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Supervised learning of perceptron networks is investigated as an opti-
mization problem. It is shown that both the theoretical and the empirical
error functionals achieve minima over sets of functions computable by
networks with a given number n of perceptrons. Upper bounds on rates of
convergence of these minima with n increasing are derived. The bounds
depend on a certain regularity of training data expressed in terms of
variational norms of functions interpolating the data (in the case of the
empirical error) and the regression function (in the case of the expected
error). Dependence of this type of regularity on dimensionality and on
magnitudes of partial derivatives is investigated. Conditions on the data,
which guarantee that a good approximation of global minima of error
functionals can be achieved using networks with a limited complexity,
are derived. The conditions are in terms of oscillatory behavior of the
data measured by the product of a function of the number of variables
d , which is decreasing exponentially fast, and the maximum of the mag-
nitudes of the squares of the L1-norms of the iterated partial derivatives
of the order d of the regression function or some function, which inter-
polates the sample of the data. The results are illustrated by examples of
data with small and high regularity constructed using Boolean functions
and the gaussian function.

1 Introduction

The goal of supervised learning is to adjust parameters of a neural network
so that it approximates with sufficient accuracy a functional relationship
between inputs and outputs known only by a sample of input-output pairs.
Many learning algorithms (such as backpropagation; Werbos, 1985) itera-
tively decrease the average square of errors on a training set. In statistical
learning theory (see, e.g., Vapnik, 1995; Cucker & Smale, 2002), such learn-
ing is modeled as a minimization of error functionals: the empirical and the
expected error.

A basic model of a neural network architecture is a network with one
hidden layer with Heaviside perceptrons and one linear output. Such
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networks can compute all linear combinations of characteristic functions
of half-spaces of R

d , where d is the number of network inputs. The class
of functions computable by such networks with an unbounded number of
computational units is known to be dense in the space of continuous func-
tions with the supremum norm, as well as in the space of square integrable
functions on any compact subset of R

d (see, e.g., Cybenko, 1989; Hornik,
Stinchcombe, & White, 1989; Ito, 1991; Mhaskar & Micchelli, 1992; Leshno,
Lin, Pinkus, & Schocken, 1993), or a survey (Pinkus, 1998). In learning algo-
rithms, either the number of computational units is chosen in advance or it
is dynamically allocated during learning, but in both cases, it is constrained.
Rates of approximation by perceptron networks with an increasing number
of hidden units were estimated in Barron (1992, 1993), Makovoz (1996), and
Kůrková, Kainen, and Kreinovich (1997). The tightness of these estimates
was proven in Makovoz (1998) and the existence and discontinuity of best
approximation in Kainen, Kůrková, and Vogt (1999, 2000a, 2003).

In this letter, we investigate learning of Heaviside perceptron networks as
an optimization problem of minimization of the two functionals, the empir-
ical and the expected error, over nonconvex sets of functions computable by
Heaviside perceptron networks with a bounded number of units. First, we
prove the existence of minima of both error functionals over sets of functions
computable by these networks with any fixed number n of hidden units.
We use representations of the error functionals as distance functionals and
a weakened compactness property of the sets of functions computable by
Heaviside perceptrons. Then we estimate the speed of decrease of the min-
ima as n increases. We show that this speed depends on a certain regularity
of training data expressed in terms of the variational norms of functions
interpolating the data (in the case of the empirical error) and the regression
function (in the case of the expected error).

Further, dependence of this type of regularity on the dimensionality d
is studied. It is shown that the minima of error functionals over networks
with n perceptrons with d inputs are bounded from above by 1

n times the
maximum of the squares of the L1

λ-norms of the iterated partial derivatives
of the order d of the functions, at which the global minima are achieved,
multiplied by an exponentially quickly decreasing function c(d) � π

d 22−d of
the number of variables d .

This bound provides a quantitative description of a property of data,
which guarantees that a good fit to these data can be achieved by networks
with a reasonable number of hidden units. The property of the data is for-
mulated in terms of their oscillatory behavior measured by the magnitudes
of the iterated partial derivatives of the order d of the regression or some
interpolating function. Because of the multiplicative factor c(d) � π

d 22−d ,
the tolerance on these magnitudes, which can be allowed so that a good
fit to data is achievable using networks of a reasonable complexity, grows
exponentially fast with the dimension.
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The results are illustrated by examples of data chosen from the gaus-
sian function or from symmetric Boolean functions. For such data, rates
of convergence of error functionals over networks with n perceptrons are
bounded by 1

n times a quadratic function of the dimension d . In particular
for the data chosen from the gaussian function, our estimate of the conver-
gence of the minima of the empirical error functional determined by these
data gives some insight into the relationship of two geometrically opposite
types of computational units: perceptrons (which compute plane waves)
and radial basis functions (which compute radial waves).

Comparing the size of the set of characteristic functions of the Boolean
cube with certain covering numbers, we prove the existence of samples
of data that cannot be interpolated by functions with a small regularity
expressed in terms of variational norms.

The letter is organized as follows. In section 2, minimization of error func-
tionals is reformulated as a search for a best approximation. In section 3,
existence of minima of these functionals over sets of functions computable
by perceptron networks with n hidden units is proven, and upper bounds
on the convergence of both error functionals are derived in terms of a
variational norm tailored to Heaviside perceptrons. Section 4 investigates
dependence of this norm on dimensionality and maxima of partial deriva-
tives. Section 5 illustrates the estimates by examples of samples of data
generated by Boolean real-valued functions. Section 6 is a brief discussion.

