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Abstract
Limitations of capabilities of shallow networks to efficiently compute real-valued functions on finite domains are inves-

tigated. Efficiency is studied in terms of network sparsity and its approximate measures. It is shown that when a dictionary

of computational units is not sufficiently large, computation of almost any uniformly randomly chosen function either

represents a well-conditioned task performed by a large network or an ill-conditioned task performed by a network of a

moderate size. The probabilistic results are complemented by a concrete example of a class of functions which cannot be

efficiently computed by shallow perceptron networks. The class is constructed using pseudo-noise sequences which have

many features of random sequences but can be generated using special polynomials. Connections to the No Free Lunch

Theorem and the central paradox of coding theory are discussed.

Keywords Shallow and deep networks � Sparsity � Variational norms � Functions on large finite domains �
Finite dictionaries of computational units � Pseudo-noise sequences � Perceptron networks

1 Introduction

To identify and explain efficient network designs, it is

necessary to develop a theoretical understanding to the

influence of a proper choice of network architecture and a

type of units on reducing network complexity. Bengio and

LeCun [6], who recently revived the interest in deep net-

works, conjectured that ‘‘most functions that can be rep-

resented compactly by deep architectures cannot be

represented by a compact shallow architecture’’. On the

other hand, a recent empirical study demonstrated that

shallow networks can learn some functions previously

learned by deep ones using the same numbers of parame-

ters as the original deep networks [1].

While experimental research of deep networks is rapidly

evolving, theoretical analysis complementing the experi-

mental evidence is still in its early stages. There are

fundamental wide open questions related to the role of

depth of network architectures asking: Why should deep

networks be better than shallow ones and under which

conditions?

Bianchini and Scarselli [8] proposed a promising

approach to investigation of complexity of shallow and

deep networks based on topological characteristics of

input–output functions using the concept of the Betti

Numbers from algebraic topology. Mhaskar et al. [34, 35]

suggested that due to their hierarchical structure, deep

networks could outperform shallow networks in visual

recognition of pictures with objects of different scales and

compared VC-dimensions of shallow and deep networks.

Generally, derivation of lower bounds on network

complexity is much more difficult than estimates of upper

ones. Poggio et al. [37] proposed as a potential tool for

comparison of deep and shallow networks an application of

the topological approach for obtaining lower bounds on

complexity of shallow networks exhibiting the ‘‘curse of

dimensionality’’ (i.e., an exponential dependence on the

number of parameters [5]) from [12]. However, its appli-

cability is limited to classes of networks where best or

near-best approximation of functions can be obtained by a

continuous selection of network parameters. We proved in

[19–21] that in many common classes of networks such

continuous selection is not possible due to their nonlinear

and non-convex nature.
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In [7], it was suggested that a cause of large model

complexities of shallow networks might be in the ‘‘amount

of variations’’ of functions to be computed. As an example

of a highly-varying function, the parity function on the

Boolean cube was presented and it was proven that clas-

sification of points from the d-dimensional Boolean cube

by Gaussian SVM requires at least 2d�1 support vectors. In

[29], we showed that the concept of a highly-varying

function has to be studied in dependence on a type of

computational units. We proposed to formalize using a

concept of variational norm tailored to a type of compu-

tational units, which has been used as tool for estimates of

rates of approximation by neural networks [3, 23, 24].

Using probabilistic arguments based on Chernoff–Hoeffd-

ing bound, we derived in [29] lower bounds on variational

norms and in [31] on errors of approximation of binary-

valued functions (representing binary classification tasks)

by shallow networks. In [26] we complemented proba-

bilistic results by constructing binary-valued functions with

large variational norms with respect to the dictionary of

perceptrons.

It has long been known that from the point of view of

expressibility one hidden layer is sufficient. Shallow net-

works with merely one hidden layer formed by computa-

tional units of many common types can approximate within

any accuracy any reasonable function on a compact domain

and can exactly compute any function on a finite domain

(see, e.g., [18, 36]). Theorems proving such universality

type results do not imply any estimates of network com-

plexity as they assume that numbers of network units are

potentially infinite or, in the case of finite domains, at least

as large as sizes of the domains. However, a proper choice

of a network architecture together with a type of compu-

tational units could considerably reduce network com-

plexity. Various measures of network simplicity have been

promoted by regularization techniques, such as the weight-

decay (see, e.g., [15]).

