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a b s t r a c t

We employ properties of high-dimensional geometry to obtain some insights into capabilities of
deep perceptron networks to classify large data sets. We derive conditions on network depths,
types of activation functions, and numbers of parameters that imply that approximation errors
behave almost deterministically. We illustrate general results by concrete cases of popular activation
functions: Heaviside, ramp sigmoid, rectified linear, and rectified power. Our probabilistic bounds on
approximation errors are derived using concentration of measure type inequalities (method of bounded
differences) and concepts from statistical learning theory.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Most research in the theory of neural nets has been con-
entrated on issues involving continuous and smooth functions
n infinite domains. But in practical applications, feedforward
etworks compute functions on finite sets (such as regular grids
r scattered vectors in Rd). While many classes of feedforward
etworks have the universal representation property and can ex-
ctly compute any function on a finite domain (Ito, 1992), such
niversality type results have limited applicability as they require
he number of network parameters to be as large as the data-
ets, and these sets are often quite large. Some guidance for
hoice of network architecture can be obtained by investigating
ow their approximation capabilities depend on the depth, width,
nd type of the computational units. For some special types
f functions, increase of depth reduces the number of network
arameters needed to obtain the same or better accuracy of
pproximation (Bianchini & Scarselli, 2014; Kůrková, 2018, 2019;
aiorov, 1999; Poggio et al., 2017; Telgarsky, 2016; Yarotsky,
017). However, the comprehensive theoretical analysis of the
mpact of network depth is still in its early stages.

Functions on finite domains can be represented as vectors
n Euclidean spaces and errors in their approximation as dis-
ances between these vectors. Typically, neural networks process
arge sets of data, so they compute functions on large domains
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which can be viewed as high-dimensional vectors. Computational
difficulties of high-dimensional tasks, called the ‘‘curse of dimen-
sionality’’ (Bellman, 1957), have long been known. On the other
hand, the almost deterministic behavior of randomized models
depending on large numbers of variables can be attributed to
the ‘‘blessing of dimensionality’’ (Donoho & Tanner, 2009; Gonon,
Grigoryeva, & Ortega, 2023; Gorban, Makarov, & Tyukin, 2019;
Gorban & Tyukin, 2018; Kainen, 1997; Kůrková & Sanguineti,
2016). These phenomena can be explained by rather counter-
intuitive properties of geometry of high-dimensional spaces. They
imply concentration of values of sufficiently smooth functions
of many variables around their mean values (Dubhashi & Pan-
conesi, 2009; Gorban, Golubkov, Grechuk, Mirkes, & Tyukin, 2018;
Gorban, Tyukin, Prokhorov, & Sofeikov, 2016; Matoušek, 2002;
Milman & Schechtman, 1986; Vershynin, 2020).

Numbers of all binary-valued functions even on sets of mod-
erate sizes are too large to be likely that all of them represent
some tasks of interest in a given type of application. Thus suit-
ability of classes of networks can be investigated merely for
sets of functions that might be relevant for these tasks. Ap-
proximation of functions by neural networks have been studied
for sets of functions defined by constraints on various norms
(see, e.g., Kainen, Kůrková, and Sanguineti (2012) and references
therein). In Kůrková and Sanguineti (2019, 2021), we introduced
a different approach to restriction of sets of functions to be
approximated. We defined relevance of functions for a given
application area in terms of a probability distribution on the set

of all binary-valued functions.
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In this paper, we employ this approach to investigate the
influence of depths, type of activation functions, and numbers of
parameters on the approximation capabilities of deep perceptron
with piecewise-polynomial activation functions. We derive prob-
abilistic bounds on approximation errors using concentration-of-
measure inequalities applicable to sufficiently smooth functions
of the random variables. We show that l1- and l2-approximation
errors satisfy one of these smoothness conditions (they are
coordinate-wise Lipschitz with small coefficients). Applying the
McDiarmid Inequality belonging to methods of bounded dif-
ferences (Dubhashi & Panconesi, 2009; McDiarmid, 1989) we
get conditions under which approximation of random classifiers
behaves almost deterministically. We prove that deterministic
behavior is manifested when networks are ‘‘reasonably small’’
with respect to the size of functions’s domain, in particular when
the number of input–output functions grows polynomially with
its size.

To obtain characteristics of deep perceptron networks that
approximate random classifiers in a predictable way, we employ
estimates of growth functions, which are studied in statistical
learning theory in connection with VC-dimension. We derive
sufficient conditions for concentration of approximation errors in
terms of network depth, effective depth, total number of parame-
ters, and degrees and numbers of pieces of piecewise polynomial
activation functions. We illustrate general results in concrete
cases of networks with popular activation functions: Heaviside,
ramp sigmoid, rectified linear, and rectified power. In each of
these special cases, we state conditions on the degree of poly-
nomial growth in terms of network depth, effective depth, and
total number of parameters.