2 Learning as a Best Approximation

A standard mathematical approach to learning (see, e.g., Cucker & Smale,
2002) is in terms of minimization of two functionals, the expected and the
empirical error, over various sets of functions. The expected error is de-
termined by a nondegenerate (no nonempty open set has measure zero)
probability measure ρ defined on Z = X × Y, where X is a compact subset
of R

d and Y a bounded subset of R (R denotes the set of real numbers).
The measure ρ induces the marginal probability measure on X defined
for every S ⊆ X as ρX(S) = ρ(π−1

X (S)), where πX : X × Y → X denotes the
projection. Let (L2

ρX
(X), ‖.‖L2

ρX
) denote the Lebesque space of functions sat-

isfying
∫

X f 2dρX < ∞. The expected error functional determined by ρ is
defined for every f in L2

ρX
(X) as

Eρ( f ) =
∫

Z
( f (x) − y)2 dρ,

and the empirical error functional determined by a sample of data z =
{(ui , vi ) ∈ X × Y | i = 1, . . . , m} as

Ez( f ) = 1
m

m∑
i=1

( f (ui ) − vi )2.
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Using notation from optimization theory, we denote by

(M,�)

the problem of minimization of a functional � : F → R over M, where
M ⊂ F is called a hypothesis set.

Typical hypothesis sets used in neurocomputing are sets of functions
computable by neural networks with n hidden units and one linear output
unit. Such sets are of the form

spann G =
{

n∑
i=1

wi gi | wi ∈ R, gi ∈ G

}
,

where G is the set of functions that can be computed by computational
units of a given type. Note that for G linearly independent, sets spannG are
not convex, and thus results from theory of convex optimization cannot be
applied.

Standard computational units used in neurocomputing are perceptrons.
For X ⊆ R

d and an activation function ψ : R → R, they compute functions
from R

d to R of the form ψ(v · x + b), where v ∈ R
d and b ∈ R are parameters.

A typical activation function is the Heaviside function

ϑ(t) = 0 for t < 0 and ϑ(t) = 1 for t ≥ 0.

Perceptrons with the Heaviside activation function compute character-
istic functions of closed half-spaces of R

d intersected with X. Because for
all a > 0 and all t ∈ R, ϑ(at) = ϑ(t), one can use vectors e ∈ Sd−1 (where
Sd−1 denotes the unit sphere in R

d ) as parameters of Heaviside perceptrons.
We denote by Hd (X) the set of functions on X computable by Heaviside
perceptrons, that is,

Hd (X) = { f : X → R | f (x) = ϑ(e · x + b), e ∈ Sd−1, b ∈ R}.

In this letter, we investigate two optimization problems,

(Eρ, spann Hd (X))

and

(Ez, spann Hd (X)),

of minimizations of the expected and the empirical error functionals over
sets of functions computable by networks with n Heaviside perceptrons.
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We take advantage of representations of minimizations of these function-
als in terms of best approximations of suitable functions. For the expected
error, such function is the regression function fρ defined for x ∈ X as

fρ(x) =
∫

Y
y dρ(y|x),

where ρ(y|x) is the conditional (with regard to x) probability measure on
Y. It is easy to see and well known that the minimum of Eρ over L2

ρX
(X) is

achieved at fρ , that is,

min
f ∈L2

ρX
(X)

Eρ( f ) = Eρ( fρ).

Moreover, Eρ( f ) = ∫
X( f (x) − fρ(x))2dρX + Eρ( fρ) = ‖ f − fρ‖2

L2
ρX

+ Eρ( fρ)

(Cucker & Smale, 2002). So Eρ can be expressed as the square of the L2
ρX

-
distance from fρ plus a constant,

Eρ( f ) = ‖ f − fρ‖2
L2

ρX
+ Eρ( fρ). (2.1)

Thus, the search for a function minimizing Eρ over any subset M ofL2
ρX

(X) is
equivalent to the search of a closest function in M to the regression function
fρ .

Similar to the expected error, the empirical one also can be expressed
in terms of a distance functional. For a sample z = {(ui , vi ) ∈ X × Y | i =
1, . . . , m}, let Xu = {u1, . . . , um} and hz : Xu → Y be defined as

hz(ui ) = vi . (2.2)

For any X ⊆ R
d containing Xu and f : X → R, let

fu = f|Xu : Xu → R

denote f restricted to Xu. Then Ez( f ) = 1
m

∑m
i=1( f (ui ) − vi )2 =

1
m

∑m
i=1( fu(ui ) − hz(ui ))2 = 1

m ‖ fu − hz‖2
l2 = Ez( fu). So the empirical er-

ror Ez can be expressed as 1
m times the square of the l2-distance from

hz:

Ez( f ) = 1
m

‖ fu − hz‖2
l2 . (2.3)
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3 Rates of Convergence of Minima of Error Functionals

Representations (2.1) and (2.3) allow us to take advantage of tools from
approximation theory to prove the existence of functions minimizing error
functionals over sets of functions computable by networks with n Heaviside
perceptrons and to estimate rates of convergence of these minima in terms
of a certain “regularity” of data with respect to perceptrons.

