of G.

Theorem 3.3. Let ðX ; J :JX Þ be a Hilbert space and G its bounded
subset. Then, for every f AX⧹G? one has

J f JGZ
J f J2

supgAG jg � f j :

The next proposition summarizes elementary properties of the
variation norm (see [13]).

Proposition 3.4. (i) Let X � XDRd, G �F ðX Þ be a dictionary of
functions on X and G�F ðXÞ a dictionary on X obtained by restricting
the functions from G to X. Then, for every f AF ðX Þ and
f ¼ f j XAF ðXÞ the following hold.

(i) J f JGr J f JG .
(ii) Let X �Rd, G1;G2 be bounded subsets of F ðXÞ. If for some

c40 for all gAG1, JgJG2 rc then for all f J f JG2ðXÞrcJ f JG1ðXÞ.

Proposition 3.4(i) implies that a lower bound on J f JG applies to
J f JG and an upper bound on J f JG applies to J f JG. In particular,
lower bounds for functions on finite subsets of Rd, e.g., discretized
cubes such as f0;1gd, apply to functions on infinite sets
containing them.

The next proposition shows that variation with respect to
signum perceptrons is bounded from above by variation with
respect to Heaviside perceptrons.

Proposition 3.5. For every positive integer d and every XDRd,

J � JSdðXÞr J � JHdðXÞ:

Proof. As ϑðe � xþbÞ ¼ 1
2sgnðe � xþbÞþ1

2¼ 1
2sgnðe� xþbÞþ1

2sgnðe� ð1;
…;1Þþ1Þ, for every hAHdðXÞ one has JhJSdðXÞr1. So, by
Proposition 3.4(ii) the statement holds. □

4. Variation with respect to Gaussian kernel units

In this section, we investigate variation of the d-dimensional
parity with respect to Gaussian kernel units with centers in the
Boolean cube f0;1gd. We show that the size of this norm increases
with d exponentially.

The representation (1) of a generalized parity pdu as a shallow
network with dþ1 Heaviside perceptrons and Proposition 3.5
implies that

Jpdu JSdðRdÞr Jpdu JHdðRdÞrdþ1:

Hence, variations with respect to signum or Heaviside perceptrons
of all d-dimensional generalized parities grow with d only linearly.
On the other hand, Theorem 3.1 by Bengio et al. [26] proves that
every representation of the parity pd by a shallow network with
Gaussian kernel units with centers in f0;1gd requires at least 2d�1

units. The next theorem shows that Ka
dðf0;1gdÞ-variation of pd

grows with d exponentially.

Theorem 4.1. For every positive integer d and every a40,

Jpd JKa
dðf0;1gdÞ

42d=2:
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Proof. By Theorem 3.3,

Jpd JKa
dðf0;1gdÞ

Z
Jpd J

supgA Fdaðf0;1gdÞ j 〈p
d; g〉j :

For the Gaussian g0 centered at ð0;…;0Þ, one has
〈pd; g0〉¼

Pd
k ¼ 0 ð�1Þk d

k

� �
e�ak. By the binomial formula, we have

〈pd; g0〉¼
Xd
k ¼ 0

ð�1Þk d
k

� 	
e�ak ¼ ð1�e�aÞd:

By a suitable transformation of the coordinate system, we obtain
the same value of the inner product with pd for the Gaussian gx
centered at any xAf0;1gd such that pdðxÞ ¼ 1. When the Gaussian
gx is centered at x with pdðxÞ ¼ �1, we get the same absolute value
of the inner product by replacing pd with �pd and by a transfor-
mation of the coordinate system. As Jpd J ¼ 2d=2, we get
Jpd J Ka

dðf0;1gdÞ
Z 2d=2

ð1�e� aÞd42d=2. □

Theorem 4.1 shows that for every value of a40, the variation of
the d-dimensional parity with respect to the dictionary of Gaus-
sian kernel units of a fixed width 1=a with centers in f0;1gd grows
at least exponentially with d.

When the proof technique used to derive Theorem 4.1 is
applied to a general f�1;1g-valued function on f0;1gd, it provides
the following weaker lower bound.

