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Complexity of one-hidden-layer networks is studied using tools from
nonlinear approximation and integration theory. For functions with suit-
able integral representations in the form of networks with infinitely many
hidden units, upper bounds are derived on the speed of decrease of
approximation error as the number of network units increases. These
bounds are obtained for various norms using the framework of Bochner
integration. Results are applied to perceptron networks.

1 Introduction

Some understanding of the dependence of model complexity of neural
networks on type of computational units and properties of training data can
be derived by inspection of estimates of rates of decrease of approximation
errors with an increasing number of network units. Assuming that training
data are chosen from a given multivariable function, the form of an estimate
of error in approximation of such a function by a network with a given
type of units tells us which combinations of properties of the function and
the computational units guarantee fast rates of approximation.

A suitable tool for estimating rates of neural network approximation
is a result from nonlinear approximation theory that applies to approxi-
mation by so-called variable-basis functions, or dictionaries. For functions
from the convex hull of a bounded subset G of a Hilbert space, it gives
an upper bound on the square of the error in approximation by convex
combinations of n elements of G. The estimate was first proved by Maurey
(see Pisier, 1981) using a probabilistic argument. Jones (1992) derived a
slightly weaker estimate constructively with an iterative algorithm. Barron
(1993) refined Jones’s constructive argument to obtain the same estimate as
Maurey. Various extensions to approximation errors measured by Lp and
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supremum norms were also derived (Darken, Donahue, Gurvits, & Sontag,
1993; Donahue, Gurvits, Darken, & Sontag, 1997; Gurvits & Koiran, 1997).

The Maurey-Jones-Barron estimate can be reformulated in terms of a
certain norm (called G-variation) of the function to be approximated. This
norm was defined in Barron (1992) for sets of characteristic functions and
extended in Kůrková (1997) to general sets. Investigation of properties of
variational norms for G corresponding to various types of network units
(or, alternatively, characterization of functions belonging to convex hulls of
such sets of hidden unit functions) can provide some insight into the impact
of a choice of the type of units on network complexity.

Jones (1992) suggested applying his estimate to functions with suitable
integral representations by rewriting them as infinite convex combinations
of elements from a trigonometric dictionary. Barron (1993, theorem 2) rig-
orously proved that such functions belong to the closure of the convex hull
of the trigonometric dictionary using the law of large numbers and Fubini’s
theorem. He also applied the estimate to dictionaries formed by sigmoidal
perceptrons by approximating sines by sigmoidals.

Girosi and Anzellotti (1993) applied the Maurey-Jones-Barron estimate
to convolutions with gaussian and Bessel kernels, sketching an argument
based on application of the concept of Bochner integration to functions
representable as infinite networks. The Bochner integral extends the concept
of Lebesgue integral to mappings into Banach spaces; when the Banach
space consists of the set of all real-valued functions (or equivalence classes
of functions) with certain properties, the value of a Bochner integral is such a
function, not just a number. Bochner integration can be applied to mappings
assigning to parameter (weights, biases, centroids) functions computable by
perceptron or radial basis function units determined by these parameters.

Explicitly in terms of an upper bound on variational norm, in Kůrková,
Kainen, and Kreinovich (1997), an estimate of rates of approximation is de-
rived for compactly supported functions representable as infinite networks
with any continuous hidden unit function. The estimate was shown to hold
for the Heaviside function as well. Also, the variational norm was bounded
by the L1-norm of the output weight function from the infinite network.
For networks of Heaviside perceptrons, Kainen, Kůrková, and Vogt (2007)
extend the upper bound to the case of a noncompact parameter set. This
allows one to apply the Maurey-Jones-Barron estimate to a wide class of
functions representable as integrals of Heaviside plane waves. Such repre-
sentations were first derived in Ito (1991) using the Radon transform. For d
odd, these representations were rediscovered in Kůrková et al. (1997) using
an integral representation of the d-dimensional Dirac delta function under
weaker smoothness conditions.

In this letter, we develop the idea of Girosi and Anzelotti (1993) of apply-
ing the concept of the Bochner integral to approximation from a dictionary.
Using properties of the Bochner integral, we obtain a framework for inves-
tigation of functions having integral representations as infinite networks
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with many kinds of hidden unit functions and sets of parameters. We prove
under mild assumptions that the size of the L1-norm of the output-weight
function from the infinite network is an important factor in network com-
plexity. This gives some theoretical justification for regularization based on
output-weight decay.