Similar to the expected error Eρ , the empirical one Ez also achieves its
global minimum over the whole space L2

ρX
(X). This minimum is equal to

zero and for a sample z of a size m, Ez achieves this minimum at a function
computable by a network with m perceptrons. This follows from a result by
Ito (1992), who proved that any function defined on a finite subset of R

d of
size m can be represented as a function computable by a network with m
hidden perceptrons with any sigmoidal activation (in particular, with the
Heaviside function). The following theorem is a corollary of Ito’s result:

Theorem 1. For all positive integers d, m, all X ⊆ R
d and all samples of data

z = {(ui , vi ) ∈ X × R | i = 1, . . . , m} with all ui distinct, there exists a function
f o ∈ spanm Hd (X) such that

Ez( f o) = min
f ∈spanm Hd (X) Ez( f ) = 0.

However in applications, networks with a smaller number n of hidden
units than the size m of the training set are used. To show that for all n < m,
both error functionals, Eρ and Ez, achieve minima over sets spann Hd (X) of
functions computable by networks with n perceptrons, we utilize a weak-
ened compactness property requiring subsequantial convergence merely
for sequences minimizing distances to some functions. Let (F, ‖.‖) be a
normed linear space, M ⊆ F , and f ∈ F ; then by ‖ f − M‖ = infg∈M ‖ f − g‖
is denoted the distance of f from M. The subset M is called approxima-
tively compact if for any sequence {gk} in M such that for some f ∈ F ,
limk→∞ ‖ f − gk‖ = ‖ f − M‖, there exists g ∈ M to which {gk} converges
subsequantially (Singer, 1970). Note that approximate compactness implies
that every function in F has a best approximation in M and that M is
closed.

Theorem 2. Let d, m be positive integers, X ⊂ R
d and Y ⊂ R be both compact,

z = {(ui , vi ) ∈ X × Y| i = 1, . . . , m} with all ui distinct, Xu = {u1, . . . , um}, and
ρ be a nondegenerate probability measure on X × Y. Then for every n, there exist
fz,n, fn ∈ spann Hd (X) such that:

i. Ez( fz,n) = min f ∈spann Hd (X)Ez( f ) and hz,n = fz,n |Xu satisfies Ez(hz,n) =
min f ∈spann Hd (Xu)Ez( f ).

ii. Eρ( fn) = min f ∈spann Hd (X)Eρ( f ).
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To prove the theorem we first derive a discrete version of a result from
(Kainen et al., 2003) on approximate compactness of spann Hd (X).

Theorem 3. For all positive integers d, n, and any finite subset X of R
d ,

spann Hd (X) is approximatively compact in (l2(X), ‖.‖l2 ).

Proof. Let X = {x1, . . . , xm} and f : X → R be such that ‖ f − spann Hd (X)‖l2

= limk→∞ ‖ f − hk
n‖l2 , where for each k, hk

n(x) = ∑n
i=1 wk

i ϑ(vk
i · x + bk

i ).
As ϑ(t) = ϑ(at) for all a > 0, without loss of generality, we can as-
sume that (vk

i , bk
i ) = (vk

i1, . . . , v
k
id , bk

i ) ∈ Sd (here Sd denotes the unit
sphere in R

d+1). By compactness of Sd , there exist vi ∈ R
d and

bi ∈ R such that {vk
i } converges subsequantially to vi and {bk

i } con-
verges subsequantially to bi . Replacing these two sequences by
suitable subsequences, we get by finiteness of X some k0 such that
for all k ≥ k0 and all xj ∈ X, ϑ(vk

i · xj + bk
i ) = ϑ(vi · xj + bi ). Hence

‖ f − spann Hd (X)‖2
l2 = limk→∞

∑m
j=1

(∑n
i=1 wk

i ϑ(vk
i · xj + bk

i ) − f (xj )
)2 =

limk→∞
∑m

j=1

(∑n
i=1 wk

i ϑ(vi · xj + b j ) − f (xj )
)2

< ∞.
Setting for all j = 1, . . . , m, I j = {i ∈ {1, . . . , n} | ϑ(vi · xj + bi ) = 1}, we

get limk→∞
∑m

j=1
∑

i∈I j

(
wk

i − f (xj )
)2

< ∞. Thus, for all j = 1, . . . , m,
limk→∞

∑
i∈I j

(
wk

i − f (xj )
)

< ∞ and so limk→∞
∑

i∈I j
wk

i = c j < ∞. By
linearity of the mapping T : R

n → R
m defined by T(t1, . . . , tn) =

(
∑

i∈I1
ti , . . . ,

∑
i∈Im

ti ), we prove, as in Kainen et al. (2003, lemma 3.2), that
for all i = 1, . . . , n there exist wi ∈ R such that limk→∞ wk

i = wi . Setting
g(x) = ∑n

i=1 wiϑ(vi · x + bi ), we get ‖ f − g‖l2 = ‖ f − spann Hd (X)‖l2 and so
spann Hd (X) is approximatively compact.

