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Abstract

A connection is investigated between integral formulas and neural networks based
on the Heaviside function. The integral formula developed by Kůrková, Kainen and
Kreinovich is derived in a new way for odd dimensions and extended to even dimen-
sions. In particular, it is shown that well-behaved functions of d variables can be
represented by integral combinations of Heavisides with weights depending on higher
derivatives.
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1 Introduction

An integral formula of the form ∫

A

w(a)φ(a,x)da.

can be metaphorically seen as a one-hidden-layer neural network with a single linear output
unit and a continuum of hidden units. Each hidden unit computes a value of the function
φ depending on an input vector x and a parameter vector a.

Integral formulas have been used to derive the universal approximation property of one-
hidden-layer networks (see, e.g., Funahashi [6], Carroll and Dickinson [3], Ito [8]). Integral
representations have also been used to estimate how accuracy of approximation varies with
the number of hidden units (see, e.g., Barron [1], Girosi and Anzellotti [7] and Kůrková,
Kainen and Kreinovich [12]).
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Arguments applying integral formulas make use of the fact that integrals with respect to
the parameter vector can be approximated by Riemann sums. A neural network can even
be thought of as a kind of numerical quadrature, a generalization of the midpoint, trapezoid
and Simpson rules for approximating integrals. Implications of integral representations for
the development of practical neural network algorithms motivated our investigation here.

We derive integral formulas corresponding to one-hidden-layer Heaviside perceptron net-
works, extending results of Kůrková, Kainen and Kreinovich [12].

2 Preliminaries

2.1 Feedforward neural networks

Feedforward neural networks compute parametrized sets of functions depending on the type
of units as well as their interconnections. The computational units depend on two vector
variables (input and parameter ) and compute functions of the form φ : Rp × Rd → R,
where φ corresponds to the type of the unit, p and d are the dimensions of the parameter
and input space, resp., and R denotes the set of real numbers.

A one-hidden-layer network with hidden units using a function φ and a single linear
output unit compute functions g : Rd → R of the form

g(x) =
n∑

i=1

wiφ(ai,x),

where all wi ∈ R, all ai ∈ Rp, and n is the number of hidden units.
A perceptron with activation function ψ : R → R computes a function of the form

φ((v, b),x) = ψ(v · x + b) : Rd+1 × Rd → R, where v ∈ Rd is an input weight vector and
b ∈ R is a bias; thus, the parameter vector is the pair (v, b) ∈ Rd+1.

We denote by ϑ the threshold Heaviside function ϑ(t) = 0 for t < 0, ϑ(t) = 1 for t ≥ 0.
Let Sd−1 denote the (d−1)-dimensional sphere inRd. Since for every a > 0, ϑ(at) = ϑ(t),

we can represent any function ϑ(v ·x+ b) with v 6= 0 as ϑ(e ·x+ b′), where e = v
‖v‖ ∈ Sd−1

is a unit vector and b′ = b
‖v‖ .

For e ∈ Sd−1 and b ∈ R we denote by He,b the cozero hyperplane of the function
x 7→ e · x + b

He,b = {x ∈ Rd : e · x + b = 0}.
The half-spaces bounded by this hyperplane, where ϑ equals 1 and 0, resp., are denoted

H+
e,b = {x ∈ Rd : e · x + b ≥ 0}

and
H−

e,b = {x ∈ Rd : e · x + b < 0}.
A function f : Rd →R is called a plane wave if it can be represented as f(x) = α(v ·x),

where α : R → R is any function of one variable and v ∈ Rd is any nonzero vector. Notice
that plane waves are constant along hyperplanes parallel to Hv,0 = {x ∈ Rd : v · x = 0}.
Perceptrons with activation function ψ compute plane waves of the form ψb(v · x), where
ψb(t) = ψ(t + b).
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2.2 Distributions, operators, and Green’s functions

The theory of distributions frees calculus from the chore of checking differentiability by
extending the set of functions to a larger set of distributions (or generalized functions),
where all elements are differentiable and the formal rules of calculus hold.

For convenience we review some definitions here, see, e.g., Zemanian [16]. Let D(Rd)
denotes the set of test functions, i.e., compactly supported infinitely differentiable functions
on Rd. As usual, D′(Rd) denotes the set of continous linear functionals on D(Rd), where
continuity is with respect to certain seminorms (see, e.g., Zemanian [16, p.7]). Members of
D′(Rd) are called distributions.

A locally integrable function g on Rd induces a distribution by the formula < g, f >=∫
Rd g(x)f(x)dx where f is a test function. Distributions obtained in this way are called

regular distributions and the same expression is sometimes used to denote both the regular
distribution and the function that induces it.