In this paper, we investigate efficiency of computation

of real-valued functions on finite domains by shallow

networks with units from finite dictionaries. In practical

applications, domains of functions to be computed are

finite (such as discretized cubes, pixels of images), but their

sizes and/or input dimensions d can be quite large. Also

dictionaries are formed by parameterized families of

functions with finite sets of parameters. As minimization of

the numbers of nonzero output weights representing the

basic measure of network sparsity is a difficult non-convex

task, we investigate minima of its convex approximation by

l1-norm. Large lower bounds on this minima imply a large

model complexity or non-stability of a computation caused

by ill-conditioning. Both are not desirable as networks with

large numbers of units might require too large resources for

an implementation, while large output weights might

amplify small changes of inputs and thus lead to non-sta-

bility of computation.

We derive lower bounds on l1-norms of output-weight

vectors of shallow networks in terms of variational norms

tailored to dictionaries of computational units. Combining

a geometrical characterization of variational norms with

the properties of high-dimensional Euclidean spaces, we

show that on large domains most functions have large

variations with respect to some common dictionaries (such

as signum perceptrons and kernel units used in SVM).

More generally, we prove that this holds for all dictionaries

of sizes bounded by epðlnmÞ, where p is a polynomial and

m is the size of the domain. Our results extend to real-

valued functions lower bounds which we derived in [29]

for binary classification using probabilistic arguments

based on the Chernoff Bound on sums of independent

random variables. We illustrate our probabilistic result by a

concrete class of functions constructed using circulant

matrices generated by pseudo-noise sequences. We discuss

the effect of pseudo-randomness on network complexity.

The paper is an extended version of a conference paper

[25].

The paper is organized as follows. Section 2 contains

basic concepts on shallow networks and dictionaries of

computational units. In Sect. 3, sparsity is investigated in

terms of l1-norm and norms tailored to computational units.

In Sect. 4, lower bounds on sparsity are derived in terms of

sizes of dictionaries and sizes of finite domains of functions

to be computed. In Sect. 5, probabilistic results are com-

plemented by constructive ones. Section 6 contains a

discussion.

2 Preliminaries

A one-hidden-layer (shallow) network with a single linear

output computes input–output functions belonging to the

set of the form

spann G :¼
Xn

i¼1

wigi jwi 2 R; gi 2 G

( )
;

where the coefficients wi are called output weights, n

denotes the number of network units, and G is a parame-

terized set of computational units called a dictionary.

Dictionaries are parameterized families of functions of the

form

G/ðX; YÞ :¼ /ð�; yÞ : X ! R j y 2 Yf g ;

where / : X � Y ! R is a function of two variables: an

input vector x 2 X � Rd and a parameter vector
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y 2 Y � Rs. When the set of parameters is the whole Rs,

we write shortly G/ðXÞ.
A common type of a computational unit is perceptron,

which computes functions of the form

rðv � :þ bÞ : X ! R, where r : R ! R is an activation

function. It is called sigmoid when it is monotonic

increasing and limt!�1 rðtÞ ¼ 0 and limt!1 rðtÞ ¼ 1.

Important types of activation functions are the Heaviside

function defined as

#ðtÞ :¼ 0 for t\0 and #ðtÞ :¼ 1 for t� 0

and the signum function sgn : R ! f�1; 1g, defined as

sgnðtÞ :¼ �1 for t\0 and sgnðtÞ :¼ 1 for t� 0:

We denote by GPðXÞ the dictionary of functions on X

computable by signum perceptrons, i.e.,

GPðXÞ :¼ fsgnðv � :þ bÞ : X ! f�1; 1g j v 2 Rd; b 2 Rg :
ð1Þ

Note that from the point of view of the number of network

units, there is only a minor difference between networks

with signum and Heaviside perceptrons as

sgnðtÞ ¼ 2#ðtÞ � 1 and #ðtÞ ¼ sgnðtÞ þ 1

2
: ð2Þ

It is more convenient to consider the dictionary of signum

perceptrons instead of Heaviside ones because all signum

perceptrons have the same norms equal to
ffiffiffiffi
m

p
, where m is

the size of the domain X.

Another important class of dictionaries is formed by sets

of kernel units. For X;U � Rd and a symmetric positive

semidefinite kernel K : Rd � Rd ! R, we denote by

GKðX;UÞ :¼ fKð:; uÞ : X ! R j u 2 Ug

the dictionary of kernel units on X with parameters (cen-

ters) in U. When X ¼ U, we write shortly GKðXÞ. In the

support vector machine (SVM) algorithm, the set U ¼
fui; j i ¼ 1; . . .; lg is the set of points to be classified,

among which some play the role of support vectors. The

number of units in the trained network is equal to the

number of support vectors.