Proof of Theorem 2. (i) By theorem 3, spann Hd (Xu) is approximatively com-
pact in l2(Xu). So hz : Xu → R defined as hz(ui ) = vi has a best approxima-
tion hz,n(x) = ∑n

i=1 wiϑ(ei · x + bi ) in spann Hd (Xu). Hence, ‖hz − hz,n‖l2 =
‖hz − spann Hd (Xu)‖l2 , and so by the representation (2.3), Ez achieves its
minimum over spann Hd (X) at the extension fz,n ∈ spann Hd (X) of hz,n de-
fined as fz,n(x) = ∑n

i=1 wiϑ(ei · x + bi ).
(ii) In Kainen et al. (2003), approximate compactness of spann Hd ([0, 1]d )

in L2
λ([0, 1]d ) with the Lebesque measure λ was proven. Inspection of the

proof shows that spann Hd (X) is also approximately compact in L2
µ(X) for

any compact subset X of R
d and any probabilistic measure µ on X, and in

particular in L2
ρX

(X). Thus, the regression function fρ has a best approx-
imation fn ∈ spann Hd (X) and by the representation (2.1), Eρ achieves its
minimum over spann Hd (X) at fn.

So for all n, both error functionals, Eρ and Ez, achieve minima over sets of
functions computable by networks with n hidden Heaviside perceptrons.
As the sets spann Hd (X) are not convex, such minima need not be unique.
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Efficiency of utilization of networks with a smaller number of hidden
units than the size of the training set depends on the speed of convergence
of these minima to the global minima over L2

ρX
(X), which for Eρ is equal to

Eρ( fρ) and for Ez to 0.
To estimate this speed, we use a result from nonlinear approximation

theory, Maurey-Jones-Barron’s theorem (Pisier, 1981; Jones, 1992; Barron,
1992, 1993), which implies (see Kůrková, 2003) that for every bounded
subset G of a Hilbert space (F, ‖.‖), every f ∈ F and every positive integer n

‖ f − spannG‖ ≤ sG‖ f ‖G√
n

, (3.1)

where sG = supg∈G ‖g‖ and ‖ f ‖G is a norm of f called G-variation. This
norm is defined for any bounded nonempty subset G of a normed linear
space (X, ‖.‖) as the Minkowski functional of the closed convex symmetric
hull of G, that is,

‖ f ‖G = inf
{
c > 0 | c−1 f ∈ cl conv (G ∪ −G)

}
, (3.2)

where the closure cl is taken with respect to the topology generated by
the norm ‖.‖ and conv denotes the convex hull. Note that G-variation can
be infinite (when the set on the right-hand side is empty). It was defined
in Kůrková (1997) as an extension of variation with respect to half-spaces
defined for G = Hd (X) in Barron (1992) (for the properties of variation, see
Kůrková, 2003).

We denote

‖.‖Hd (X),L2

the variation with respect to Hd (X) ⊂ (L2
ρX

(X), ‖.‖L2
ρX

) with X ⊂ R
d compact,

‖.‖Hd (X),sup

the variation with respect to Hd (X) ⊂ (M(X), ‖.‖sup), where M(X) denotes
the space of all bounded measurable functions on X ⊆ R

d and ‖.‖sup denotes
the supremum norm, and

‖.‖Hd (X)

the variation with respect to Hd (X) ⊂ l2(X) with X finite (in this case, we
do not need to specify the norm, as all norms on a finite-dimensional space
are topologically equivalent).

The following theorem estimates speed of convergence of the minima
of error functionals over sets of functions computable by networks with n
Heaviside perceptrons.
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Theorem 4. Let d, m, n be positive integers, X ⊂ R
d and Y ⊂ R be compact,

z = {(ui , vi ) ∈ X × Y | i = 1, . . . , m} with all ui distinct, ρ be a nondegenerate
probability measure on X × Y and fn and fz,n be minimum points of the func-
tionals Eρ , Ez, resp., over spann Hd (X), and hz,n be a minimum point of Ez over
spann Hd (Xu). Then:

i. Eρ( fn) − Eρ( fρ) ≤ ‖ fρ‖2
Hd (X),L2

n

ii. Ez(hz,n) ≤ ‖hz‖2
Hd (Xu )

n

iii. for every h ∈ M(X) interpolating the sample z, Ez( fz,n) ≤ ‖h‖2
Hd (X),sup

n

Proof. i. By the representation 2.1, Eρ( fn) − Eρ( fρ) = ‖ fρ − fn‖2
L2

ρX
.

As supg∈Hd (X) ‖g‖L2
ρX

= 1, by equation 3.1, ‖ fρ − fn‖L2
ρX

= ‖ fρ −
spann Hd (X)‖L2

ρX
≤ ‖ fρ‖Hd (X),L2√

n . Hence, Eρ( fn) − Eρ( fρ) ≤ ‖ fρ‖2
Hd (X),L2

n .
ii. By theorem 2, fz,n|Xu = fz is the best approximation in spann H(Xu)

to hz defined on Xu as hz(ui ) = vi . As suph∈Hd (Xu) ‖h‖l2 = √
m, by equa-

tion 3.1, ‖hz − fz‖l2 = ‖hz − spann Hd (Xu)‖l2 ≤ √m
n ‖hz‖Hd (Xu). Hence, by

equation 2.3, Ez( fz,n) = Ez( fz) = 1
m ‖ fz − hz‖2

l2 ≤ ‖hz‖2
Hd (Xu )

n .
iii. It follows from the definition of variation that for every h ∈ M(X),

which interpolates the sample z, ‖hz‖Hd (Xu) ≤ ‖h‖Hd (X),sup and as Ez( fz,n) =
Ez(hz,n), iii follows from ii.