The paper is organized as follows. Section 2 contains basic
concepts and notations for approximation of functions on finite
domains, and it describes the class of deep perceptron networks,
whose approximation capabilities we investigate. In Section 3, a
probabilistic model of relevance is introduced. Section 4 contains
our main results on the approximation of random classifiers by
deep perceptron networks. It contains analysis of the influence
of network depth, number of parameters, and type of activation
functions on the concentration of approximation errors. Proofs
are deferred to Section 5. Section 6 is a brief discussion.

2. Preliminaries

2.1. Approximation of functions on finite domains

We investigate approximation of functions on finite subsets
X = {x1, . . . , xm} of Rd by neural networks. The domain X can
odel set of vectors of features, which can be scattered in Rd or

orm a regular grid.
We denote by

(X) := {f | f : X → R}

he space of all real-valued functions on X . F(X) is isometric
o the m-dimensional Euclidean space Rm and thus a function

: X → R can be represented as the m-dimensional vector
f (x1), . . . , f (xm)). On F(X), we consider l2 and l1-norms defined
s

f ∥2 :=

√ m∑
i=1

f (xi)2

f ∥1 :=

m∑
|f (xi)|,
i=1

655
resp. We measure errors in approximation of functions by neural
networks as their l1- and l2-distances from sets of input–output
unctions. For f ∈ F(X), and H ⊂ S(X), p = 1, 2, we denote

f − H∥p = inf
h∈H

∥f − h∥p.

We denote

(X) := {f | f : X → {−1, 1}}

the set of all functions on X with values in {−1, 1} (S(X) is equiv-
alent to the Hamming cube). This set corresponds to all binary
classifiers on the domain X . From technical reasons, we consider
range {−1, 1} instead of {0, 1} (so that all binary classifiers have
l2-norms equal

√
m).

For any set of real-valued functions L we denote by sgn◦L the
set of binary-valued functions obtained by composing functions
from L with the signum function sgn(t) = +1 for t ≥ 0 and
sgn(t) = −1 for t < 0, i.e.,

sgn ◦ L := {sgn ◦ g | g ∈ L}.

The following simple proposition shows that lower bounds on
errors in approximation of binary classifiers by a set L of real-
valued functions on X (which might be infinite) can be obtained
from lower bounds on approximation by the finite set sgn ◦ L,
hich has cardinality at most 2cardX .

roposition 2.1. Let X ⊂ Rd be finite, L ⊂ F(X), and f ∈ S(X)\L.
hen for p ∈ {1, 2}

f − L∥p ≥
1
2

∥f − sgn ◦ L∥p.

Proof. It is easy to verify (see Kůrková and Sanguineti (2017,
Proposition 3.1)) that for every h ∈ F(X), ∥f − h∥p ≥

1
2 ∥f −

sgn(h)∥p . Thus infh∈L ∥f − h∥p ≥ infh∈sgn◦L
1
2 ∥f − sgn(h)∥p . □

Proposition 2.1 shows that lower bounds on approximation of
binary classifiers by sets L of real-valued functions (in particular,
by networks with linear outputs) can be obtained from lower
bounds derived for sgn ◦ H (in particular, for networks where
linear output units are replaced by signum perceptrons that we
consider in the next subsection).

2.2. Deep perceptron networks

Multilayer feedforward networks are determined by directed
acyclic graphs G, where nodes represent computational units and
edges connections between them. The units are arranged in L
layers, network inputs are viewed as the layer 0, and for all l =

1, . . . , L, units in the lth layer have inputs only from preceding
layers i = 0, . . . , l − 1. The layers l = 1, . . . , L − 1 are called
hidden layers. We assume that the last layer L contains a unique
output unit.

A biologically inspired computational unit called perceptron
applies a fixed activation function ψ : R → R to affine functions
with varying parameters. A perceptron computes functions of the
form

ψ(v · .+ b) : Rd
→ R,

where v ∈ Rd is called a weight vector, b ∈ R a bias, and
v · x =

∑d
i=1 vixi is the scalar product of the weight vector with

input vector x (weighted sum of inputs). Originally, perceptrons
were endowed with sigmoidal activation functions representing
hard or soft threshold, such as
Heaviside θ (t) = 0 for t ≤ 0 and θ (t) = 1 for t ≥ 1,
ramp sigmoid τ (t) = −0 for t ≤ 0, τ (t) = t for t ∈ [0, 1], τ (t) = 1

for t ≥ 1,
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ogistic sigmoid σ (t) =
1

1+e−x .
Currently rectified linear (ReLU) activation function ρ(t) =

ax(0, t) is popular, sometimes also rectified powers (RePU, ReLUk)
k(t) = max(0, tk) are used.
We investigate approximation of binary classifiers by mul-

ilayer perceptron networks with piecewise polynomial activation
unctions and a single output with the signum activation. So we
ssume that the unique output unit in the last Lth layer is a
erceptron with the signum activation function (thus network
utputs are in {−1, 1}), and all units in layers l = 1, . . . , L − 1
re perceptrons with piecewise polynomial activation functions
l,j, j = 1, . . . , kl, l = 1, . . . , L − 1. We denote by