We illustrate our results on perceptron networks. Combining a repre-
sentation of a smooth function as an integral combination of Heaviside
perceptrons (Ito, 1991; Kůrková et al., 1997) with the estimate of variational
norm in terms of the L1-norm of the output weight function, we obtain
an upper bound on rates of approximation by perceptron networks for a
wide class of functions. A preliminary version of some results appeared in
conference proceedings (Kainen & Kůrková, 2008).

The letter is organized as follows. Section 2 introduces our approach and
notation. Section 3 recalls the Maurey-Jones-Barron theorem and derives
some properties of variational norms. Section 4 gives upper bounds on
variational norms for functions representable as integrals of the form of
networks with infinitely many hidden units. In section 5, we apply these
estimates to perceptron networks. Section 6 is a brief discussion. Properties
of Bochner integrals are summarized in the appendix.

2 Outline of the Approach

One-hidden-layer feedforward networks belong to a class of computational
models, which can mathematically be described as variable-basis schemas.
Such models compute functions from sets of the form

spann G :=
{

n∑
i=1

wi gi | wi ∈ R, gi ∈ G

}
,

where G is a set of functions and is sometimes called a dictionary. To avoid
trivialities, we assume that G contains nonzero elements. For example, G
can be the set of functions computable by perceptrons, radial basis functions,
kernel functions, or trigonometric polynomials. The number n expresses the
model complexity (in the case of one-hidden-layer neural networks, it is the
number of units in the hidden layer).

Often, sets G are parameterized; that is, they are of the form

Gφ := {φ(., y) | y ∈ Y},

where φ : � × Y → R, Y is the set of parameters, and � is the set of input
variables. Such a parameterized set of functions can be represented by a
mapping,

� : Y → X ,
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where X is a suitable function space. � is defined for all y ∈ Y as

�(y)(x) := φ(x, y).

For example, the set of functions computable by perceptrons with an
activation function σ : R → R can be described by a mapping �σ on R

d+1

defined for (v, b) ∈ R
d × R = R

d+1 as

�σ (v, b)(x) := σ (v · x + b).

For parameterized sets we use the notation

�(Y) := Gφ = {φ(., y) | y ∈ Y} and s� := sup
y∈Y

‖φ(., y)‖X . (2.1)

In this letter, we consider parameterized sets of functions belonging to
either an Lq -space with q ∈ [1,∞) or a Banach space (X , ‖.‖X ) of pointwise-
defined functions on which all evaluation functionals are bounded.

For � ⊆ R
d , ρ a measure on � and q ∈ [1,∞), we denote by Lq (�, ρ) the

space of all real-valued functions h satisfying
∫
�

|h(y)|q dρ < ∞. When ρ is
the Lebesgue measure, we write merely Lq (�).

For x ∈ �, we denote by Tx : X → R the evaluation functional at x de-
fined for every f ∈ X as

Tx( f ) := f (x).

The class of spaces with bounded evaluation functionals contains all spaces
of bounded functions with the supremum norm. It also contains all repro-
ducing kernel Hilbert spaces (RKHS), which are defined as Hilbert spaces
of point-wise defined real-valued functions on which all evaluation func-
tionals are bounded (Aronszajn, 1950).

The distance of an element f from a subset A in a normed linear space
(X , ‖.‖X ) is defined by

‖ f − A‖X := inf
g∈A

‖ f − g‖X .

We investigate the speed of decrease of distances ‖ f − spann�(Y))‖X with
n increasing for functions f representable as one-hidden-layer networks
with infinitely many hidden units from �(Y). More precisely, we consider
functions f , which can be expressed for a suitable measure μ on Y and
almost all x ∈ � as the Lebesgue integrals of the form

f (x) =
∫

Y
w(y)φ(x, y) dμ(y), (2.2)

where w : Y → R is the weight function.



2974 P. Kainen and V. Kůrková

Such functions are images of the corresponding weight functions w un-
der the integral operator Lφ defined as

Lφ(w)(x) :=
∫

Y
w(y)φ(x, y) dμ(y).

