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Geometric Upper Bounds on Rates of
Variable-Basis Approximation

Věra Kůrková and Marcello Sanguineti

Abstract—In this paper, approximation by linear combinations
of an increasing number � of computational units with adjustable
parameters (such as perceptrons and radial basis functions) is in-
vestigated. Geometric upper bounds on rates of convergence of ap-
proximation errors are derived. The bounds depend on certain pa-
rameters specific for each function to be approximated. The re-
sults are illustrated by examples of values of such parameters in
the case of approximation by linear combinations of orthonormal
functions.

Index Terms—Approximation from a dictionary, model com-
plexity, neural networks, rates of approximation, variable-basis
approximation.

I. INTRODUCTION

M ANY computational models currently used in soft com-
puting can be formally described as devices producing

input–output functions in the form of linear combinations
of simple computational units corresponding to the model
(e.g., free-node splines, wavelets, trigonometric polynomials
with free frequencies, sigmoidal perceptrons, and radial basis
functions). Coefficients of linear combinations as well as inner
parameters of computational units are adjustable by various
learning algorithms (see, e.g., [1]).

Such models have been successfully used in many pattern
recognition, optimization, and classification applications, some
of them high-dimensional (see, e.g., [2]–[8] and the references
therein). It seems that these computational models are more
suitable for high-dimensional tasks than traditional linear ones
(such as algebraic and trigonometric polynomials). It is known
that complexity (measured by the number of computational
units) of linear models needed to guarantee accuracy in
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approximation of multivariable functions defined by classical
smoothness conditions may grow with the number of variables

as [9, pp. 232–233].
Linear models can be called fixed-basis models as merely co-

efficients of linear combinations of the first elements chosen
from an ordered basis (or a set of functions called “dictionary”
[10]) are adjustable. In contrast, the computational models men-
tioned above are sometimes called variable-basis models [11]
because in addition to coefficients of linear combinations, one
can also choose a suitable -tuple of elements from the dic-
tionary. Often such dictionaries are formed by parameterized
families of functions computable by computational units of var-
ious types. In such cases, the choice of an -tuple of suitable
functions corresponds to finding the optimal parameters of such
units.

Some insights into why, in solving high-dimensional tasks,
model complexity requirements of variable-basis models may
be considerably smaller than the ones of linear models, can be
obtained from an estimate of rates of variable-basis approxima-
tion by Maurey [12], Jones [13], and Barron [14]. They derived
an upper bound on the square of the error in approximation of a
function from the closure of the convex hull of a set (dictio-
nary) by a convex combination of elements of . The bound
has the form , where is the supremum of the
norms of elements of and is the norm in the ambient
Hilbert space of the function to be approximated. This bound
can be extended to all functions in the Hilbert space, using the
concept of a norm tailored to the set [15]–[17].

Maurey–Jones–Barron’s theorem received a lot of attention
because it implies an estimate of model complexity of the
order . Several authors derived tight improvements of
this bound for various sets (e.g., orthogonal [18], [19],

formed by functions computable by sigmoidal perceptrons,
and with certain properties of covering numbers [20], [21]).
However, all these tightness results are worst-case estimates
(i.e., they give upper bounds holding for all functions from
the closure of the symmetric convex hull of ). Thus, one can
expect that for suitable subsets of such hull better rates may
hold.

A step towards a description of subsets with better rates was
made by Lavretsky [22]. He noticed that when in the iterative
construction derived by Jones [13] and improved by Barron
[14], in each step, only functions satisfying a certain angular
condition are chosen, then the term can be replaced with

, where is the cosine corresponding to the
angular constraint. However, Lavretsky left open the problem of
characterization of functions satisfying such an angular condi-
tion. He illustrated his result by one example, in which, as he

0018-9448/$25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 25, 2008 at 20:36 from IEEE Xplore.  Restrictions apply.



5682 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 12, DECEMBER 2008

himself remarked [22, p. 280], “the geometric convergence
is evident and easy to establish without the use of” his result.

In this paper, we show that for every function in the convex
hull of a bounded subset of a Hilbert space there exists

such that the rate of approximation of by convex com-
binations of functions from is bounded from above by

. However, we do not claim that
every function in the convex hull satisfies the angular condition
implying Lavretsky’s estimate. Instead, we derive the geometric
rate by modifying the incremental construction originally used
by Jones [13], later improved by Barron [14], and refined by
Lavretsky [22]. We also show that a similar estimate holds for all
functions from the linear span of in approximation by linear
combinations of elements of . We illustrate our results by es-
timating values of parameters of geometric rates when is an
orthonormal basis. We exploit these estimates to derive some in-
sights into the structure of sets of functions with fixed values of
parameters of such rates. A preliminary version of some results
appeared in the conference proceedings [23].