:= M(G, L, {kl, l = 1, . . . , L − 1}, {ψl,j,

l = 1, . . . , L − 1, j = 1, . . . , kl}) (1)

he parameterized family of {−1, 1}-valued input–output func-
ions of the class of networks described above with a fixed graph G,
ixed activation functions ψi,j, l = 1, . . . , L − 1, j = 1, . . . , kl, and
arying network parameters (weights and biases).
The number L of layers in the above described class of net-

orks is called the network depth. A more refined concept, in-
roduced by Bartlett, Harvey, Liaw, and Mehrabian (2019), is its
ffective depth, which instead of merely counting the number
f layers, also takes into account an arrangement of units with
espect to the hierarchical structure of the network. The effective
epth, denoted L̄, was defined in Bartlett et al. (2019) for mul-
ilayer perceptron networks where all activation functions are
iecewise polynomials as

¯ :=
1
W

L∑
l=1

Wl, (2)

here W is the total number of network parameters, while the
efinition of Wl, l = 1, . . . , L depends on the maximal degree
f piecewise polynomial activations δ > 0 as follows:

• for δ > 0, Wl is the number of parameters (weights and
biases) at inputs of all layers up to the lth layer (i.e., at the
layers i = 1, . . . , l);

• for δ = 0, Wl is the number of parameters (weights and
biases) at the inputs of units in the layer l. Note that it
follows from the definition of L̄ that when all activation
functions are piecewise constant (such as Heaviside and
signum), then the effective depth is 1.

The concept of the effective depth reflects that units closer
o the input layer have a greater influence on the size of sets of
etwork input–output functions than units closer to the last layer.
his can be illustrated by the following simple example of three
rrangements of n units, all with r parameters, in networks with
single output and depths L = 3 and L = 2:

(1) the first hidden layer has n − 3 units, the second hidden
layer 2 units,

(2) the first hidden layer has 2 units, the second hidden layer
n − 3 units,

(3) the network has only one hidden layer with n − 1 units.

t follows from the definition of the effective depth that in the
ase (1), L̄1 = 3−

4
n , while in (2), L̄2 = 2+

1
n , and in (3), L̄3 = 2−

1
n .

. Probabilistic bounds on approximation errors

.1. Probabilistic model of relevance

We assume that there is a probability measure P on the finite
et S(X) of all binary classifiers on X which models their relevance
 [
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for a given application area. A function f ∈ S(X) randomly chosen
according to P induces random variables

Y1 := f (x1), . . . , Ym := f (xm)

with values in {−1, 1}.
Many studies of random phenomena assume (often implicitly)

that the probability is uniform. Here, we focus on cases when dis-
tributions of values of random variables Y1, . . . , Ym can differ, but
the variables remain independent. Independence of random vari-
ables is essential for applications of most theorems on concentra-
tion of values of functions of large numbers of random variables.
These theorems state that under various smoothness conditions,
values of these functions tend to concentrate around their mean
values. The assumption of independence of random variables
Y1, . . . , Ym implies that P is a product probability, i.e., there exist
distributions P1, . . . , Pm such that

P(Y1, . . . , Ym) = Πm
i=1Pi(Yi).

We investigate l1- and l2-distances of random functions cho-
sen according to P from a fixed function h ∈ S(X) as functions of
random variables defined as

Ψh,1(Y1, . . . , Ym) :=

m∑
i=1

|Yi − h(xi)|

and

Ψh,2(Y1, . . . , Ym) :=

√ m∑
i=1

(Yi − h(xi))2.

3.2. Concentration of approximation errors

To derive probabilistic bounds for approximation of random
classifiers by deep perceptron networks, we first formulate bounds
for general approximating sets in terms of their sizes.

For a set H ⊂ S(X) of binary valued-functions and ι = 1, 2,
we denote by

µH,ι := min{E∥f − h∥ι | h ∈ H} (3)

the minimum of mean values of lι-distances from H. The following
theorem gives probabilistic bounds on deviations from µH,ι of
approximation errors of randomly-chosen classifiers. The lower
bound depends on both cardH and cardX = m, while the upper
bound depends merely on m.

Theorem 3.1. Let X ⊂ Rd be finite with card X = m, P be a
product probability measure on S(X), H ⊂ S(X), and λ > 0. Then
for f ∈ S(X) randomly chosen according to P,
(i) P

[
∥f − H∥ι ≤ µH,ι + λ

]
> 1 − e−

mλ2
2 ;

(ii) P
[
µH,ι − λ ≤ ∥f − H∥ι

]
> 1 − cardH e−

mλ2
2 .

The proof of Theorem 3.1, presented in Section 5.1, is based
on a concentration of measure type inequality. It employs the
McDiarmid Bound (McDiarmid, 1989), which is one of proba-
bilistic bounds holding for functions satisfying smoothes assump-
tions called bounded differences conditions (Dubhashi & Panconesi,
2009).