We show that the “size” of the output-weight function w is critical for the
speed of decrease of approximation errors. In section 4, with rather mild
assumptions on μ, w, and φ, we prove that this speed depends on the
L1(Y, μ)-norm of the weight function w:

‖ f − spann�(Y)‖2
X ≤ (s�‖w‖L1(Y,μ))2 − ‖ f ‖2

X
n

. (2.3)

To derive this upper bound, we use the previously mentioned result of
Maurey, Jones, and Barron on a variable-basis approximation, reformulating
it in terms of a norm called �(Y)-variation. To estimate this norm, we take
advantage of properties of the Bochner integral, which is an extension of the
concept of the Lebesgue integral allowing the integration of mappings with
values in function spaces. We consider the Bochner integral of the mapping
w� : Y → X , which is defined for all y ∈ Y via scalar multiplication in X as

w�(y) := w(y)�(y) = w(y)φ(., y). (2.4)

Using the relationship between the Lebesgue integral, equation 2.2, which
represents values of the function f and the Bochner integral of the mapping
w�, we obtain an estimate of �(Y)-variation of f in terms of the L1-norm
of the weight function w. This gives the upper bound, equation 2.3, on rate
of approximation by spann�(Y).

3 Rates of Variable-Basis Approximation and Variational Norm

The following theorem is an upper bound on approximation by

convn G :=
{

n∑
i=1

ai gi | ai ∈ [0, 1],
n∑

i=1

ai = 1, gi ∈ G

}
,

derived by Maurey (see Pisier, 1981), Jones (1992), and Barron (1993).

Theorem 1 (Maurey-Jones-Barron). Let G be a bounded nonempty subset of a
Hilbert space (X , ‖.‖X ) and sG = supg∈G‖g‖X . Then for every f ∈ cl conv G and
for every positive integer n,

‖ f − convnG‖2
X ≤ s2

G − ‖ f ‖2
X

n
.
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Theorem 1 can be reformulated in terms of a norm called G-variation.
This variational norm is defined for any bounded nonempty subset G of
any normed linear space (X , ‖.‖X ) as the Minkowski functional of the closed
convex symmetric hull of G, that is,

‖ f ‖G := inf
{
c > 0 | c−1 f ∈ cl conv (G ∪ −G)

}
, (3.1)

where the closure cl is taken with respect to the topology generated by the
norm ‖.‖X and conv denotes the convex hull. Note that G-variation can be
infinite. It is a norm (so it is subadditive, i.e., ‖ f + g‖G ≤ ‖ f ‖G + ‖g‖G) on
the subspace ofX formed by those f ∈ X , for which ‖ f ‖G < ∞. G-variation
depends on the norm on the ambient space, but as this is implicit, we omit
it in the notation.

Variational norms were introduced by Barron (1992) for characteristic
functions of certain families of subsets of R

d , in particular, for the set of
characteristic functions of closed half-spaces corresponding to the set of
functions computable by Heaviside perceptrons. For functions of one vari-
able (i.e., d = 1), the variation with respect to half-spaces coincides, up to a
constant, with the notion of total variation. The general concept was defined
by Kůrková (1997). The following upper bound is a corollary of theorem 1
from Kůrková (1997; see also Kůrková, 2003).

Theorem 2. Let (X , ‖.‖X ) be a Hilbert space and G its bounded nonempty subset,
sG = supg∈G‖g‖X . Then for every f ∈ X and every positive integer n,

‖ f − spannG‖2
X ≤ s2

G‖ f ‖2
G − ‖ f ‖2

X
n

.

This reformulation of theorem 1 in terms of the variational norm allows
one to formulate an upper bound on variable-basis approximation for all
functions in a Hilbert space. A similar result to theorem 2 can be obtained
in the Lq -spaces with q ∈ (1,∞) using a result by Darken et al. (1993); for
a slightly simplified argument, see also (Kůrková & Sanguineti, 2005). For
the definition of Radon measure see section 4.

Theorem 3. Let G be a bounded subset of Lq (�, ρ), q ∈ (1,∞), and ρ a Radon
measure. Then for every f ∈ cl conv G and every positive integer n,

‖ f − spannG‖Lq (�,ρ) ≤ 21+1/r sG‖ f ‖G

n1/s
.

where 1/q + 1/p = 1, r = min(p, q ), s = max(p, q ).