This paper is organized as follows. In Section II,
Maurey–Jones–Barron’s theorem and its improvements are
stated, together with definitions of concepts used in the paper.
In Section III, our main theorem on geometric rates of ap-
proximation for functions in convex hulls and its corollary for
linear spans are proven. In Section IV, examples of functions in
convex hulls of orthonormal sets with estimates of the values of
parameters determining geometric rates are given. In Section V,
properties of sets with fixed values of such parameters are in-
vestigated. Section VI is a brief discussion.

II. MAUREY–JONES–BARRON’S THEOREM

AND ITS IMPROVEMENT

Many computational models used in soft computing can
be mathematically described as variable-basis schemes. Such
models compute functions from sets of the form

where is a set of functions, which is sometimes called a dictio-
nary, and is the set of real numbers. Typically, is a parame-
terized set of functions that can be computed by computational
units of a given type, such as perceptrons and radial basis func-
tions units. Note that for linearly independent and such that

is not convex.
A useful tool for investigation of rates of decrease of

errors in approximation by with increasing is
Maurey–Jones–Barron’s theorem [12]–[14]. This theorem is
formulated for approximation of functions from the closure of

where is a given bounded subset of a Hilbert space, by ele-
ments of

The following upper bound is a version of Jones’ result [13] as
improved by Barron [14] (see also an earlier estimate by Maurey
in [12]). For a subset of a normed linear space and

, we denote by

the distance of from and by the closure with respect to
the topology induced by .

Theorem 1 (Maurey–Jones–Barron): Let
be a Hilbert space, its bounded nonempty subset,

, and . For every positive
integer

In [16] (see also [17]), Theorem 1 was extended using the
concept of G-variation, defined for all functions as

where

Note that is the Minkowski functional1 of the set
and so it is a norm on the subspace of

containing those for which . It is easy to
check that Theorem 1 implies that for a Hilbert space ,
its bounded subset with , and

(1)

Lavretsky [22] noticed that the argument used by Jones [13]
and Barron [14] can yield better rates when applied to functions
satisfying a certain angular relationship with respect to . For

, he defined the set

(2)

Note that for all . Indeed for every , setting
, we get

Lavretsky [22] realized that the incremental construction
developed by Jones and Barron uses in each step a certain
property of functions from the convex hulls, which restated
in Lavretsky’s terminology says that .
Strengthening the condition on the function to be approxi-
mated by assuming that for some , he derived
the following geometric upper bound on rates of approximation
by sets [22, Th. 1].

1The Minkowski functional of a set � � � is the functional � � � �
������ defined for every � � � as � ��� � 	
��� � ����� � ��[24, p.
131]
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Theorem 2 (Lavretsky): Let be a Hilbert space, its
bounded symmetric subset containing , and

. Then, for every and every positive integer

Unfortunately, the definition (2) does not enable an easy ver-
ification whether a function is in . Also, it is not clear
which functions are contained in sets . Only for finite-di-
mensional Hilbert spaces and satisfying certain conditions,
Lavretsky [22] described subsets of with the prop-
erty that for each element , there exists such that

. He defined the affine interior of a convex subset
of a normed linear space with as

and proved the following theorem about the relationships be-
tween and .

Theorem 3 (Lavretsky): Let be a finite-dimen-
sional Hilbert space, its bounded symmetric subset such that

and , and . Then,
and for every , there

exists such that and

However, in [22], no examples illustrating possible values of
parameters were given.

III. GEOMETRIC RATES OF VARIABLE-BASIS APPROXIMATION

In this section, we show that the estimate from Theorem 3
holds for all functions in the convex hull of any bounded subset
of any Hilbert space.

Theorem 4: Let be a Hilbert space, its
bounded nonempty subset, and . For
every , there exists such that for every
positive integer

Proof: Let be a representation of as a
convex combination of elements of with all and let

We will construct a sequence of functions
and a sequence of positive real numbers
such that for each and

We start with choosing some satisfying

and we set . As

we get and so the statement holds for
with any .

Assuming that we have , we define . When ,
we set and the estimate holds trivially.

When , we define as the convex combination

(3)

with and chosen in such a way that for
some

First, we choose a suitable and then we find depending
on our choice of . Denoting , by (3) we get

(4)

For all , set

(both terms in the denominator are nonzero: the first one be-
cause we consider the case when and the second one
because we assume that for all , and thus ). Note
that for all as it is the cosine of the angle between
the vectors and .

As , we have

Thus
i) either there exists , for which

;
ii) or for all .
We show that the case ii) implies that . Indeed,

, thus it can be expressed as

with all and . If for all
, then
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So in the case now considered, i.e., , i) holds and
thus the subset

is nonempty. Let be chosen so that

and set . As , we have .
Set . By (4), we get

(5)

To define as a convex combination of and , it
remains to find for which is minimal as a function
of . By (5), we have

(6)

Thus

and

As now we are considering the case when , we have
and hence . So the minimum is achieved at

(7)

Plugging (7) into (6), we get

Let

Setting

by induction, we get the upper bound

holding for all (for , it holds trivially with ).