So the minima of error functionals achievable over networks with n per-
ceptrons decrease at least as fast as 1

n times the square of the variational
norm of the regression function (or some interpolating function, resp.).
When these norms are small, good approximations of the two global min-
ima, min f ∈L2

ρX
(X) Eρ( f ) = Eρ( fρ) and min f ∈L2

ρX
(X) Ez( f ) = 0, can be obtained

using networks with a moderate number of units.
The upper bounds from theorem 4(ii) and 4(iii) on speed of convergence

of the minima of Ez over spann Hd (X) do not explicitly depend on the size
m of the sample z. Independence from this size can be illustrated by an
example of the gaussian function and a sample of data z chosen from
it.

Proposition 1. For every positive integer m and every odd positive integer d, every
X ⊂ R

d compact and every sample z of the size m such that the function hz defined
as hz(ui ) = vi is the restriction of the gaussian function γd (x) = exp(−‖x‖2) to
Xu = {u1, . . . , um},

min
f ∈spann Hd (X) Eρ( f ) ≤ 4d2

n
.
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Proof. Kainen, Kůrková, and Vogt (2007) proved that for d odd,
‖γd‖Hd (Rd ),sup ≤ 2d (see also Cheang & Barron, 2000) for a weaker estimate
depending on the size of X, which is valid also for d even). So by theorem 4
(iii), min f ∈spann Hd (X) Eρ( f ) ≤ 4d2

n .

Proposition 1 gives some insight into the relationship between two ge-
ometrically opposite types of computational units: gaussian radial basis
functions (RBF) and Heaviside perceptrons. Minima of the empirical error
functional Ez defined by any sample of data z chosen from the gaussian
RBF unit with d inputs over networks with n Heaviside perceptrons con-
verge to zero faster than 4d2

n . Note that the upper bound 4d2

n grows with the
dimension d only quadratically, and it does not depend on the size m of a
sample.

On the other hand, there exist samples z, the sizes of which influence
the magnitudes of the variations of the functions hz defined as hz(ui ) = vi .
For example, for any positive integer k, consider X = [0, 2k], Y = [−1, 1]
and the sample z = {(2i, 1), (2i + 1,−1) | i = 0, . . . , k − 1} of the size m = 2k.
Then one can easily verify that ‖hz‖Hd (X) = 2k (for functions of one variable,
variation with respect to half-spaces is up to a constant equal to their total
variation; see Barron, 1992; Kůrková et al., 1997). This example indicates
that the more the data “oscillate,” the larger the variation of functions,
which interpolate them. In the next section, we investigate such oscillatory
behavior in terms of L1-norms of iterated partial derivatives of the order d
of interpolating functions.

4 Regularity of Samples of High-Dimensional Data

By theorem 4, fast convergence of error functionals is guaranteed for such
samples z, which can be interpolated by functions with small variational
norms. Reciprocals of squares of these norms can play roles of measures of
certain regularity of data with respect to perceptron networks. The smaller
the norms, the more regular are the data.

More insight into such regularity of data can be obtained from a rela-
tionship between the variational norm, magnitudes of partial derivatives,
and the number of variables. For a function f that can be represented as an
integral of the form of a neural network with a “continuum” of Heaviside
perceptrons,

f (x) =
∫

Sd−1×R

w f (e, b)ϑ(e · x + b)dvdb, (4.1)

variation with respect to half-spaces is bounded from above by the L1
λ-norm

of the weighting function w f (Kůrková et al., 1997).
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For all compactly supported functions f ∈ Cd (Rd ) with d odd, the
integral representation 4.1 was derived in Kůrková et al. (1997) with
w f = ad

∫
He,b

(D(d)
e f )(y)dy, where ad = (−1)k−1(1/2)(2π)1−d , D(d)

e f denotes
the directional derivative of f in the direction e iterated d times, de is
the (d − 1)-dimensional volume element on Sd−1, and dy is likewise on a
hyperplane He,b = {x ∈ R

d | x · e + b = 0}. The representation 4.1 was ex-
tended to rapidly vanishing functions in Kainen, Kůrková, and Vogt (2006).
Thus, the L1

λ-norm of w f is bounded from above by the product of a func-
tion k(d) ∼ ( 4π

d

)1/2 ( e
2π

)d/2, which is decreasing exponentially fast with the
number of variables d , and a Sobolev seminorm defined as

‖ f ‖d,1,∞ = max
|α|=d

‖Dα f ‖L1
λ(Rd ),

where λ denotes the Lebesque measure, α = (α1, . . . , αd ) is a multi-index
with nonnegative integer components, Dα = (∂/∂x1)α1 . . . (∂/∂xd )αd and
|α| = α1 + · · · + αd (see Kainen et al., 2007). So we have

‖ f ‖Hd (Rd ),sup ≤ k(d)‖ f ‖d,1,∞. (4.2)

Note that for large d , the seminorm ‖ f ‖1,d,∞ is much smaller than the
Sobolev norm,

‖ f ‖d,1 =
∑
|α|≤d

‖Dα f ‖L1
λ(Rd ),

as instead of the summation of 2d iterated partial derivatives of f over all α

with |α| ≤ d , merely their maximum over α with |α| = d is taken. A function
f is in the ball of radius r in the seminorm ‖.‖d,1,∞ if all the L1