For a domain X � Rd we denote by

FðXÞ :¼ ff j f : X ! Rg

the set of all real-valued functions on X.

It is easy to see that when X is finite with cardX ¼ m

and X ¼ fx1; . . .; xmg is a linear ordering of X, then the

mapping i : FðXÞ ! Rm defined as iðf Þ :¼
ðf ðx1Þ; . . .; f ðxmÞÞ is an isomorphism. So, on FðXÞ we have
the Euclidean inner product and the norm defined as

hf ; gi :¼
X

u2X
f ðuÞgðuÞ kfk :¼

ffiffiffiffiffiffiffiffiffiffi
hf ; f i

p
: ð3Þ

Table of symbols

Rd d-dimensional Euclidean space

X Finite subset of Rd

FðXÞ Set of real-valued functions on X

h:; :i Inner product on FðXÞ
S1ðXÞ Unit ball in FðXÞ
Cðg; gÞ Polar cap centered at g with angle arccos g
l Uniform probability measure on S1ðXÞ
l1 l1-norm

l0 l0-pseudo-norm

# Heaviside function

sgn Signum function

G Dictionary of computational units

spanG Linear span of G

convG Convex hull of G

G? Orthogonal complement of G

k:kG G-variation

G/ðX; YÞ Dictionary of computational units on X

computing / with parameters in Y

GPðXÞ Dictionary of signum perceptrons on X

GKðX;UÞ Dictionary of kernel units on X with

parameters in U

LkðaÞ Matrix induced by a kth-order pseudo-noise

sequence

3 Sparsity of shallow networks

It has long been known that shallow networks with many

types of computational units have the universal represen-

tation property, i.e., they can exactly compute any function

on a finite domain. Ito [18] proved a mild condition suffi-

cient for this property.

Theorem 1 Let X ¼ fx1; . . .; xmg � Rd and G/ðX; YÞ ¼
f/ð�; yÞ : X ! R j y 2 Yg be a dictionary such that there

exist y1; . . .; ym 2 Y for which the m� m matrix U defined

for every i; j ¼ 1; . . .;m as Ui;j :¼ /ðxi; yjÞ is non-singular.
Then, every f : X ! R can be expressed as

f ðxÞ ¼
Pm

j¼1 /ðx; yjÞ.

In [18], it was proven that dictionaries of perceptrons

with any sigmoidal activation function satisfy the

assumptions of Theorem 1. It is easy to verify that this

condition holds for all strictly positive-definite kernel net-

works and RBF networks of a variety of types. Argument

of Theorem 1 is based on a solution of a family of linear

equation, and thus it assumes that the number of network
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units is potentially as large as the size cardX ¼ m of the

domain.

However, a proper choice of network units can reduce

this number considerably. For example, computation of

parities on d-dimensional Boolean cubes f0; 1gd by

Gaussian SVM networks requires at least 2d�1 units (sup-

port vectors) [7], while parities (as well as generalized

parities and symmetric functions) can be expressed by

shallow networks with Heaviside or signum perceptrons

with merely d units [29].

If a dictionary G satisfies assumptions of Theorem 1,

then for any finite domain X � Rd with cardX ¼ m, any

function f : X ! R can be expressed as

f ¼
Xm

i¼1

wigi ð4Þ

where g1; . . .; gm 2 G and w1; . . .;wm 2 R. Typically, a

representation (4) of a function on a finite domain as an

element of spanmG is not unique, and there are several

functionally equivalent networks. In contrast, on infinite

domains often uniqueness (up to permutations of units or

sign flipping) holds, see, e.g., [28] and references therein.

Equality of two functions on a finite set is a much weaker

requirement than equality on Rd or on its infinite compact

subsets.

It is desirable that networks are chosen in such a way

that they can compute given tasks using reasonably small

numbers of units. In applied mathematics, the number of

nonzero entries of a vector w 2 Rm is called ‘‘l0-pseudo-

norm’’ and denoted kwk0. The quotation marks are used

because kwk0 is neither a norm nor a pseudo-norm. It lacks

the homogeneity property. The basic measure of sparsity of

a representation of a function f as an input–output function

of a shallow network with units from a dictionary G is the

minimum of the number of nonzero of output weights over

all representations of f in the form (4), i.e.,

min kwk0 j f ¼
Xm

i¼1

wigi;wi 2 R; gi 2 G

( )
: ð5Þ

On can easily check that for a finite dictionary, the infimum

of kwk0 is achieved and thus we write min instead of inf.