Note that the probability of the lower bound from Theo-
rem 3.1(ii) is high when the size cardH of the approximating set
H does not grow with m fast enough to outweigh the decrease
of e−

mλ2
2 . Setting cardH = κ(m), we can assess the lower bound

n the probability by estimating κ(m) e−
mλ2
2 . When it converges

o zero, for large m most approximation errors are in the interval

µ − λ,µ + λ]. (4)
H,ι H,ι
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hen λ is small enough to guarantee proximity to µH,ι and λ2

2
oes not outweigh m, then Theorem 3.1 implies concentration
f approximation errors. A suitable choice is, for example, λ =
−1/4 21/2. For largem, it is small and mλ2

2 = m1/2. Thus we obtain
he following corollary of Theorem 3.1.

orollary 3.2. Let X ⊂ Rd be finite with card X = m, P be a
roduct probability measure on S(X), and H ⊂ S(X) be such that
ardH = κ(m). Then for f ∈ S(X) randomly chosen according to P,
(i) P

[
∥f − H∥ι ≤ µH,ι + m−1/4

]
> 1 − e−m1/2

;

(ii) P
[
µH,ι − m1/4

≤ ∥f − H∥ι

]
> 1 − κ(m) e−m1/2

.

Corollary 3.2 implies concentration of approximation errors
for approximating sets H with cardH = κ(m) being a polynomial.
The value of µH,ι is critical for assessment of suitability of the
class H for classification tasks characterized by the probability
of relevance P. When µH,ι is large, then Corollary 3.2(ii) shows
that the set H is not suitable. On the other hand if µH,ι is small,
then the upper bound from Theorem 3.1(i) implies that almost all
randomly chosen classifiers can be well approximated by the set
H.

Note that for many choices of an approximating set H, the
lower bounds on the probability from Theorem 3.1(ii) and Corol-
lary 3.2(ii) are not likely to be tight, the probability of concentra-
tion of approximation errors can be larger. The bounds are proven
(see Section 5) assuming that λ-neighborhoods of elements of H
in l1 or l2-norm might be disjoint, which often is not the case.

4. Approximation by deep perceptron networks

4.1. Probabilistic bounds

The lower bounds on approximation errors from
Theorem 3.1(ii) and Corollary 3.2(ii) are expressed in terms of
the size cardH of an approximating set of functions on a domain
X of the size card X = m. We apply these general bounds to
neural networks by combining them with estimates of sizes of
their sets of input–output functions. We employ growth func-
tions studied in statistical learning theory in connection with
VC-dimension (Vapnik & Chervonenkis, 1971).

Our main results provide probabilistic bounds on errors in
approximation of randomly chosen binary classifiers by deep
perceptron networks with piecewise polynomial activations from
the class described in Section 2.2.

Theorem 4.1. Let X ⊂ Rd be finite with card X = m, P a
product probability measure on S(X), p, δ be positive integers, M :=

M(G, {kl, l = 1, . . . , L − 1}, {ψl,j, l = 1, . . . , L − 1, j = 1, . . . , kl})
the set of all input–output functions of a class of deep perceptron
networks with depth L, effective depth L̄, total number of parameters
W, single output with signum activation and activation functions
ψl,j, j = 1, . . . , kl in layers l = 1, . . . , L − 1 being piecewise
polynomials with p + 1 pieces and degrees at most δ. Then for
f ∈ S(X) randomly chosen according to P, ι = 1, 2, and λ > 0
(i) P

[
∥f − M∥ι ≤ µM,ι + λ

]
> 1 − e−

mλ2
2 ,

ii) when L̄W ≤ m, P
[
µM,ι − λ ≤ ∥f − M∥ι

]
> 1 −

α(p, δ, L) em)L̄W e−
mλ2
2 , where α(p, δ, L) := 4p

(
1 + (L − 1)δL−1

)
.

The proof of Theorem 4.1, presented in Section 5, combines
probabilistic bounds from Theorem 3.1 with an estimate of the
growth functions of sets of input–output functions of deep per-
ceptron networks with piecewise linear activation functions {ψl,j}.

The bounds from Theorem 4.1 are interesting when they hold
ith a sufficiently large probability. This happens when the term
657
e−
mλ2
2 converges to zero faster than cardM grows with m to

nfinity. For example, λ = 21/2 m−1/4 is for large m small enough
o guarantee proximity to µM,ι and the lower bound 1−e−

mλ2
2 =

− e−m1/2
on probability that approximation errors are close to

µM,ι converges to 1.

Corollary 4.2. Let X ⊂ Rd be finite with card X = m, P a
product probability measure on S(X), p, δ be positive integers, M :=

M(G, {kl, l = 1, . . . , L − 1}, {ψl,j, l = 1, . . . , L − 1, j = 1, . . . , kl})
the set of input–output functions of a class of deep perceptron
networks with depth L, effective depth L̄, total number of parameters
W, single output with signum activation and all activation functions
ψl,j, j = 1, . . . , kl in layers l = 1, . . . , L − 1 being piecewise
polynomials with p + 1 pieces and degrees at most δ. Then for
f ∈ S(X) randomly chosen according to P and ι = 1, 2,
(i) P

[
∥f − M∥ι ≤ µM,ι + 21/2m−1/4

]
> 1 − e−m1/2

,

(ii) when L̄W ≤ m, P
[
µM,ι − 21/2m−1/4

≤ ∥f − M∥ι

]
>

1−(α(p, δ, L) em)L̄W e−m1/2
where α(p, δ, L) := 4p

(
1+(L−1)δL−1

)
.