λ-norms of
its iterated partial derivatives Dα f with |α| = d are at most r , while it is
in the ball of radius r in the Sobolev norm ‖.‖d,1 if the sum of 2d terms
(the L1

λ-norms of all its iterated partial derivatives with |α| ≤ d) is bounded
by r . For example, in the case when all these L1

λ-norms are the same, they
cannot be larger than r

2d . So for large d , such function is almost constant, as
its first derivatives are very small. On the other hand, balls in the seminorm
‖.‖1,d,∞ contain many more functions, as the bound r applies merely to the
L1

λ-norms of the derivatives Dα with |α| = d .
Using relationship 4.2 between the variation with respect to half-spaces

and the Sobolev seminorm, we get the following upper bound on the speed
of decrease of minima of the empirical error functional over sets of func-
tions computable by networks with n Heaviside perceptrons. It is formu-
lated for functions sufficiently rapidly vanishing at infinity, to which the
integral representation 4.1 was extended in Kainen, Kůrková, and Vogt
(2000b) and Kainen et al. (2006). A function f ∈ Cd (Rd ) is said to be of a
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weakly controlled decay if for every α, 0 ≤ |α| < d , lim‖x‖→∞(Dα f )(x) = 0
and there exists ε > 0 satisfying for each multi-index α with |α| = d ,
lim‖x‖→∞(Dα f )(x)‖x‖d+1+ε = 0. Note that the class of functions with weakly
controlled decay contains all d-times continuously differentiable functions
with compact support as well as all functions from the Schwartz class S(Rd )
(all C∞(Rd ) functions, which with all their iterated partial derivatives are
rapidly decreasing (Strichartz, 2003; Adams & Fournier, 2003). In particular,
it contains the gaussian function γd (x) = exp(−‖x‖2).

Theorem 5. For all positive integers n, m, all odd positive integers d, every
compact subset X of R

d , every sample z = {(ui , vi ) ∈ X × R | i = 1, . . . , m} with
all ui distinct, and every h : R

d → R of a weakly controlled decay interpolating
the sample z,

min
f ∈spann Hd (R)Ez( f ) ≤ c(d)‖h‖2

d,1,∞
n

,

where c(d) ∼ 4π
d

( e
2π

)d
< 4π

d2d .

Proof. It follows from Kainen et al. (2007), (theorems 3.3 and 4.2 and corol-
lary 3.4) that for all d odd and all h of a weakly controlled decay

‖h‖Hd (Rd ),sup ≤ k(d)‖h‖d,1,∞,

where k(d) ∼ ( 4π
d

)1/2 ( e
2π

)d/2. So by theorem 4(iii), the statement follows.

Thus, for any sample of data z, which can be interpolated by a function
h ∈ Cd (Rd ) vanishing sufficiently quickly at infinity with maxima of the L1

λ-
norms of its partial derivatives of the order |α| = d , which do not exceed an
exponentially increasing upper bound,

‖h‖d,1,∞ = max
|α|=d

‖Dα f ‖L1
λ(Rd ) ≤ 1

k(d)
∼

(
d

4π

)1/2 (
2π

e

)d/2

<

(
d
π

2d−2
)1/2

,

the minima of the empirical error Ez over networks with n Heaviside percep-
trons decrease to zero rather quickly—at least as fast as 1

n . So, for example,
when for d > 4π , all L1

λ-norms of the partial derivatives of the order d are
smaller than 2d/2, convergence faster than 1

n is guaranteed.
Theorem 5 gives some quantitative insight into the role of smoothness

in preventing the “curse of dimensionality” as suggested by Barron (1993)
and Vapnik (1995). Indeed, existence of partial derivatives up to the order
equal to the dimension d is among assumptions in theorem 5 (a function of
a quickly controlled decay of d variables is in Cd (Rd )), but the magnitudes
of these derivatives measured by their L1

λ-norms can be rather large. They



264 V. Kůrková

can even increase exponentially fast with the dimension d . The more the
data “oscillate,” the larger are the magnitudes of derivatives of functions
that interpolate them. But even for rather “oscillatory” data, for which all
interpolating functions have these magnitudes as large as

( d
π

2d−2
)1/2, the

empirical error functional converges with the rate faster than 1
n .

So rather than smoothness expressed merely in terms of the existence of
higher-order derivatives, a kind of regularity expressed in terms of magni-
tudes of these derivatives plays an essential role in the growth of network
complexity with the number of variables. A good match to training data
(a sufficiently small minima of error functionals) is theoretically achievable
by reasonably small networks even when these magnitudes grow exponen-
tially fast with the number of variables.

5 Regularity of Samples Defined by Boolean Functions

Samples with interesting properties can be obtained from Boolean functions.
Choose a linear ordering

{u1, . . . , u2d }

of the set of vectors from {0, 1}d . For a real-valued Boolean function h :
{0, 1}d → R, define a sample of pairs of data,

zh = {(ui , vi ) | i = 1, . . . , 2d}, where vi = h(ui ). (5.1)

A function h : {0, 1}d → R is called symmetric when for all x, y ∈ {0, 1}d ,∑d
i=1 xi = ∑d

i=1 yi implies h(x) = h(y) (Savický, 1994). So the values of a
symmetric function are invariant under permutations of entries of vectors
in {0, 1}d . The next upper bound on the speed of convergence of minima of
the empirical error functional defined by a sample generated by a symmetric
function is based on a modification of an estimate of variation with respect
to signum perceptrons of a symmetric function from Kůrková, Savický, and
Hlaváčková (1998).