As the ‘‘unit ball’’ in ‘‘l0-pseudo-norm’’ is non-convex

and unbounded, minimization of ‘‘l0-pseudo-norms’’ of

output-weight vectors over all representations of a function

f in the form (4) is a difficult non-convex optimization

problem. In some cases studied in signal processing, it was

proven that minimization of l0 is NP-hard [41].

However, l0 can be approximated by lp-functionals.

Indeed,

lim
p!0

kwkp ¼ kwk0 ;

where

kwkp
p ¼

Xm

i¼1

jwijp:

For p\1, unit balls of lp-functionals are concave, and thus

the smallest p for which the unit ball is convex is p ¼ 1

(see Fig. 1). Optimization problems based on representa-

tion with minimal l1-norms are much easier to handle than

the one related to ‘‘l0-pseudo-norm’’ [14, 17]. In some

cases, even a solution with the minimal l1-norm is the

sparsest solution [13].

In neurocomputing, l1-norm has been used as a stabilizer

in weight-decay regularization techniques [15, 16, 27, 42].

A network with a large l1-norm of its output-weight vector

must have either a large number of units or some output

weights must be large. Both of these properties are not

desirable as they imply either a large model complexity or

non-stability of the computation caused by ill-conditioning.

When some of the output weights of a network are large,

small errors in input data or small change of parameters of

hidden units can lead to large differences in the network

output.

Thus instead of minimization of the form (5), we focus

on the minimization

min kwk1 j f ¼
Xm

i¼1

wigi;wi 2 R; gi 2 G

( )
: ð6Þ

An advantage of this minimum is that it can be studied in

terms of the Minkowski functional of the convex body

convðG [ �GÞ (where conv denotes the convex hull). It is

easy to verify the following proposition.

Proposition 1 Let G be a finite subset of FðXÞ with

cardG ¼ k. Then for every f 2 FðXÞ

min kwk1 j f ¼
Xm

i¼1

wigi;wi 2 R; gi 2 G

( )

¼ minfc[ 0 jf=c 2 conv ðG [ �GÞg:

The Minkowski functional of a symmetric convex set

generates a norm. For a general normed linear space

ðX ; k:kÞ and its bounded subset G, the norm generated by

cl convðG [ �GÞ is called G-variation and denoted k:kG.
So

kfkG :¼ inf c 2 Rþ

��� f=c 2 clX conv ðG [ �GÞ
n o

;
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where �G :¼ f� g j g 2 Gg, clX denotes the closure with

respect to the topology induced by the norm k � kX (see

Fig. 2).

Variation with respect to the dictionary of Heaviside

perceptrons (called variation with respect to half-spaces)

was introduced by Barron [3], and we extended it to gen-

eral sets in [23]. It plays an important role in nonlinear

approximation theory (see, e.g., [22]).

As G-variation is a norm, it can be made arbitrarily large

by multiplying a function by a scalar. Also in theoretical

analysis of approximation capabilities of shallow networks,

it has to be taken into account that the approximation error

kf � spann Gk in any norm k:k can be made arbitrarily

large by multiplying f by a scalar. Indeed, for every c[ 0,

kcf � spann Gk ¼ ckf � spannGk. Thus, both G-variation

and errors in approximation by spann G have to be studied

either for sets of normalized functions or for sets of func-

tions of a given fixed norm.

A small l1-norm of an output-weight vector guarantees

that an input–output function of a network can be well

approximated by input–output functions computable by

networks with small ‘‘l0-pseudo-norms’’. This follows from

the Maurey–Jones–Barron Theorem [4]. Here, we state a

version of its reformulation from [23, 24] in terms of G-

variation for the special case of the finite-dimensional

Hilbert space FðXÞ with the Euclidean norm. By Go is

denoted the set of normalized elements of G, i.e.,

Go ¼ g
kgk j g 2 G

n o
.

Theorem 2 Let X � Rd be finite, G be a finite subset of

FðXÞ, sG ¼ maxg2G kgk, and f 2 FðXÞ. Then for every n,

kf � spann Gk�
kfkGoffiffiffi

n
p � sG kf kGffiffiffi

n
p :

Theorem 2 implies that there exists an input–output

function fn ¼
Pn

i¼1 wigi, i.e., kwk0 � n, such that

kf � fnk� sG kfkGffiffi
n

p .

4 Probabilistic lower bounds on variation

In this section, we derive lower bounds on variational

norms of functions on finite domains in terms of sizes of

the domains and sizes of dictionaries. The main theorem of

this section is obtained by combining a geometric charac-

terization of the variational norm with rather counter-in-

tuitive geometrical properties of high-dimensional

Euclidean spaces.