Theorem 4.1 and Corollary 4.2 imply conditions on depth,
effective depth, and total numbers of parameters of deep per-
ceptron networks with piecewise polynomial activations that
guarantee concentration of errors in approximation of randomly
chosen classifiers.

Note that the lower bounds from Theorem 4.1(ii) and Corol-
lary 4.2(ii) hold for networks where the product of network
effective depth L̄ and total number of its parameters W does not
exceed the size m of the set of data to be classified. In practical
tasks dealing with large data, it is desirable to use networks with
reasonably small effective depths and with numbers of parame-
ters much smaller than sizes of sets of data to be classified. Thus
the assumption L̄W ≤ m is not practically restrictive, often even
L̄W ≤ LW ≤ m.

Stronger conditions on network depth L, effective depth L̄, and
total number of its parameters W should be imposed to obtain
bounds holding with high probability. The upper bounds from
Theorem 4.1(i) and Corollary 4.2(i) do not depend on the size
cardM of the set of input–output functions, but cardM plays a
crucial role in the lower bounds (ii). When(
4p(1 + (L − 1)δL−1) em

)L̄W
=

(
α(p, δ, L) em

)L̄W
oes not outweigh the exponential decay of e−

mλ2
2 (in particular

e−m1/2
for λ = 21/2m−1/4), then the probability converges to 1

ith m increasing.
Assuming that the degree δ and the number p of pieces of ac-

tivation functions are fixed, Theorem 4.1 and Corollary 4.2 imply
conditions on L, L̄, and W that guarantee that for a sufficiently
argem, approximation of classifiers behaves almost deterministi-
ally. More precisely, with a high probability almost all randomly
hosen classifiers are close to µM,ι in lι-norm for ι = 1, 2. In such
ases, suitability of a class of networks computing input–output
unctions from M can be assessed according to the value of µM,ι.
hen µM,ι is large, M is not suitable for a task characterized by

the probability P.

4.2. Consequences for some types of activation functions

We analyze conditions that guarantee almost deterministic
behavior of approximation of random classifiers by some classes
of deep perceptron networks for some choices of popular activa-
tion functions.

The next corollary follows directly from Theorem 4.1 by ap-
plying it to piecewise polynomial activation functions of degrees
δ = 0, 1, 2, numbers of their pieces p + 1 where p = 1, 2, and
from the definition of L̄ (in particular, L̄ = 1 for δ = 0).
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orollary 4.3. Let X ⊂ Rd be finite with card X = m, P a product
robability measure on S(X), M := M(G, {kl, l = 1, . . . , L −

1}, {ψl,j, l = 1, . . . , L − 1, j = 1, . . . , kl}), the set of all input–
output functions of a class of deep perceptron networks with depth L,
effective depth L̄, total number of parameters W such that m ≥ L̄W ,
and a single output with the signum activation. Then for f ∈ S(X)
randomly chosen according to P, ι = 1, 2, and λ > 0

(i) when all ψl,j, l = 1, . . . , L − 1, j = 1, . . . , kl are either
Heaviside or signum functions,

P
[
µM,ι − λ ≤ ∥f − M∥ι

]
> 1 − (4em)W e−

mλ2
2 ; (5)

(ii) when all ψl,j, l = 1, . . . , L − 1, j = 1, . . . , kl, are ReLU
functions ρk(t) = max(0, tk)

P
[
µM,ι − λ ≤ ∥f − M∥ι

]
> 1 − (4em)L̄W e−

mλ2
2 . (6)

(iii) when all ψl,j, l = 1, . . . , L−1, j = 1, . . . , kl, are ramp sigmoid
functions

P
[
µι,M − λ ≤ ∥f − M∥ι

]
> 1 − (8em)L̄W e−

mλ2
2 ; (7)

(iv) when all ψl,j, l = 1, . . . , L − 1, j = 1, . . . , kl, are rectified
powers (max(0, ·))k for a fixed k

P
[
µι,M−λ ≤ ∥f−M∥ι

]
> 1−

(
4em(1 + (L − 1)kL−1)

)L̄W
e−

mλ2
2 .

(8)

Corollary 4.3 gives estimates of probabilities of lower bounds
on approximation errors in terms of characteristics of classes of
deep perceptron networks. Note that the probability of upper
bounds on approximation errors depends merely on m, it does
ot depend on the sizes of sets of input–output functions. For
ll classes from Corollary 4.3, the probability of upper bounds
atisfies[
∥f − M∥ι ≤ µι,M + λ

]
> 1 − e−

mλ2
2 . (9)

Analysis of bounds from Corollary 4.3 and the bound (9) provides
conditions that imply concentration of errors in approximation
of random classifiers by deep perceptron networks with popular
activation functions (see Table 1).