An important distribution is the (Dirac) delta function δ defined for all f ∈ D(Rd)
by < δ, f >= f(0). Notice that δ plays the role of evaluation at 0. Recall that for all
g ∈ D′(Rd), g ∗ δ = g, where ∗ denotes convolution. Convolution of distributions is an
extension of convolution of functions; the latter is defined by (g∗h)(x) =

∫
Rd g(y)h(x−y)dy,

for the former see [16, p. 123].
The Laplacian operator 4 : D′(Rd) → D′(Rd) is defined by:

4(g) =
d∑

i=1

δ2g

δx2
i

.

For a positive integer m, 4m denotes the Laplacian iterated m times, and 40 is defined as
the identity operator.

A Green’s function for an operator T : D′(Rd) → D′(Rd) is a distribution g ∈ D′(Rd)
such that T (g) = δ. Green’s functions typically are regular distributions and satisfy bound-
ary conditions that do not concern us here. Standard Green’s functions for the Laplacian
operator 4 in Rd are: G(x) = 1

2π log ‖x‖ when d = 2, and G(x) = 1
(2−d)ωd

‖x‖2−d when
d 6= 2, where ωd is the area of the sphere Sd−1 ⊂ Rd(see [4, p.64]).

3 Integral representation as a Heaviside perceptron net-
work with a continuum of hidden units

3.1 The Representation theorem

Our basic assertion is that a smooth real-valued function on Rd with compact support can
be written as an integral combination of characteristic functions of closed half-spaces.

Theorem 1 Let d be a positive integer and let f : Rd → R he compactly supported and
d + 2-times continuously differentiable. Then

f(x) =
∫

Sd−1×R
wf (e, b)ϑ(e · x + b)dedb,

where for d odd
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wf (e, b) = ad

∫

H−
e,b

4kdf(y)dy,

kd = d+1
2 , and ad is a constant independent of f , while for d even,

wf (e, b) = ad

∫

H−
e,b

4kdf(y)α(e · y + b)dy,

where α(t) = −t log |t|+t for t 6= 0 and α(0) = 0, kd = d+2
2 , and ad is a constant independent

of f .

A special case of Theorem 1 is the following consequence of the fundamental theorem of
calculus.

Proposition 1 Let g : R→ R be continuously differentiable with limt→±∞ g(t) = 0. Then
for every x ∈ R,

g(x) =
∫ ∞

−∞

1
2
g′(t)ϑ(x− t)dt−

∫ ∞

−∞

1
2
g′(t)ϑ(t− x)dt.

Sketch of proof of Theorem 1

Let f : Rd → R be given sufficiently smooth with compact support. Then

f = f ∗ δ = f ∗ 4G = f ∗ 4mdF = 4mdf ∗ F.

Here G is the Green’s function in Rd for the Laplacian 4. The Green’s function with
argument x in Rd depends only on ‖x‖ and has a singularity at the origin. However, it can
be represented as a Laplacian, iterated md times, applied to a function F that is a scalar
multiple of ‖x‖ (d odd) or log ‖x‖ (d even). The quantity md equals d+1

2 for d odd, and
d
2 for d even. Details may be found in Courant and Hilbert [4, pp. 677-681]. Because f is
compactly supported (it suffices for f to die out rapidly at infinity), integration by parts
allows one to shift 4md through the convolution so that it acts on f rather than F .

In the even and odd cases, F is an integral combinations of plane waves of the form |x ·e|
(d odd) or log |x · e| (d even) where the variable of integration is e and integration is over
the unit sphere Sd−1.

Indeed, for every positive integer d,

‖x‖ = sd

∫

e∈Sd−1
|x · e|de,

where sd is a constant. Likewise, for every positive integer d,

log ‖x‖ = bd + sd

∫

Sd−1
log |x · e|de = bd + sd 4

(∫

Sd−1
β(e · x)de

)
,

where bd, sd are constants and β(t) = t2

2 log |t| − 3t2

4 for t 6= 0 and β(0) = 0.
These identities, to be found in [4, pp. 678-9], can be proved by means of rotational
invariance and homogenity arguments.
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In the odd case, by a variant of Proposition 1, |x · e| can be represented as an integral
combination of Heavisides ϑ(x · e + b) where integration is with respect to b in R. In the
even case log(|x · e|), although it has a singularity, is itself the Laplacian of a continuous
function β of x · e. This Laplacian commutes with the integration with respect to e, and
another integration by parts moves it to the “f”-side of the convolution. The continuous
function β is again a simple integral combination of Heavisides ϑ(x · e + b) with weight
function α = −β′ by a variant of Proposition 1. This yields the equations in Theorem 1,
with kd = md in the odd case and kd = md + 1 in the even case. 2

The assumption that f is compactly supported can be replaced by the weaker assumption
that f vanishes sufficiently rapidly at infinity. The integral representation also applies to
certain nonsmooth functions that generate tempered distributions.