The following theorem based on a separation of a

function from a convex set by a linear functional (the

Hahn–Banach Theorem) shows that functions which are

‘‘nearly orthogonal’’ to all elements of a dictionary G have

large G-variations (see Fig. 3). Here, we state a special

case following from general versions proven in [24, 30] for

the finite-dimensional space FðXÞ. By G? is denoted the

orthogonal complement of G, i.e.,

G? ¼ ff 2 FðXÞ j8g 2 G hf ; gi ¼ 0g.

Theorem 3 Let G � FðXÞ be bounded. Then for every

f 2 X n G?,

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1Fig. 1 Balls in lp

Fig. 2 Unit ball in G-variation

Fig. 3 A function nearly orthogonal to elements of G
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kfkG � kfk2

supg2G jg � f j :

Assume that both G and functions to be investigated

have Euclidean norms equal to 1 (they can be normalized).

Then, Theorem 3 implies that functions not contained in

any of the ‘‘polar caps’’ (see Fig. 4) of an angle a with

centers in elements of G have G-variation at least 1
arccos a.

For large dimensions, such ‘‘polar caps’’ are small, and

their relative measures with respect to the whole area of the

sphere Sm�1 decrease exponentially fast with increasing

dimension m. Most of areas of high-dimensional spheres lie

very close to their ‘‘equators’’. More precisely, let l be a

uniform probabilistic measure on the unit sphere

Sm�1 :¼ fh 2 Rd j khk ¼ 1g, and for g 2 Sm�1 and g[ 0

let

Cðg; gÞ :¼ h 2 Sm�1 j jhh; gij� g
� �

denote the spherical cap formed by all vectors within the

angular distance a ¼ arccos g from g (see Fig. 4). Then

lðCðg; gÞÞ� e�
mg2

2 ¼ e�
mðcos aÞ2

2 ð7Þ

(see, e.g., [2, p. 11]).

The following theorem estimates uniform probability

measures of sets of functions with large variations with

respect to finite dictionaries.

Theorem 4 Let d be a positive integer, X � Rd with

cardX ¼ m, r[ 0, l be a uniform probabilistic measure

on SrðXÞ, b[ 0, and G(X) a finite subset of FðXÞ with card
GðXÞ ¼ k such that for all g 2 GðXÞ, kgk� r. Then

lðff 2 SrðXÞ j kfkGðXÞ � bgÞ� 1� 2k e
� m

2b2 :

Proof As f 2 SrðXÞ and for all g 2 G, kgk� r, we have

by Theorem 3,

kfkGðXÞ �
kfk2

maxg2G jhf ; gij �
1

maxg2G jh f o; goij :

Hence

ff 2 SrðXÞ j kfkGðXÞ � bg 	 SrðXÞ n
[

g2G[�G

�Cðg; 1=bÞ;

where �Cðg; 1=bÞ ¼ ff 2 SrðXÞ j jhf o; goi� 1
b
g. Setting

X ¼ fx1; . . .; xmg, let i : FðXÞ ! Rm be defined as

iðf Þ :¼ ðf ðx1Þ; . . .; f ðxmÞÞ. As i is an isometry between

FðXÞ and Rm, by the inequality (7)

lo h 2 S1ðXÞ j jh h; goij �
1

b

� �� 	
� e

� m

2b2 ;

where lo is the uniform probability measure on S1ðXÞ
defined as loðAoÞ ¼ lðAÞ for all A � SrðXÞ. So the state-

ment follows. h

The proof of Theorem 4 is based on a comparison of the

measure of the whole sphere with its part formed by the

union of ‘‘polar caps’’ centered at elements of a dictionary.

When the dictionary is not sufficiently large, this union

covers only a small fraction of the sphere (see Fig. 5).

With a proper choice of b, for example b such that

b4 ¼ m ¼ cardX, we obtain from Theorem 4 large lower

bounds on variational norms for functions on large

domains. Theorem 4 implies existence of a function with

G-variation at least m1=4 for a dictionary of size smaller

than 1
2
e
ffiffi
m

p

2 . When the size of a dictionary is bounded by

epðlnmÞ, this lower bound even holds for most functions on

X with the fixed norm r.

Corollary 1 Let d be a positive integer, X � Rd with

cardX ¼ m, r[ 0, p be a polynomial, GðXÞ � FðXÞ with
kgk� r for all g 2 G and cardGðXÞ� epðlnmÞ, l be a uni-

form probabilistic measure on SrðXÞ, and b[ 0. Then

lðff 2 SrðXÞ j kfkGðXÞ � bÞ� 1� 2e
�ð m

2b2
�pðlnmÞÞ:

Fig. 4 Spherical cap Fig. 5 Complement of polar caps around elements of a dictionary
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Combining Corollary 1 with Proposition 1, we obtain a

lower bound on l1-norm of output-weight vectors of shal-

low networks with units from dictionaries of sizes which

do not outweight the factor e
�cardX

2b2 .