Theorem 4.2. For every positive integer d, every a40, and every
function f d : f0;1gd-f�1;1g,

J f d JKa
dðf0;1gdÞ

Z
2

ð1þe�aÞ2

 !d=2

:

Proof. By Theorem 3.3, J f d JKa
dðf0;1gdÞ

Z J f d J
sup

gA Fda ðf0;1g
d Þ j 〈f

d ;g〉j . For the
Gaussian g0 centered at ð0;…;0Þ, we have

j 〈f d; g0〉j ¼ j
X

yA f0;1gd
f ðyÞe�a Jy� x J 2 jr

Xd
k ¼ 0

d
k

� 	
e�ak

and so by the binomial formula we obtain j 〈f d; g0〉jrð1þe�aÞd.
The same argument as in the proof of Theorem 4.1 shows that this

upper bound holds for the Gaussian centered gx at any xAf0;1gd.
Hence, J f d JKa

dðf0;1gdÞ
Z 2d=2

1þ e� að Þd ¼
2

ð1þ e� aÞ2

 �d=2

.□

The rate of growth of the lower bound 2
ð1þe� aÞ2

 �d=2

from
Theorem 4.2 depends on the width 1=a of the Gaussian kernel.
For a “sufficiently narrow” Gaussian, whose width 1=a satisfies
e�ao

ffiffiffi
2

p
�1, i.e., a4� lnð

ffiffiffi
2

p
�1ÞC0:88, we have 2

ð1þe� aÞ241 and
thus the lower bound from Theorem 4.2 grows exponentially with
d. The theorem implies that any shallow network with “sufficiently
narrow” Gaussians (i.e., with “large enough” values of a) and
centers in f0;1gd representing a signum perceptron or a general-
ized parity, must have a number of units and/or sizes of some of
the output weights that depend on d exponentially.

Bengio et al. [25] proved that when, instead of f0;1gd, the set of
centers of “sufficiently narrow” Gaussian kernels is in a properly
chosen finite sets of points on the diagonal of the cube ½0;1�d, then
there exists a function on f0;1gd with the same sign as the parity,
which can be represented by network with merely dþ1. Inspec-
tion of their proof shows that the variation of this function with
respect to such a dictionary is at most dþ1 (see [25, Remark 4.8]).
So, variation with respect to Ka

dðf0;1gd;UÞ strongly depends on the
choice of the set U of centers.

5. Probability distributions of functions with large variations

In this section we consider functions randomly chosen in BðXÞ
with respect to the uniform distribution; for short, we shall write

“uniformly randomly chosen”. For such functions, we estimate the
probability distributions of their variations with respect to “rela-
tively small” dictionaries G formed by f�1;1g-valued functions on
“sufficiently large” finite subsets X of Rd. For a dictionary
GðXÞ � BðXÞ, we consider the function J � JGðXÞ : BðXÞ-Rþ as a
random variable. When X is finite, this random variable has finite
range and so it can be interpreted as a discrete random variable.

To obtain a lower bound on probability that a uniformly
randomly chosen f�1;1g-valued function has G-variation greater
than or equal to a prescribed value, we shall exploit the Chernoff
Bound on the probability distribution of sums of independently
identically distributed (i.i.d.) random variables with values in
½�1;1� [42, p. 393] (see also [43,44]).

Theorem 5.1 (Chernoff Bound). Let m be a positive integer, Y1;…;Ym

i.i.d. random variables with values in ½�1;1�, and λ40. Then

Pr
Xm
i ¼ 1

Yi�EðYiÞ
�����

�����Zλ

 !
r2e�λ2=2m:

Combining the Chernoff Bound with the geometric lower
bound on variational norm provided by Theorem 3.3, we obtain
the next theorem.

Theorem 5.2. Let d be a positive integer, X �Rd with card X ¼m,
GðXÞ � BðXÞ with card GðXÞ ¼ k, f uniformly randomly chosen from
BðXÞ, and εAð0;1Þ. Then
PrðJ f JGðXÞZ1=εÞZ1�2k e�ðmε2Þ=2:

Proof. Let WεðGðXÞÞ≔ff ABðXÞj J f JGðXÞZ1=εg. By Theorem 3.3,
WεðGðXÞÞ contains all f ABðXÞ satisfying for all gAG, 〈f o; go〉rε,
where the superscript “o” denotes normalization (i.e., f o≔f =J f J
and go≔g=JgJ). ThusWεðGðXÞÞ contains the complement of the set

⋃
gAGðXÞ

ff ABðXÞj j 〈f o; go〉jZεg

and so

Pr f AWεðGðXÞÞð ÞZ1�
X

gAGðXÞ
Pr j 〈f o; go〉jZε
� �

:

We show that for every function hABðXÞ one has Prðj
〈f o;ho〉jZεÞr2e�mε2=2.