(i) In the case of networks with Heavisides or signum activa-
tions, δ = 0 and p = 1 and thus α(p, δ, L) = 4. As L̄ = 1, the
bound (5) on probability that approximation errors are at least
µM,ι−λ does not depend on depth L nor on the effective depth L̄,
t merely depends on the total number W of network parameters.
or λ = 21/2m−1/4, the lower bound on probability becomes

1 − eW (ln(4m)+1)−m1/2
. (10)

hus the lower bound is interesting only when the total number
of parameters satisfies

<
m1/2

ln(4m) + 1
. (11)

he smaller W than m1/2

ln(4m)+1 , the larger probability that errors in
approximation of random classifiers are within 21/2m−1/4 from

M,ι.
(ii) For networks with ReLU activation functions, the condition

mplying concentration of approximation errors around µM,ι in-
olves the product L̄W of the network effective depth and its total
umber of parameters. For λ = 21/2m−1/4, the lower bound on
robability (6) becomes

− eL̄ W ln(4m)+L̄W−m1/2
(12)
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Table 1
Conditions for bounds on probability from Corollary 4.3.
Activation function Assumption of Exponent negative

Theorem 4.1 for λ = 21/2m−1/4

Heaviside and signum W ≤ m W < m1/2

ln(4m)+1

ReLU L̄ W ≤ m L̄W < m1/2

ln(4m)+1

ramp sigmoid L̄ W ≤ m L̄W < m1/2

ln(8m)+1

RePU = ReLUk L̄ W ≤ m L̄W < m1/2

4m ln(1+(L−1)kL−1)+1

Thus the lower bound is greater than zero when

L̄W <
m1/2

ln(4m) + 1
. (13)

The slower L̄W grows than m1/2

ln(4m)+1 , the higher probability that
pproximation errors are concentrated around µM,ι. Increasing
etwork effective depth by rearranging its units but keeping
he number of total parameters W fixed leads to decreasing
robability of almost deterministic behavior of approximation
rrors.
(iii) The case of networks with ramp sigmoid is similar to the

ase of networks with ReLU units (it is not surprising, since the
amp sigmoid can be obtained as a linear combination of two
eLU functions). For λ = 21/2m−1/4, the right-hand side of (7)
ecomes

− eL̄W ln(8m)+L̄W−m1/2
. (14)

o the bound is interesting when

¯W <
m1/2

ln(8m) + 1
. (15)

So the condition on L̄W that influences probability of the concen-
tration of approximation errors is only slightly different from the
condition for the case of ReLU units.

The case of networks with rectified power units (iv) is less
transparent. For λ = 21/2m−1/4 the lower bound on probability
ecomes

− eL̄W
(
ln(4m(1+(L−1)kL−1))+1

)
−m1/2

. (16)

o the bound is interesting when

¯W <
m1/2

ln
(
4m(1 + (L − 1)kL−1) + 1

) . (17)

4.3. Consequences for choice of network architectures

Corollary 4.3 implies conditions on the number of parameters,
depth, and effective depth of classes of deep networks with some
popular activation functions under which approximation of ran-
dom classifiers by these perceptron networks behaves almost de-
terministically. Under these conditions l1- and l2-approximation
errors are concentrated around minima of mean values of these
errors over sets of all network input–output functions. Roughly
speaking, the conditions imply that this happens when networks
are relatively ‘‘small’’ with respect to the size card X = m of
the data to be classified, where ‘‘small’’ concerns total number
of parameters, network depth, and effective depth.

For networks with piecewise constant activations (such as
Heaviside or signum), the conditions assume that the total num-
ber of network parameters W is sufficiently smaller than m1/2

ln(4m)+1 .
or networks with ReLU activation functions, the same constraint
m1/2

applies to the product L̄W instead of W . Thus keeping
ln(4m)+1
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he total number of parameters W fixed but rearranging network
nits in more layers so that its effective depth L̄ is increased,
he probability of concentration of approximation errors might
ecrease.
Suitability of a class of deep networks which is ‘‘small’’ enough

o satisfy the conditions stated in Corollary 4.3 depends on the
alues µM,ι. If they are large, networks computing functions
rom M are not suitable for the task characterized by P because
almost all randomly chosen classifiers according to P have large
errors. Adding more parameters or adding layers to increase
network effective depth so that the conditions on concentration
are not satisfied might increase chances of better approximation.
With increase of the size of a set of input–output functions, the
minimum µM,ι can decrease.

When µM,ι is small, then the class of networks is suitable for
tasks characterized by P. Note that the upper bound µM,ι + λ

holds without any restrictions on W and L̄.
For every h ∈ S(X) and any product probability P, E∥f −

h∥1 ≤ m and E∥f − h∥2 ≤
√
2m. Among all probabilities,

he uniform one gives the largest mean values. Due to symme-
ry, all mean values are equal, and thus for uniform probability
M,1 = m and µM,2 =

√
2m. Without a prior knowledge, we

ave to assume that the probability P is uniform. Our results
how that in such cases, almost all uniformly randomly chosen
lassifiers of sufficiently large data cannot be well approximated
y ‘‘small’’ deep perceptron networks satisfying conditions from
orollary 4.3. Thus universal approximation property requires
‘large’’ networks.