By an approach reminiscent of Radon transform but based directly on distributional
techniques from Courant and Hilbert [4], it was shown in [12] that if f is compactly supported
function onRd with continuous d-th order partials, where d is odd, then f can be represented
as

f(x) =
∫

Sd−1×R
vf (e, b)ϑ(e · x + b)dedb,

where vf = ad

∫
He,b

(D(d)
e f)(y)dy, ad = (−1)k−1(1/2)(2π)1−d for d = 2k + 1, D

(d)
e f is the

directional derivative of f in the direction e iterated d times, de is the (d− 1)-dimensional
volume element on Sd−1, and dy is likewise on a hyperplane.

Although the coefficients vf are obtained by integration over hyperplanes, while the
wf arise from integration over half-spaces, these coefficients can be shown to coincide by
application of the Divergence Theorem [2, p. 423] to the half-spaces H−

e,b.
Theorem 1 extends the representation of [12] to even values for d and target functions f

which are not compactly supported but which decrease sufficiently rapidly at infinity.

3.2 Integral operators with Heaviside kernel function

Theorem 1 can be formulated in terms of integral operators.
For w ∈ L1(Sd−1 ×R) define

TH(w)(x) =
∫

Sd−1×Rd

w(e, b)ϑ(e · x + b)dedb.

For f ∈ D(Rd) define
SH(f)(e, b) = wf (e, b).

Theorem 1 shows that for each f ∈ D(Rd),

TH(SH(f)) = f.

3.3 Approximation by Heaviside perceptron networks

“A quadrature formula is a numerical rule whereby the value of a definite integral is approx-
imated by the use of information about the integrand only at discrete points (where the
integrand is defined)” (Engels, [5, p. 1]).
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Thus any quadrature of the integral formula from Theorem 1 determines parameters of
a Heaviside perceptron network and should be useful information for designing a learning
algorithm.

In [10] and [11] we studied functions defined on [0, 1]d. If such functions are smooth,
they can be extended to compactly supported smooth functions on Rd, and the integral
formulas of this paper can be applied to them.

Let Hd denote the set of Heaviside functions in Rd restricted to [0, 1]d, and let spannHd

denote the set of all linear combinations of at most n elements of Hd. We showed in [10] and
[11] that for all positive integers d, n and any p ∈ [1,∞) there exists a best approximation
mapping from Lp([0, 1]d) to spannHd, but for p ∈ (1,∞) such a mapping cannot be contin-
uous. Thus there exists a quadrature with n terms that approximates on [0, 1]d the integral
formula derived in Theorem 1 within the smallest error achievable using n variable points.
But such an optimal quadrature rule cannot vary continuously with the target function in
Lp([0, 1]d).

4 Discussion

For smooth functions of d variables vanishing sufficiently rapidly at infinity, Theorem 1 gives
an integral representation as a Heaviside perceptron network with a continuum of hidden
units. The plane-wave integral representation demonstrates the remark of Courant and
Hilbert [4, p. 676]: “But always the use of plane waves fails to exhibit clearly the domains
of dependence and the role of characteristics. This shortcoming, however, is compensated
by the elegance of explicit results.”

Work on the theory of neural nets has begun to give specific computational guarantees
for neural net approximation. Thus, finite neural networks may be measured against their
progenitor, the integral formula of this paper. It remains for these issues to be further
addressed in terms appropriate to engineering.

Representation of any suitable target function as an integral combination of Heaviside
threshold functions, where the weights come from integration of directional derivatives over
hyperplanes, or Laplacians over half-spaces, requires data that might be obtained from field
measurements. An averaging process might estimate the weights and give efficient means
for reconstructing a sufficiently smooth function from sparse but frequently resampled data.
Modern computational power could make practical the discretization methods suggested by
Sobolev [15].

Integral operators can be implemented physically - e.g., optically or in a semiconducting
medium. Holographic [9], [14] and analogue VLSI [13] embodiments of neural network
architectures might be ideal for this purpose.

The theoretical properties of integral formulas that correspond to continuum neural net-
works may thus be useful in guiding the evolution of new hardware and software approaches.
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