Corollary 2 Let d be a positive integer, X � Rd with

cardX ¼ m, r[ 0, p be a polynomial, GðXÞ � FðXÞ with
kgk� r for all g 2 G and cardGðXÞ� epðlnmÞ, l be a uni-

form probabilistic measure on SrðXÞ, and b[ 0. Then, the

output-weight vector w of any shallow network with units

from G(X) computing a uniformly randomly chosen func-

tion f 2 SrðXÞ satisfies kwk1 � b with probability at least

1� 2e
�ð m

2b2
�pðlnmÞÞ

.

For example, when the domain X is the d-dimensional

cube, then Corollary 2 implies for almost all functions in

SrðXÞ a lower bound 2d=4 on l1-sparsity of all shallow

networks with units from dictionaries of sizes bounded by

e
1
2
2d=2 computing these functions. Such networks must have

either at least 2d=4 hidden units or absolute values of some

output weights have to be greater or equal to 2d=4, which

might lead to non-stability of computation.

Examples of rather small dictionaries are dictionaries of

kernel units used in SVM. They contain kernel units

parameterized by vectors which belong to the set of data to

be classified or to data used for learning with generaliza-

tion. Thus cardX ¼ cardG. SVM algorithm assigns non-

zero output weights merely to those units which correspond

to support vectors. A solution with a large ‘‘l0-pseudo-

norm’’ corresponds to a large number of support vectors. A

solution with a large l1-norm has a large number of support

vectors or it is unstable because some output weights are

large.

Theorem 4 implies that for a dictionary GK of kernel

units with centers in the domain X,

lðff 2 SrðXÞ j kfkGKðXÞ � bgÞ� 1� 2me�
m

2b2 :

Also the dictionary of signum perceptrons GPðXÞ on a

finite domain X in Rd is small enough to satisfy assump-

tions of Corollary 2. An upper bound on its size follows

from estimates of numbers of linearly separable dichoto-

mies on sets of m points in Rd. Such dichotomies were

already studied in the nineteenth century by Schläfli [39].

Their sizes grow only polynomially with m [11]. The

degree of the polynomial is equal to the dimension d. The

next theorem estimates probability distributions of func-

tions with large variations with respect to signum percep-

trons on finite domains.

Theorem 5 Let d be a positive integer, X � Rd with

cardX ¼ m, l a uniform probability measure on S ffiffiffi
m

p ðXÞ,
and b[ 0. Then

l f 2 S ffiffiffi
m

p ðXÞ j kfkPdðXÞ � b
n o
 �

� 1� 4
md

d!
e
� m

2b2 :

Proof By [11, p. 330], for every d and every X � Rd such

that cardX ¼ m, cardGPðXÞ� 2
Pd

i¼0
m�1
i

� 
� 2 md

d! : Com-

bining this bound with an upper bound on partial sum of

binomials, we obtain an upper bound on cardGPðXÞ. The
statement then follows from Theorem 4. h

Applying Theorem 5 to functions on the Boolean cube

f0; 1gd, we obtain a lower bound on measures of sets of

functions having variations with respect to signum per-

ceptrons bounded from below by a given bound b. For

example, for b ¼ 2d=4, we get a lower bound

1� 4
2d

2

d!
e�ð2d=2�1Þ

on the probability that a uniformly randomly chosen

function from Fðf0; 1gdÞ with the norm 2d=2 has variation

with respect to signum perceptrons greater or equal to 2d=4.

Thus, a computation of almost any uniformly randomly

chosen function from the set of functions with norms equal

to 2d=2 on the d-dimensional Boolean cube f0; 1gd by a

shallow signum perceptron network would need either 2d=4

units or computation would be unstable as absolute values

of some output weights would be at least 2d=4.

5 Construction of functions with large
variations

In this section, we complement probabilistic estimates of

variational norm by concrete examples of functions with

large variations built using pseudo-noise sequences, which

play an important role in coding [33] and acoustics [40].