. Methods and proofs

.1. Method of bounded differences and proof of Theorem 3.1

To prove Theorem 3.1, we employ probabilistic inequalities
haracteristic for the phenomenon of concentration of measure.
nder suitable smoothness conditions, functions of large num-
ers of random variables exhibit almost deterministic behavior
n the sense that their values concentrate more or less tightly
round their mean values. One of such smoothness conditions is
version of the Lipschitz property. We call a function

: A1 × · · · × Am → R

oordinate-wise Lipschitz (CWL) with parameters c1, . . . , cm if for
ll i = 1, . . . ,m and all vectors a = (a1, . . . , am), a′

= (a′

1, . . . , a
′
m)

A1 × · · · × Am, which differ just in the ith coordinate,

Λ(a) −Λ(a′)| ≤ ci. (18)

ote that the CWL condition implies Lipschitz continuity on
−1, 1}m with the parameter c̄ = maxi=1,...,m ci with respect to
he Hamming distance distH measured by the number of entries
f two vectors in {−1, 1}m in which they differ. Indeed, if Λ
atisfies the CWL condition (18) with parameters c1, . . . , cm, then
or every u, v ∈ {−1, 1}m which differ in just k entries, we have
sequence u = u0, . . . , uk = v such that uj, j = 0, . . . , k − 1
iffers from uj+1 in just one coordinate ij+1. Then |Λ(u) −Λ(v)| ≤
k
j=1 cij ≤ c̄ k = c̄ distH (u, v).
We use the following probabilistic bound that implies concen-

ration of values of functions of independent random variables
atisfying the CWL condition with a sufficiently small l2-norms
c∥2 of their vectors of parameters c = (c1, . . . , cm). This bound
s known as McDiarmid Inequality (McDiarmid, 1989) and it be-
ongs to the class of methods of bounded differences (Dubhashi &

anconesi, 2009).
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heorem 5.1. [Dubhashi and Panconesi (2009, p. 70)] Let Y1, . . . , Ym
e independent random variables with values in ranges A1, . . . , Am,
esp., and Φ : A1 × · · · × Am → R be a function satisfying the CWL
ondition with the vector of parameters c := (c1, . . . , cm). Then for
very t > 0,[

|Φ − E(Φ)| > t
]

≤ e−2t2/γ , (19)

here γ :=
∑m

i=1 c
2
i = ∥c∥2.

roof of Theorem 3.1. To apply Theorem 5.1 to the functions
h,1 and Ψh,2, we verify that they satisfy the CWL condition and
stimate its parameters. We have to estimate differences between
alues of Ψh,ι, ι = 1, 2 with Yi = 1 and with Yi = −1, i =

, . . . ,m.
In the case of l1, we have for every i = 1, . . . ,m,

Ψh,1(Y1, . . . , Yi−1, 1, Yi+1, . . . , Ym)
− Ψh,1(Y1, . . . , Yi−1,−1, Yi+1, . . . , Ym)| = 2.

Thus Ψh,1 satisfies the CWL condition with all parameters ci = 2.
In the case of l2, we have

Ψh,2(Y1, . . . , Yi−1, 1, Yi+1, . . . , Ym)
− Ψh,2(Y1, . . . , Yi−1,−1, Yi+1, . . . , Ym)|

=
√
b + 4 −

√
b < 2 , where b =

∑m
j̸=i(Yj − h(xj))2.

Hence in both cases ι = 1, 2, we have γ =
∑m

i=1 c
2
i = 4m.

etting t := mλ we get 2t2/c ≥ (2m2λ2)/(4 m) = (mλ2)/2. Thus
heorem 5.1 implies for all h ∈ H and ι = 1, 2,[ ⏐⏐Φ(h, ι) − E(Φh,ι)

⏐⏐ > λ

]
≤ e−

mλ2
2 . (20)

For every h ∈ H and ι = 1, 2, set

µh,ι := E∥f − h∥ι and µH,ι := min
h∈H

µh,ι.

To prove (i), we choose some h∗
ι ∈ H, for which µH,ι = µh∗

ι ,ι.
By (20)

P
[
∥f − h∗

ι ∥ι ≤ µh∗
ι ,ι + λ

]
> 1 − e−

mλ2
2 .

s ∥f − H∥ι ≤ ∥f − h∗
ι ∥ι ≤ µh∗,ι + λ = µH + λ, the upper bound

ollows.
To prove (ii), for every f ∈ S(X) denote hf ,ι ∈ H such that

f − hf ,ι∥ι = ∥f − H∥ι (it exists as H is finite). Since

H,ι − λ ≤ µhf ,ι − λ ≤ ∥f − H∥ι ≤ µhf ,ι + λ

y (20) we get[
µH,ι − λ ≤ ∥f − H∥ι

]
> 1 − cardH e−

mλ2
2 . □

5.2. Growth functions and proof of Theorem 4.1

Growth of sizes of sets induced on finite domains of increasing
sizes by various classes of binary-valued functions has long been
studied in statistical learning theory. Vapnik and Chervonenkis
(1971) introduced the concept of growth function ΠA(m) : N+ →

N+ defined for any set of binary-valued functions A ⊆ S(U) on
any set U as

ΠA(m) := max
X⊂U,cardX=m

card(A| X ).