In some cases, variational norms with respect to two different sets are
the same. For example, in Lq -spaces with q ∈ (1,∞), variation with respect
to Heaviside perceptrons equals variation with respect to perceptrons with
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any continuous sigmoidal activation function (Kůrková et al., 1997). So to
obtain from theorem 2 rates of approximation by perceptron networks, it
suffices to study variation with respect to half-spaces for which estimates
in terms of Sobolev seminorms are known (Kůrková et al., 1997; Kainen
et al., 2007). Thus, investigation of variational norms can provide some
insight into properties of multivariable functions, which can be efficiently
approximated by various computational models.

The next lemma shows that variation of the limit of a sequence of func-
tions is bounded from above by the limit of their variations.

Lemma 1. Let G be a nonempty, nonzero bounded subset of a normed linear space
(X , ‖ · ‖X ), h ∈ X , {hi }∞i=1 ⊂ X with bi = ‖hi‖G < ∞ for all i . If limi→∞‖hi −
h‖X = 0 and there exists a finite b = limi→∞bi , then ‖h‖G ≤ b.

Proof. For all ε > 0, choose some η > 0 such that η < εb2

2(b+‖h‖X ) . By the con-
vergence assumptions, there exists i0 such that for all i > i0, ‖h − hi‖X < η

and |b − bi | < η. Then by the triangle inequality for all, i > i0, ‖ h
b+η

−
hi

bi +η
‖X ≤ ‖ h

b+η
− h

bi +η
‖X + ‖ h

bi +η
− hi

bi +η
‖X ≤ η‖h‖X

(b+η)(bi +η) + η

bi +η
≤ η‖h‖X

b2 + η

b <
ε
2 .

By the definition of variation, ‖hi‖G = bi implies that there exists δi < η

such that hi
bi +δi

∈ cl conv(G ∪ −G). As conv(G ∪ −G) is symmetric and
convex, also hi

bi +η
∈ cl conv(G ∪ −G). Then ‖ h

b − cl conv(G ∪ −G)‖X ≤ ‖ h
b −

hi
bi +η

‖X ≤ ‖ h
b − h

b+η
‖X + ‖ h

b+η
− hi

bi +η
‖X ≤ η‖h‖X

b2 + ε
2 < ε. Infimizing over ε,

we get h
b ∈ cl conv(G ∪ −G) and thus ‖h‖G ≤ b.

4 Upper Bound on Variation with Respect
to a Parameterized Family

It is easy to see that for f ∈ X representable as f = ∑k
i=1 wi gi with all gi ∈ G

and wi ∈ R, ‖ f ‖G ≤ ∑k
i=1 |wi |. By analogy, for f representable as

f (x) =
∫

Y
w(y)φ(x, y) dμ(y), (4.1)

one should expect

‖ f ‖�(Y) ≤
∫

Y
|w(y)|dμ. (4.2)

Various special cases of integral representations of the form 4.1 have
been investigated. Jones (1992) and Barron (1993) used weighted Fourier
transform, and Girosi and Anzellotti (1993) used convolutions to prove
that functions with such representations belong to the convex hulls of cor-
responding dictionaries. Explicitly as an upper bound on variation, the
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estimate in terms of the L1(Y, μ)-norm of the weight function w was de-
rived in Kůrková et al. (1997) for an integral representation 4.1 of a function
f defined on a compact domain � ⊂ R

d , the set of parameters Y compact
and the hidden-unit function φ either continuous in both variables or φ

corresponding to Heaviside perceptrons.
However, the functions of interest may be defined on noncompact do-

mains, their integral representations may have parameters in noncompact
sets Y such as R

d , and some computational units (such as Heaviside per-
ceptrons) are not continuous. The following theorems include these cases.
Arguments are based on Bochner’s extension of the Lebesgue integral to
functions with values in Banach spaces. For a mapping h : Y → X from a
measure space (Y, μ) to a Banach space X , we denote by I (h) the Bochner
integral of h (if it exists), which is an element of X (see the appendix for a
brief review, including definitions and basic properties). In the proofs of the
next theorems, we consider the Bochner integral of the mapping h = w�

defined in equation 2.4. Girosi and Anzellotti (1993) originally sketched
such an approach for the case of integral representations in the form of
convolutions.