Proposition 2. For every odd positive integer d and every symmetric function
h : {0, 1}d → {−1, 1},

min
f ∈spann Hd ({0,1}d )Ezh ( f ) ≤ (2d + 1)2

n
.

Proof. As h is symmetric, there exists φ : {0, . . . , d} → {−1, 1} such that h
can be represented as h(x) = φ(

∑d
i=1 xi ) = φ(x · 1), where 1 denotes the vec-

tor (1, . . . , 1) ∈ {0, 1}d . It is easy to check that h(x) = φ(0) + ∑d
j=1(φ( j) −
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φ( j − 1))ϑ(x · 1 − j). Thus, ‖h‖Hd ({0,1}d ) ≤ |φ(0)| + ∑d
j=1 |φ( j) − φ( j − 1)| ≤

2d + 1 and by theorem 4(ii), the statement follows.

So samples zh obtained from symmetric functions h : {0, 1}d → R are
quite regular with respect to perceptron networks. Minima of the empiri-
cal error functionals Ezh over spann Hd ({0, 1}d ) are smaller than or equal to
(2d+1)2

n . Note that this upper bound grows with d only quadratically.
On the other hand, there exist samples of data that have high irregularity

with respect to perceptron networks. We prove their existence using cover-
ing numbers in the angular pseudometrics δF defined on the unit ball S1 of
any Hilbert space (F, ‖.‖) as

δF ( f, g) = arccos | f · g|.

This pseudometrics defines the distance as the minimum of the two angles
between f and g and between f and −g (it is a pseudometrics as the
distance of antipodal vectors is zero).

Let Sr = { f ∈ F | ‖ f ‖ = r} denote the sphere of the radius r in (F, ‖.‖).
For α > 0, a subset A of S1 is an α-net with respect to δF if for every f ∈ S1

there exists g ∈ Asuch that δF ( f, g) < α. For F finite dimensional, let Nα(S1)
denote the α-covering number of S1 with respect to δF , that is, the size of
the smallest α-net in S1.

For g ∈ F , let go = g
‖g‖ , and for G ⊆ F , let Go = {go | g ∈ G}. The next

proposition shows that when for some α close to π/2, the cardinality of
G is smaller than Nα(S1), then in the sphere Sr of the radius equal to the
supremum of the norms of elements of G, there exists a function with a
“large” G-variation.

Proposition 3. Let G be a bounded subset of a finite-dimensional Hilbert space
(F, ‖.‖) with supg∈G‖g‖ = r and α ∈ [0, π/2] be such that card G < Nα(S1) with
respect to the pseudometrics δF . Then there exists f ∈ Sr such that

‖ f ‖G ≥ 1
cosα

.

Proof. As card Go = card G < Nα(S1), there exist some h ∈ S1 such that for
all go ∈ Go , δF (h, go) ≥ α and |h · go | ≤ cos α.

It follows from a geometric characterization of G-variation derived in
Kůrková et al. (1998, theorem 2.2) that for all f ∈ F , ‖ f ‖G ≥ ‖ f ‖2

supg∈G |g· f | =
‖ f ‖

supg∈G (|go · f o | ‖g‖) . In particular, for f = rh, ‖ f ‖G ≥ r
supg∈G (|go ·h| ‖g‖) ≥ r

r cos α
=

1
cos α

.
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So functions that have small inner products with all elements of G (i.e.,
are “almost orthogonal” to G) have large G-variations. Thus, for every set
G of a smaller cardinality than the α-covering number of the unit sphere in
the angular pseudometrics δF , there exists a function with the magnitudes
of its G-variation at least 1

cos α
.

Applying proposition 3 to the space (R2d
, ‖.‖l2 ), which is equivalent to

the space of all real valued functions on {0, 1}d , we prove the existence of
Boolean real-valued functions with large variations with respect to half-
spaces. First we state a corollary of proposition 3 for subsets G of the unit
sphere Sm−1 in (Rm, ‖.‖l2 ) that have cardinality smaller than the maximal
number of pairwise nearly orthogonal vectors in R

m. For ε > 0, two vectors
u, v ∈ Sm−1 are ε-quasiorthogonal if

|u · v| ≤ ε‖u‖l2‖v‖l2 .

The largest number of ε-quasiorthogonal vectors in Sm−1 was called in
Kainen and Kůrková (1993) the ε- quasiorthogonal dimension of R

m and
denoted

dimε m.

Corollary 1. Let m be a positive integer, ε > 0 and G be a bounded subset of R
m

such that card G < dimεm and supg∈G ‖g‖ = r . Then there exists f ∈ Sr with

‖ f ‖G ≥ 1
ε
.

Proof. It follows from the definition of δF that dimε m ≤ Narccos ε(Sm−1).
Hence, card G < Narccos ε(Sr ) and so by proposition 3, there exists f ∈ Sm−1

such that ‖ f ‖G ≥ 1
ε
.