It is not difficult to construct an example of a class of

functions with large variations with respect to the dic-

tionary of Gaussian kernel units GKðx; yÞ ¼ e�akx�yk2 with

centers in f0; 1gd. Let pd : f0; 1gd ! f�1; 1g denote the

parity function defined as

pdðvÞ ¼ �1v�u;

where u ¼ ð1; . . .; 1Þ. In [29], we proved a lower bound

2d=2 on variation of parities on f0; 1gd with respect to the

dictionary of Gaussian kernel units of any fixed width

a[ 0.

In [26], we derived a lower bound on variation with

respect to the dictionary of signum perceptrons GPðXÞ
holding for functions on square domains. Any function f on

a square domain X ¼ fx1; . . .; xng � fy1; . . .; yng can be

represented by an n� n matrix M(f) defined as
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Mðf Þi;j ¼ f ðxi; yjÞ:

On the other hand, an n� n matrix M induces a function fM
on X such that

fMðxi; yjÞ ¼ Mi;j:

Recall that an n� n matrix is called Hadamard when its

entries are in f�1; 1g and all pairs of its distinct rows (or

equivalently columns) are orthogonal. The following the-

orem from [26] gives a lower bound on variation with

respect to signum perceptrons for functions induced by

Hadamard matrices.

Theorem 6 Let M be an n� n Hadamard, d ¼ d1 þ d2,

fxi j i ¼ 1; . . .; ng � Rd1 , fyj j j ¼ 1; . . .;mg � Rd2 ,

X ¼ fxi j i ¼ 1; . . .; ng � fyj j j ¼ 1; . . .; ng � Rd, and

fM : X ! R be defined as fMðxi; yjÞ ¼ Mi;j. Then

kfMkGPðXÞ �
ffiffiffi
n

p

dlog2 ne
:

Theorem 6 shows that shallow perceptron networks

computing functions generated by n� n Hadamard matri-

ces must have l1-norms bounded from below by
ffiffi
n

p

dlog2 ne
. In

particular, when the domain is the 2d-dimensional Boolean

cube f0; 1g2d ¼ f0; 1gd � f0; 1gd, then the lower bound is
2d=2

d
: So the lower bounds grow with d exponentially.

An interesting class of functions with large variations

with respect to perceptrons can be obtained by applying

Theorem 6 to a class of circulant matrices with rows

formed by shifted segments of pseudo-noise sequences.

These sequences are deterministic but exhibit some prop-

erties of random sequences.

An infinite sequence a0; a1; . . .; ai; . . . of elements of

f0; 1g is called kth-order linear recurring sequence if for

some h0; . . .; hk 2 f0; 1g

ai ¼
Xk

j¼1

ai�jhk�j mod 2

for all i� k. It is called kth-order pseudo-noise (PN)

sequence (or pseudo-random sequence) if it is kth-order

linear recurring sequence with minimal period 2k � 1. PN-

sequences are generated by primitive polynomials. A

polynomial

hðxÞ ¼
Xm

j¼0

hjx
j

is called primitive polynomial of degree m when the

smallest integer n for which h(x) divides xn þ 1 is

n ¼ 2m � 1.

PN-sequences have many useful applications because

some of their properties mimic those of random sequences.

A run is a string of consecutive 1’s or a string of consec-

utive 0’s. In any segment of length 2k � 1 of a kth-order

PN-sequence, one-half of the runs have length 1, one

quarter have length 2, one-eighth have length 3, and so on.

In particular, there is one run of length k of 1’s, one run of

length k � 1 of 0’s. Thus every segment of length 2k � 1

contains 2k=2 ones and 2k=2 � 1 zeros [33, p. 410].

An important property of PN-sequences is their low

autocorrelation. The autocorrelation of a sequence

a0; a1; . . .; ai; . . . of elements of f0; 1g with period 2k � 1 is

defined as

qðtÞ ¼ 1

2k � 1

X2k�1

j¼0

�1ajþajþt : ð8Þ

For every PN-sequence and for every t ¼ 1; . . .; 2k � 2,

qðtÞ ¼ � 1

2k � 1
ð9Þ

[33, p. 411].

Let s : f0; 1g ! f�1; 1g be defined as

sðxÞ ¼ �1x

(i.e., sð0Þ ¼ 1 and sð1Þ ¼ �1). We say that a 2k � 2k

matrix LðaÞ is induced by a kth-order PN-sequence a ¼
ða0; a1; . . .; ai; . . .Þ when for all i ¼ 1; . . .; 2k, Li;1 ¼ 1, for

all j ¼ 1; . . .; 2k, L1;j ¼ 1, and for all i ¼ 2; . . .; 2k and

j ¼ 2; . . .; 2k

LðaÞi;j ¼ sðAi�1;j�1Þ

where A is the ð2k � 1Þ � ð2k � 1Þ circulant matrix with

rows formed by shifted segments of length 2k � 1 of the

sequence a. The next proposition following from Eqs. (8)

and (9) shows that for any PN-sequence a the matrix LkðaÞ
has orthogonal rows.