Note that Theorem 4 guarantees the upper bound
for all functions ,

including those that are not elements of . We achieve
this result using a proof technique that needs a suitable angular

property of only one element of (the one constructed as
the approximant in the previous step). This is a much weaker
angular condition than the one required in the definition (2)
of and it is weak enough to hold for all functions
of .

The proof of Theorem 4 is constructive. Schematically, it can
be described as an incremental procedure, which constructs, for
a function , a sequence of approxi-
mants . The next table describes this procedure.

CHOOSE

SUCH THAT ;

;

FOR :

BEGIN

FOR ,

COMPUTE

IF FOR ONE HAS , THEN

BEGIN

;

;

END

ELSE

BEGIN

;

CHOOSE SUCH THAT ;

COMPUTE ;

COMPUTE ;

COMPUTE ;

;

.

END

END

In the next section, we will prove that Theorem 4 cannot be
extended to all functions in the closure of the convex hull of .
However, the geometric bound can be extended to all functions
from , as the next corollary shows.

Corollary 1: Let be a Hilbert space, its bounded
nonempty subset, , and . Then,
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there exists and such that for every positive
integer

Proof: For every , there exists such
that , where . By
Theorem 4, there exists such that for every positive
integer

As

the statement follows.

Note that Corollary 1 cannot be extended to

as

might be equal to zero.

IV. PARAMETERS OF GEOMETRIC RATES

Theorem 4 implies that for all functions in , the
upper bound from Maurey–Jones–Barron’s the-
orem can be replaced with . The speed
of decrease of this geometric estimate depends on , which has
some value in corresponding to the smallest cosine of the
angles between functions used in the construction of approxi-
mants. In this section, we illustrate this result with some esti-
mates of values of the parameters .

Inspection of the proof of Theorem 4 shows that the param-
eter is not defined uniquely. It depends on the choice of a
representation of as a convex combination of
elements of and on the choice of for those positive inte-
gers , for which there exist more than one with the same
cosine . However, the maximal parameter, for which the geo-
metric upper bound from Theorem 4 holds, is unique. Define

(8)

By Theorem 4, for each , the set on the right-hand
side of (8) is nonempty and bounded. It follows from the def-
inition of this set that its supremum is achieved, i.e., it is its
maximum. So

For each , define

It follows from the definition of that
and if , then . Theorem 4 implies
that . Some insight into properties of
the sets can be obtained from the following estimate of
maximal parameters for the case when is orthonormal.

Proposition 1: Let be an infinite-dimensional sepa-
rable Hilbert space and its orthornormal basis. Then, for every
positive integer , there exists such that

and

Proof: Let . For each positive integer , define
. Then, and .

It is easy to see that

Thus, by Theorem 4

So for all

Proposition 1 shows that for the sequence of barycen-
ters of an increasing number of elements of an orthonormal
basis, the sequence of corresponding parameters con-
verges to zero exponentially fast. Thus, for large enough, the
upper bound

from Theorem 4 guarantees sufficiently small errors of approx-
imation by .

The sequence of the barycenters from the proof of
Proposition 1 can also be used as follows to show that for an
orthonormal basis of an infinite-dimensional separable Hilbert
space, Theorem 4 cannot be extended to all functions from the
closure of the convex hull of . Let be the element with all
coefficients equal to zero. Then

and so . It is easy to see that for all
. If Theorem 4 held for all func-

tions from , then there would exist such
that for all

This would imply that for all

However, the right-hand side of this inequality converges to zero
faster than the left-hand side, so such cannot exist.

Proposition 1 implies that for orthonormal, the sets
are neither convex nor open in the topology induced on by the

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 25, 2008 at 20:36 from IEEE Xplore.  Restrictions apply.



5686 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 12, DECEMBER 2008

norm , as stated in the next corollary. For , we denote
by the ball of radius centered at 0, i.e.,

Corollary 2: Let be an infinite-dimensional sepa-
rable Hilbert space, its orthornormal basis, and a bounded
subset of containing . Then, for every is
not convex and for every .

Proof: If were convex, then we would get
, because . However, this would contradict

Proposition 1. Inspection of its proof shows that for each
and , there exists with

and , so .

The next proposition shows that for orthonormal,
cannot contain even a sphere of a radius .