The next theorem utilizes a lower bound on the quasiorthogonal dimen-
sion from Kainen and Kůrková (1993), which guarantees for a fixed ε an
exponential growth of dimε m with m increasing. We prove the existence
of a sample zh obtained from a function h : {0, 1}d → R with Hd ({0, 1}d )-
variation depending on the number of variables exponentially by com-
paring the “large” size of dimε 2m with the “small” size of the set of the
characteristic functions of half-spaces intersected with the Boolean cube
{0, 1}d . It follows from a classical result by Shläfli (1950) that the cardinality
of the set Hd ({0, 1}d ) is smaller than 2d2

(so it is rather small in contrast to
the size 22d

of the set of all subspaces of the Boolean cube {0, 1}d ).



Minimization of Error Functionals over Perceptron Networks 267

Theorem 6. For every positive integer d, there exists a function h : {0, 1}d → R

such that for every X ⊆ R
d with {0, 1}d ⊆ X and every f : X → R interpolating

the sample zh = {(ui , vi ) | i = 1, . . . , 2d} ⊂ {0, 1}d × R, where vi = h(ui ),

‖ f ‖Hd (X),sup ≥ ‖h‖Hd ({0,1}d ) �
2(d−1)/2

d
√

ln 2
.

Proof. Kainen and Kůrková (1993) showed that for all positive integers m
and all ε > 0,

dimε m ≥ 2m−1

B(m, λm,ε)
,

where λm,ε = 
m(1−ε)
2 − 1� and B(m, λm,ε) = ∑λm,ε

i=0

(m
i

)
. By Fine (1999) and by

Stirling’s formula, 2m−1

B(m,λm,ε) ≈ emε2/2. So

dimε m � emε2/2,

and in particular dimε 2d � e2d−1ε2
.

On the other, hand by Shläfli (1950),

card Hd ({0, 1}d ) ≤ 2d2−d log2 d+O(d) < 2d2
.

So by corollary 1, for every ε > 0 for which 2d2 ≤ e2d−1ε2 � dimε 2d , there
exists a function h ∈ S2d −1 with ‖h‖Hd ({0,1}d ) ≥ 2(d−1)/2

d
√

ln 2
.

Thus, for every f : X → R interpolating the sample zh , ‖ f ‖Hd (X),sup ≥
‖h‖Hd ({0,1}d ) ≥ 2(d−1)/2

d
√

ln 2
.

Note that for d odd, every f ∈ Cd (Rd ) of a weakly controlled decay,
which interpolates the sample zh from theorem 6, must have large Sobolev
seminorm, because by equation 4.2, ‖ f ‖1,d,∞ ≥ 2(d−1)/2

k(d)d
√

ln 2
�

( 22d−3πd−1

ln 2ded

)1/2
.

The proof of theorem 6 is existential, but in Kůrková et al. (1998), a lower
bound O(2d/6) on Hd ({0, 1}d )-variation was derived for a concrete function,
namely, the “inner product modulo 2.”

6 Discussion

We have proved the existence of the minima of the expected and the em-
pirical error functionals over networks with n Heaviside perceptrons and
derived upper bounds on rates of convergence of these minima to the global
ones over L2

ρX
(X). Our bounds are of the form 1

n times the squares of the
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maxima of the L1
λ-norms of the iterated partial derivatives of the order d of

functions, at which the global minima are achieved (the regression function
in the case of the expected error and any function interpolating the sample
of data in the case of the empirical one), multiplied by an exponentially
quickly decreasing function c(d) � π

d 22−d of the number of variables d .
These bounds give quantitative insight into the role of dimensionality

in learning of neural networks. They imply conditions on data that guar-
antee that a good approximation of global minima of error functionals
can be achieved using networks with limited complexity. Our estimates
suggest that the Sobolev seminorm ‖ f ‖d,1,∞ = max|α|=d ‖Dα f ‖L1

λ(Rd ) of the
regression or some interpolating function f can play a role in measuring
oscillatory behavior of data. With an increasing dimension d , even data
for which this norm is increasing exponentially fast but does not exceed
π
d 22−d can be processed efficiently by networks with a reasonable number
of perceptrons.

The best-approximation property of the sets spann Hd is rather excep-
tional among sets of linear combinations of n perceptrons. For many ac-
tivation functions ψ , the closures of the sets spannGψ (where Gψ denotes
the set of functions computable by perceptrons with the activation function
ψ) contain polynomials of degrees increasing with n. Leshno et al. (1993)
used these polynomials to prove the universal approximation property of
perceptron networks with quite general nonpolynomial activations.

Nevertheless, for any bounded set G, a weaker version of theorem 4
holds with the values of the functionals Eρ and Ez at their minimum points
replaced with the infima of these functionals over the sets spannG.

The reason for restricting our focus in this letter to the case of the Heav-
iside activation function is in the application of the integral representation
f (x) = ∫

Sd−1×R
w f (e, b)ϑ(e · x + b)dvdb. We do not know whether an analo-

gous formula also holds for sigmoidal plane waves.
A preliminary version of some of the results from this letter were pub-

lished in conference proceedings (Kůrková, 2005).
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Kainen, P. C., Kůrková, V., & Vogt, A. (2000b). An integral formula for Heaviside
neural networks. Neural Network World, 10, 313–320.
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de Mathématiques.
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