We first prove upper bounds for parameterized sets �(Y) with the set
of the parameters Y compact and the dependence � on parameters contin-
uous, and then we extend these bounds to the case of noncompact sets of
parameters. We assume that the functions from the family �(Y) are either
in Lq (�, ρ)-space, with q ∈ (1,∞) and ρ a Radon measure, or in a Banach
space, on which all evaluation functionals are bounded (this class includes
all reproducing kernel Hilbert spaces and the space of bounded continuous
functions with the supremum norm). Recall that a triple (Y,S, μ) is called a
measure space if Y is a set, S is a σ -algebra of subsets of Y, and μ is a measure
on S.

Theorem 4. Let (X , ‖.‖X ) be a Banach space of real-valued functions on a set
� ⊆ R

d such that all evaluation functionals on X are bounded, and suppose that
f ∈ X is represented for all x ∈ � as

f (x) =
∫

Y
w(y)φ(x, y) dμ,

where Y, w, φ, and μ satisfy both following conditions:

(i) Y is a compact subset of R
p, p a positive integer, and (Y,S, μ) a measure

space.
(ii) �(Y) is a bounded subset of X , w ∈ L1(Y, μ), and w� : Y → X is

continuous.

Then

‖ f ‖�(Y) ≤ ‖w‖L1(Y,μ).
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Moreover, if, in addition, (X , ‖.‖X ) is a Hilbert space, then for all positive inte-
gers n,

‖ f − spann�(Y)‖2
X ≤

s2
�‖w‖2

L1(Y,μ) − ‖ f ‖2
X

n
.

Before proving this theorem, we state a similar result for Lq -spaces and
then give a joint proof, which splits at its last step.

Our second theorem holds for Lq (�, ρ) spaces where ρ is σ -finite, which
means that there exists a family {Mi } of sets of finite measure such that
∪∞

i=1 Mi = �. For example, the Lebesgue measure on R
d is σ -finite. The

second theorem also requires a slightly stronger assumption on μ. A triple
(Y,S, μ) is called a Radon measure space if Y is a topological space, S is a
σ -algebra, which includes all Borel sets, and μ is a Radon measure on S,
that is, for every open subset U of �, ρ(U) = sup{ρ(K ) | K ⊂ U, K compact}
and for every A ∈ S, μ(A) = inf{μ(U) | A ⊂ U ⊆ Y, Uopen}. Note that if μ is
Radon and K ⊆ Y is compact, then μ(K ) < ∞. A property is said to hold for
μ-a.e. y ∈ Y if it holds for all y ∈ Y \ Y0, where μ(Y0) = 0. The requirements
on the measures and on φ and w enable the application of Fubini’s theorem.

Theorem 5. Let X = Lq (�, ρ), q ∈ [1,∞), where � ⊆ R
d and ρ is a σ -finite

measure. Let f ∈ X is represented for ρ-a.e. x ∈ � as

f (x) =
∫

Y
w(y)φ(x, y) dμ,

where Y, w, φ, and μ satisfy all of the following three conditions:

(i) Y is a compact subset of R
p, p a positive integer, and (Y,S, μ) is a Radon

measure space.
(ii) �(Y) is a bounded subset of X , w ∈ L1(Y, μ), and w� : Y → X is contin-

uous.
(iii) φ : � × Y → R is ρ × μ-measurable.

Then

‖ f ‖�(Y) ≤ ‖w‖L1(Y,μ),

and for all positive integers n, when q ∈ (1,∞) and q ′ satisfies 1/q + 1/q ′ = 1,
r = min(q , q ′), s = max(q , q ′),

‖ f − spann�(Y)‖X ≤ 21+1/r s�‖w‖L1(Y,μ)

n1/s
.

and when q = 2,

‖ f − spann�(Y)‖2
X ≤

s2
�‖w‖2

L1(Y,μ) − ‖ f ‖2
X

n
.
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Proof of Theorems 4 and 5. Let ζ > 0 be arbitrary. We will show that
‖ f ‖�(Y) ≤ ‖w‖L1(Y,μ) + ζ .