First, we verify that this holds for the constant function f1
defined for all xAX as f 1ðxÞ≔ 1. Let X≔fx1;…; xmg. For every
hABðXÞ, we have 〈h; f 1〉¼

Pm
i ¼ 1 hðxiÞ. By the Chernoff Bound

applied to i.i.d. variables YiAf�1;1g, i¼ 1;…;m, such that Pr
ðYi ¼ 1Þ ¼ PrðYi ¼ �1Þ ¼ 1

2, we get

Prðj 〈f 1;h〉jZλÞ ¼ Pr
Xm
i ¼ 1

hðxiÞ
�����

�����Zλ

 !
r2e�λ2=2m:

As for all f ABðXÞ one has J f J ¼ ffiffiffiffiffi
m

p
, setting ε≔λ=m, we get

Prðjho; f o1〉jZεÞr2e�λ2=2m ¼ 2e�mε2=2:

Any f ABðXÞ can be obtained from f1 by a finite sequence of
sign-flips Fx : BðXÞ-BðXÞ defined as Fxðf ÞðxÞ≔� f ðxÞ and
Fxðf ÞðyÞ≔f ðyÞ for all yax. As the inner product is invariant under
sign-flipping, for all f ABðXÞ the probability distribution of inner
products 〈f o;ho〉 on BðXÞ satisfies Prðj 〈f o;ho

〉jZεÞr2e�mε2=2. So,
for every gAG we get

Prðj 〈f o; go〉jZεÞr2e�mε2=2:

Thus Pr f AWεðGðXÞÞð ÞZ1�2ke�mε2=2. □

Theorem 5.2 can be applied to dictionaries G(X) of functions on
X �Rd with card X ¼m such that card GðXÞ ¼ k is “relatively small”
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with respect to the cardinality 2m of the set of all functions in
BðXÞ≔ff j f : X-f�1;1gg. In particular, for dictionaries GðXÞ � BðXÞ
of cardinalities at most eρðlog 2mÞ, where ρ is a polynomial, we get
the next corollary.

Corollary 5.3. Let d be a positive integer, X �Rd with card X ¼m,
ρð:Þ a polynomial, GðXÞ � BðXÞ with card GðXÞreρðlog 2mÞ, f uniformly
randomly chosen in BðXÞ, and εAð0;1Þ. Then

Pr J f JGðXÞZ1=ε
� �

Z1�2e�ððmε2 �2ρðlog 2mÞÞ=2Þ:

Examples of dictionaries formed by functions on f0;1gd with
values in f�1;1g such that cardinalities of these dictionaries are
“relatively small” with respect to the cardinality 22d

of the set of all
functions in Bðf0;1gdÞ are the dictionaries Sdðf0;1gdÞ of signum
perceptrons and Pdðf0;1gdÞ of generalized parities. Obviously,
card Pdðf0;1gdÞ ¼ 2d. The upper bound card Sdðf0;1gdÞr2d2 is
well-known (see, e.g., [45]).

Corollary 5.4. Let d be a positive integer, f uniformly randomly
chosen in Bðf0;1gdÞ, and ε40. Then

(i) Pr J f JPdðf0;1gdÞZ1=ε

 �

Z1�eð�2dε2 þðdþ1Þln2Þ=2;
(ii) Pr J f JSdðf0;1gdÞZ1=ε


 �
Z1�e�ð2dε2 þðd2 þ1Þln2Þ=2.

Proof.

(i) The estimate follows from Theorem 5.2 applied to a dictionary
of cardinality 2d.