Proposition 2 Let k be a positive integer, a ¼
ða0; a1; . . .; ai; . . .Þ be a kth-order PN-sequence, and LkðaÞ
be the 2k � 2k matrix induced by a. Then, all pairs of rows
of LkðaÞ are orthogonal.

Applying Theorem 6 to the 2k � 2k matrices LkðaÞ
induced by a kth-order PN-sequence a we obtain a lower

bound of the form 2k=2

k
on variation with respect to signum

perceptrons of the function induced by the matrix LkðaÞ. So
in any shallow perceptron network computing this func-

tion, the number of units or sizes of some output weights

depends on k exponentially.
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6 Discussion

We investigated limitations of efficiency of shallow net-

works to represent real-valued functions on finite domains.

As minimization of the number of network units computing

a given input–output function is a difficult non-convex

optimization problem, we focused on approximate measure

of sparsity expressed in terms of the l1-norm of output-

weight vectors. The concept of l1-norm plays an important

role in several fields. It has been used as a stabilizer in

weight-decay regularization techniques to improve stability

of solutions which leads to better generalization. Also, it

was used in compressed sensing [9]. Classes of functions

defined by bounds on their l1-norms represent a similar

type of a concept as classes of functions defined by bounds

on both numbers of gates and sizes of output weights

studied in theory of circuit complexity [38].

We derived lower bounds on l1-norms of output-weight

vectors from lower bounds on variational norms tailored to

dictionaries of computational units. Using geometric

properties of variational norms and of high-dimensional

spheres, we proved probabilistic lower bounds on varia-

tional and l1-norms. We showed that almost any uniformly

randomly chosen function on a domain of a large size m

has variation at least m1=4 with respect to any dictionary of

size bounded by epðlnmÞ, where p is a polynomial.

Our results hold for almost any uniformly randomly

chosen function on a large finite domain and can be applied

to finite dictionaries (such as signum and Heaviside per-

ceptrons and dictionaries of kernel units used in SVM).

Character of our results resembles the No Free Lunch

Theorem which also assumes the uniform distribution.

However, in real applications, classes of functions of

interest are likely non-uniformly distributed. Some of them

might belong to those small fractions of sets of all func-

tions on given finite domains which can be computed by

reasonably sparse shallow networks. This can explain

capabilities of shallow networks to perform efficiently in

many practical applications. Investigation of variational

norms and l1-sparsity of functions selected from non-uni-

form distributions is subject of our future research.

We illustrated our general results by an example of a

class of functions generated by matrices constructed using

pseudo-noise sequences. These deterministic sequences

mimic some properties of random sequences. We showed

that shallow perceptron networks, which compute func-

tions constructed using these sequences, must have either

large numbers of hidden units or some of their output

weights must be large.

There is an interesting analogy with the central paradox

of coding theory. This paradox is expressed in the title of

the article ‘‘Any code of which we cannot think is good’’

[10]. It was proven there that any code which is truly

random (in the sense that there is no concise way to gen-

erate the code) is good (it meets the Gilbert–Varshamov

bound on distance versus redundancy). However, despite

sophisticated constructions for codes derived over the

years, no one has succeeded in finding a constructive

procedure that yields such good codes. Similarly, compu-

tation of ‘‘any function of which we cannot think’’ (truly

random) by shallow perceptron networks might be

untractable. Our results show that computation of functions

exhibiting some randomness properties by shallow per-

ceptron networks is difficult in the sense that it requires

networks of large complexities. Such functions can be

constructed using deterministic algorithms and have many

applications. Properties of pseudo-noise sequences were

exploited for constructions of codes, interplanetary satellite

picture transmission, precision measurements, acoustics,

radar camouflage, and light diffusers. These sequences

permit designs of surfaces that scatter incoming signals

very broadly making reflected energy ‘‘invisible’’ or ‘‘in-

audible’’ [40].

Investigation of sparsity of artificial neural networks has

also a biological motivation. Laughlin and Sejnowski [32]

concluded from a number of studies that ‘‘the brain is

organized to reduce wiring costs’’. They described both

sparse activity (only a small fraction of neurons have a high

rate of firing at any time) and sparse connectivity (each

neuron is connected to only a limited number of other

neurons). Our research was focused on investigation of

sparse connectivity between hidden units and network

outputs.
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Furrer, Zürich
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