Proposition 2: Let be an infinite-dimensional sep-
arable Hilbert space and its orthornormal basis. For
every and every odd positive integer , there ex-
ists such that

, and

Proof: Set and define

As , we have and thus . It is
easy to check that and . Let

. It was shown in [18, p. 2664] that

On the other hand, by Theorem 4

Thus, and so

Hence

Proposition 2 shows that the limit of a sequence of parameters
needs not to be equal to the parameter of the limit.

Indeed, let . Then, ,
so , but the sequence converges to zero
(the convergence is even exponentially fast). Thus, the mapping

is not continuous.

V. PROPERTIES OF SETS OF FUNCTIONS

WITH GEOMETRIC RATES

In Section IV, we proved that when is an orthonormal
basis of a separable Hilbert space, the sets are neither
convex, nor open, and they do not contain any sphere of any ra-
dius and , as a mapping from to , is not
continuous. In this section, we describe some properties of the
sets of functions with the maximal parameter .
To derive such properties, we extend Lavretsky’s result [22, Th.
2] (here stated as Theorem 3) on a relationship between affine
interiors of certain subsets of finite-dimensional Hilbert spaces
and sets .

For a subset of a normed linear space such that
and , we define the -interior of in

as

(9)

It is easy to see that . The following
proposition states some properties of , which follow
easily from the definition.

Proposition 3: Let be a normed linear space, its
bounded subset such that , and .

i) If is symmetric, then is symmetric;
ii) if is convex, then is convex;

iii) if is convex and symmetric and , then
.

Proof:
i) Let . For every with

and as is symmetric, .
ii) Let and with . Then,

, and as is convex

So .
iii) By i), there exists such that both and are in .

By ii), is convex, and thus, . Hence, the
statement follows by the definition of .

The next proposition shows that the -interior of is
contained in with .

Proposition 4: Let be a Hilbert space, its bounded
subset with , and such that .
Then, .

Proof: To prove the first inclusion by contradiction,
suppose that . Assume that there exists

such that . Then, there exists
such that for all

Hence, and
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for all . So for all , we get

Thus, for every

(10)

Because . Setting

we get

which contradicts (10).
The second inclusion follows by Theorem 2 and the definition

of .

Proposition 4 implies that for a bounded subset spanning a
finite-dimensional Hilbert space, the sets are open.

Corollary 3: Let be a finite-dimensional Hilbert
space and its bounded subset with . Then, there
exist and such that .

Proof: Any symmetric convex set is the unit ball of the
norm defined by its Minkowski functional, so in particular

is the unit ball of a norm on . As in a fi-
nite-dimensional Hilbert space all norms are equivalent, there
exists such that . Hence, by
Proposition 4, for all and all such that

we get

By Corollary 3, for every bounded subset of a finite-dimen-
sional Hilbert space, there exist and such that for
all functions in the ball

For orthonormal bases of finite-dimensional Hilbert spaces,
Corollary 3 combined with the construction from the proof of
Proposition 2 gives some insights into the structure of the sets

.

Corollary 4: Let be a finite-dimensional Hilbert
space, , and its orthonormal
basis. Then

i) for every such that

ii) for all , there exists such that
and

Estimates from Corollary 4 can be applied to the space of real-
valued Boolean functions of -variables with either Euclidean
or Fourier basis [19], [25].

VI. DISCUSSION

Our results contribute to the investigation of variable-basis
approximation, which is an important tool in estimation of
model complexity of neural networks, radial and kernel basis
functions, splines, and other computational models with flex-
ible parameters of functions from suitable dictionaries.

Theorem 4 and Corollary 1 show that for all functions from
convex hulls, Maurey–Jones–Barron’s [12]–[14] estimate on
rates of variable-basis approximation can be improved to a
geometric rate. However, such a rate depends on a parameter

specific for the function to be approximated.
Our results show that Lavretsky’s geometric upper bound
proven in [22] for functions in affine interiors of closures of
convex hulls of “dictionaries” in finite-dimensional spaces
holds for all functions in convex hulls in general Hilbert spaces.
Moreover, our theorems imply a geometric rate for all functions
in linear spans of “dictionaries.”

Although theoretically a geometric rate holds quite generally,
its real effect depends on the size of the parameter . As our
examples in Section IV illustrate, for some functions, the values
of these parameters may be so close to that, unless is suf-
ficiently large, Maurey–Jones–Barron’s bound is better. This is
not very surprising, because we considered functions that are
the worst cases also for Maurey–Jones–Barron’s theorem [18].
However, these examples provide some insights into the struc-
ture of sets formed by functions with the same .
They also show that generally Theorem 4 cannot be extended
from the convex hull to its closure.

The proof of our main theorem is constructive and can be
described as an incremental procedure, constructing a sequence
of approximants of a function belonging to the convex hull of a
given finite dictionary. However, the procedure requires in each
step a search through the whole dictionary, whose feasibility
for large dictionaries might require some heuristics enabling to
fasten the search.
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