(ii) The estimate follows by Theorem 5.2 combined with a classical
result by Schläfli [46] (see also [45, Theorem 13.2, p. 561],
[47, p. 33]) showing that for all d41, card Sdðf0;1gdÞ ¼
card Hdðf0;1gdÞo2d2 , and the expression 2x ¼ exln2. □

For example, setting ε¼ 2�d=4 we obtain from Corollary 5.4 the
lower bound

Pr J f JSdðf0;1gdÞZ2d=4

 �

Z1�e�ð2d=2þ ðd2 þ 1Þln2Þ=2 ð2Þ

on the probability that a function f uniformly randomly chosen in
Bðf0;1gdÞ has variation with respect to signum perceptrons larger
than 2d=4. The estimate (2) implies that for growing dimension d,
the probabilistic measure of the subset of functions in Bðf0;1gdÞ
having an exponentially increasing lower bound on Sdðf0;1gdÞ-var-
iations approaches 1 at an exponential rate. In other words,
Sdðf0;1gdÞ-variations of most functions in Bðf0;1gdÞ depend on d
exponentially.

However, the only concrete example of a function in Bðf0;1gdÞ
with exponentially growing Sdðf0;1gdÞ-variation of which we are
aware is the well-known function inner product mod 2 from theory
of Boolean functions [48]. For every even positive integer d, we
denote it by βd : f0;1gd-f0;1g: It is defined for all xAf0;1gd as

βdðxÞ≔1 if lðxÞ � rðxÞ is odd and βdðxÞ≔0 if lðxÞ � rðxÞ is even;

where lðxÞ; rðxÞAf0;1gd=2 are set for every i¼ 1;…; d=2 as lðxÞi≔xi
and rðxÞi≔xd=2þ i. As we are considering functions with values in
f�1;1g, we use βd : f0;1gd-f�1;1g defined as

βdðxÞ≔ð�1ÞlðxÞ�rðxÞ: ð3Þ

It was shown in [41, Theorem 3.7 and the discussion before Lemma
3.5] that

Jβd JSdðf0;1gdÞ ¼Ωð2d=6Þ;

where for two functions g;h : N-R we write h¼Ω gðdÞð Þ when
there exist a positive constant c and n0AN such that for all nZno

one has hðnÞZc gðnÞ [49]. Note that by Proposition 3.4(ii), also
Jβd JHdðf0;1gdÞZΩð2d=6Þ.

Theorem 5.2 can be applied to dictionaries of signum percep-
trons on general finite domains X �Rd. Upper bounds on
card SdðXÞ follow from estimates of numbers of linearly separable
dichotomies (i.e., partitions into two subsets) of finite subsets of
Rd. Various such estimates were derived by several authors (see
the references in the discussion after [50, Theorem 1]) starting
from the results by Schläfli [46]. We use the following estimate,
based on a result from [50].

Theorem 5.5. For every d and every X �Rd such that card X ¼m,

card SdðXÞr2
Xd
i ¼ 0

m�1
i

� 	
:

Proof. The number of linearly separable dichotomies of an arbi-
trary set of m points in Rd is smaller than equal to the number of
such dichotomies of a set of m points such that no dþ1 points lie
on the same hyperplane. The latter number is bounded from above
by 2

Pd
i ¼ 0

m�1
i

� �
(see, [50, Table 1, row 2]), hence the statement

follows. □

By combining Theorems 5.2 and 5.5 with an upper bound on a
partial binomial sum, we derive the next corollary.

Corollary 5.6. Let d be a positive integer, X �Rd with card X ¼m, f
uniformly randomly chosen in BðXÞ, and εAð0;1Þ. Then

Pr J f JSdðXÞZ1=ε
� �

Z1�4
md

d!
e�mε2=2:

Proof. It is well-known (see [51, p. 43] and [52]) that

Xd
i ¼ 0

m�1
i

� 	
rmd

d!
: ð4Þ

Eq. (4) together with Theorem 5.5 implies that the cardinality of
the set Sd(X) is bounded from above by

card SdðXÞr2
md

d!
: ð5Þ

By combining the estimate (5) with Theorem 5.2, we obtain the
statement. □

Note that a similar estimate as the upper bound stated in
Corollary 5.6 for the dictionary Sd(X) of signum perceptrons can be
obtained for the dictionary of characteristic functions of d-dimen-
sional balls. This estimate follows by the upper bound 2

Pd
i ¼ 0

m
i

� �
on its cardinality from [50, Table 1, row 3].