So ΠA(m) measures the maximal number of dichotomies that a
given family of functions A can generate on an m-point subset
of U (recall that a dichotomy is a partition of a set into two dis-
joint subsets). In particular, for sets of input–output functions of
networks with binary-valued outputs, the growth function gives



V. Kůrková and M. Sanguineti Neural Networks 165 (2023) 654–661

a
i

c
n
i
0

T
b
a
c
w

f
(
f
r
w
t

P
o
t

M

o
m
R
a

Π

T

1

6

f
d
o
r
p
a

n
T
a
e
I
c
t
o
a
d
m

D

D

n upper bound on the sizes of sets of input–output functions
nduced on domains the size m.

A classical result by Schläfli (1901) proven already in the 19th
entury (see also (Cover, 1965)) gives an upper bound on the
umber of linearly separable dichotomies on m points in Rd,
.e., partitions separated by hyper-planes He,b = {x ∈ Rd

| x·e+b =

}, e ∈ Sd−1, b ∈ R. Denoting by Ξd the set of characteristic
functions of half-spaces He,b of Rd, Schläfli’s upper bound states

ΠΞd ≤ 2
d∑

i=0

(
m − 1

i

)
≤ 2

md

d!
. (21)

he bound (21) shows that the growth function ΠΞd is bounded
y a polynomial of degree d, where d is the dimension of the
mbient space Rd. It the context of neurocomputing, the set Ξd
orresponds to the set of all functions computable by perceptrons
ith the Heaviside activation function.
The classical result (21) was extended to estimates of growth

unctions of polynomially parameterized families of functions
Goldberg & Jerrum, 1995) and to some sets of input–output
unctions (Bartlett, Maiorov, & Meir, 1998). Here we employ a
ecent estimate of growth functions of deep perceptron networks
ith piecewise polynomial activation functions formulated in
erms of their effective depth from Bartlett et al. (2019).

roof of Theorem 4.1. To prove the statement, we combine The-
rem 3.1 with an upper bound on the growth function ΠM(m) of
he set of input–output functions

:= M(G, {kl, l = 1, . . . , L − 1},
{ψl,j, l = 1, . . . , L − 1, j = 1, . . . , kl})

f deep perceptron networks with an increasing size of the do-
ain m that was proven in Bartlett et al. (2019, Theorem 7 and
emark 9) (see also Bartlett et al. (1998)). It states that under the
ssumption that L̄W =

∑L
i=1 Wi ≤ m,

M(m) ≤ Π L
l=12

(
2eklp(1 + (l − 1)δl−1)

Wl
m

)Wl

≤
(
4ep1 + (L − 1)δL−1)L̄W mL̄W .

hus by Theorem 3.1 the probability is bounded from below by

−
(
4ep1 + (L − 1)δL−1)L̄WmL̄W e−

mλ2
2 . □

. Discussion

Our results show that in approximation of classifiers on large
inite domains (such as discretized high-dimensional cubes) by
eep perceptron networks, an effect of high-dimensional nature
f classifiers can lead to a concentration of approximation er-
ors. We analyzed conditions on network depth, number of its
arameters, and types of activation functions under which the
pproximation errors behave almost deterministically.
Some probabilistic approaches to study of approximation by

eural networks assume (often implicitly) a uniform probability.
his assumption models situations where no prior knowledge
bout the tasks of interest is available. It can be used to prove
xistential results (see, e.g. Maiorov (1999), Telgarsky (2016)).
n practical situations, often some vectors of features are rarely
lassified as positive, while others are more often to be like
hat. We considered product probability distributions on sets
f binary-valued functions to keep variables independent but
llow distributions of individual random variables to differ. In-
ependence of random variables is an essential assumption in
ost theorems on concentration of their values, some of which
660
we exploited. The cases when probability distributions generate
random variables with some dependence (which often happens in
real applications) are much more difficult to investigate. We ini-
tiated their study in Kůrková and Sanguineti (2021) by exploring
correlations of random high-dimensional vectors.

Suitability of a class of networks can be assessed from the
mean values around which approximation errors are concen-
trated. These values depend on the type of a probability distri-
bution; they are largest for the uniform one. Uniformity has to
be assumed when there is no prior knowledge. In this case, our
theorems imply that for networks that are ‘‘reasonably small’’
(sizes of sets of their input–output functions do not grow ex-
ponentially with their domains), almost any uniformly randomly
chosen function cannot be well approximated.

Our results indicate that the good approximation properties
of deep networks mean that in many successful applications,
distributions of tasks that such networks perform are highly
non-uniform. For non-uniform distributions, approximation er-
rors concentrate around values that can be much smaller than
in the uniform case.

As mentioned in Section 4, the lower bounds from Theo-
rem 4.1(ii) and Corollary 4.2(ii) are not tight, probabilities of
concentrations of approximation errors might be higher than in
our estimates. Some improvements of these bounds might be
obtained by taking into account coherence of sets of input–output
functions.
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