Our last estimate of this section is based on an upper bound on
a partial sum of binomials in terms of the binary entropy function Υ
defined for every qA ½0;1� as
Υ ðqÞ≔�qlog 2ðqÞ�ð1�qÞlog 2ð1�qÞ:

Corollary 5.7. Let d be a positive integer, X �Rd with card X ¼m
such that d=ðm�1Þr1=2, and f uniformly randomly chosen in BðXÞ.
Then

Pr J f JSdðXÞZ1=ε
� �

Z1�e�ðmε2=2Þþ Υ d=ðm�1Þð Þmþ2ð Þln2:

Proof. For every αA ð0;1=2� and every n, the partial sum of
binomials satisfies [53, Lemma 16.19, p. 427].

X⌊αnc
i ¼ 0

n
i


 �
r2Υ ðαÞn ð6Þ
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So, by setting α≔d=m�1 we get αðm�1Þ ¼ d and so by Theorem
5.5 and Eq. (6)

card SdðXÞr2
Xd
i ¼ 0

m�1
i

� 	
r2Υ ðd=m�1Þðm�1Þþ1:

Thus

Pr J f JSdðXÞZ1=ε
� �

Z1�2Υ d=m�1ð Þðm�1Þþ2e�mε2=2: ð7Þ
As 2x ¼ exln2, the inequality (7) proves the statement. □

Note that Corollary 5.7 provides a useful lower bound only when
Υ ðd=m�1Þ is sufficiently small, i.e., when the size of the domain m is
much larger than the input dimension d. This happens for large d,
when the domain X a discretized d-dimensional cube.

6. Discussion

We investigated limitations of capabilities of shallow networks to
implement highly varying functions without intractably large growth
of model complexity. We followed the suggestion of Bengio et al.
[25,26] that a cause of intractable increase of complexity of shallow
networks might be “amount of variations of functions” to be imple-
mented. We proposed a formalization of the concept of highly varying
function in terms of a variational norm tailored to a particular
dictionary of computational units. We showed that this concept,
which has been successfully used in nonlinear approximation
schemes, plays a useful role also in the investigation of complexity
of shallow networks, reflecting both number of network units and
sizes of its output weights. Note that the characterization of classes of
functions defined by constraints on both number of gates and sizes of
output weights also plays an important role in theory of circuit
complexity [48].

On the example of d-dimensional parities on f0;1gd studied by
Bengio [25,26], we demonstrated that the concept of highly varying
functions must be taken with respect to the type of computational
units. We proved that variation of the d-dimensional parity with
respect to Gaussians with centers in f0;1gd grows at least exponen-
tially, whereas it is well-known and easy to show that its variation
with respect to perceptrons grows with d merely linearly.

We investigated probability distributions of sizes of variations
with respect to “relatively small” dictionaries. We derived lower
bounds on complexity of shallow networks depending on the ratio
between the size of the domain of a function to be represented
and the input dimension. We proved that for the dictionaries of
signum perceptrons and generalized parities on f0;1gd, almost any
randomly chosen f�1;1g-valued function has variation depending
on d exponentially.

Our results are probabilistic and existential. They merely show that
the majority of functions on large domains cannot be tractably com-
puted by shallow networks with commonly used computational units.
The concrete construction of functions with large variations is a
subject of our future research. Note also that our rather negative
result for shallow networks holds for functions randomly chosen in
BðXÞ with respect to the uniform distribution, whereas it is unlikely
that distributions of functions to be computed by neural networks in
real-life applications are uniform.

From the practical point of view, our investigation suggests the
use of computational models that aggregate various types of units,
e.g., perceptrons with radial and kernel units. As our examples
illustrate, the choice of computational units has a strong impact on
model complexities of shallow networks. We proved that there
exist functions whose variations with respect to perceptrons grow
with input dimension linearly, whereas variations with respect to
kernel units grow exponentially. As an example of such class of
functions, we considered generalized parities that, up to a scaling

factor, form a Fourier basis of the set of functions on the Boolean
cube f0;1gd. As an orthogonal set, this basis represents a sparse
dictionary and represents a useful tool in the analysis of Boolean
functions. Implications of relationships between sparse diction-
aries and overcomplete dictionaries such as perceptrons are a
subject of our work in progress.
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