Consider a sequence {Pk} of partitions of Y into μ-measurable sets
Pk = {Pk j | j = 1, . . . , mk}, such that for each k,Pk+1 is a refinement ofPk and
the mesh ofPk is at most 1/k (the mesh ofPk is defined as max{diam(Pk j ) | j =
1, . . . , mk}, where diam(A) = supa ,b∈A d(a , b), and d(a , b) denotes the Eu-
clidean distance on R

p).
For each k ≥ 1 and each j = 1, . . . , mk , choose yζ

k j ∈ Pk j such that

∣∣w(
yζ

k j

)∣∣ ≤ ζ

mk
μ(Pk j ) + inf

y∈Pkj

|w(y)|.

Define a simple function sζ

k = sk by

sk(y) =
mk∑
j=1

χPkj (y)w
(
yζ

k j

)
�

(
yζ

k j

)
.

By the definition of the Bochner integral, each sk ∈ I(Y, μ;X ).
To show that w� ∈ I(Y, μ;X ), we use Lebesgue-dominated convergence

(see proposition 1). By compactness of Y and continuity of w� : Y → X ,
c = supy∈Y |w(y)| ‖�(y)‖X < ∞. Set g(y) = c for all y ∈ Y; then g ∈ L1(Y, μ).
For every y ∈ Y and k ≥ 1, there is at most one Pk j with y ∈ Pk j . Thus, we
have either sk(y) = 0 ≤ c or

‖sk(y)‖X ≤ ∣∣w(
yζ

k j

)∣∣ ∥∥�
(
yζ

k j

)∥∥
X ≤ c = g(y).

Thus, to apply proposition 1, it remains to check that for μ-a.e. y ∈ Y,
limk→∞ ‖sk(y) − w�(y)‖X = 0.

As Y is compact, the continuous map w� : Y → X is uniformly continu-
ous. Hence, for all ε > 0, there exists δ > 0 such that for all y1, y2 ∈ Y, when-
ever d(y1, y2) < δ, we have ‖w(y1)�(y1) − w(y2)�(y2)‖X < ε, where d(y1, y2)
denotes the Euclidean distance on R

p. For all k > 1/δ, the mesh of Pk is
smaller than δ, and thus for μ-a.e. y ∈ Y, ‖sk(y) − w(y)�(y)‖X < ε.

Therefore, according to proposition 1,

w� ∈ I(Y, μ;X ) and lim
k→∞

‖I (sk) − I (w�)‖X = 0. (4.3)

By the choice of yζ

k j , for all k

‖I (sk)‖�(Y) ≤
mk∑
j=1

μ(Pk j )
∣∣w(

yζ

k j

)∣∣ ≤ ‖w‖L1(Y,μ) + ζ. (4.4)
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Since the sequence {‖I (sk)‖�(Y)} is bounded, replacing it with a subse-
quence if necessary, we get by lemma 1, ‖I (w�)‖�(Y) ≤ limk→∞ ‖I (sk)‖�(Y) ≤
‖w‖L1(Y,μ) + ζ . Infimizing over ζ > 0, we obtain ‖I (w�)‖�(Y) ≤ ‖w‖L1(Y,μ).

Thus, to get an upper bound on ‖ f ‖�(Y), it remains to show that the
Bochner integral I (w�) is equal to f . Here the proofs of the two theorems
split.

For theorem 4, we apply proposition to evaluation functionals. Thus,
we get by proposition 2, I (w�)(x) = Tx(I (w�)) = ∫

Y Tx(w�(y)) dμ(y) =∫
Y(w�(y))(x) dμ(y) = ∫

Y w(y)φ(x, y) dμ(y) = f (x). Hence, I (w�) = f . For
theorem 5, the equality I (w�) = f is proved below at the end of the proof
of theorem 7.

The upper bound on ‖ f − spann�(Y)‖X then follows by theorem 2 (in
the Hilbert space case) and theorem 3 (in the Lq -space case).

The next two theorems extend the upper bounds on rates of approxima-
tion also to the case when the parameter set Y is not compact.

Theorem 6. Let (X , ‖.‖X ) be a Banach space of real-valued functions on a set
� ⊆ R

d such that all evaluation functionals on X are bounded and suppose that
f ∈ X is represented for all x ∈ � as

f (x) =
∫

Y
w(y)φ(x, y) dμ(y),

where Y, w, φ, and μ satisfy the following conditions:

(i) Y is an open subset of R
p, p a positive integer, and (Y,S, μ) is a Radon

measure space.
(ii) �(Y) is a bounded subset of X , w ∈ L1(Y, μ), and w� : Y → X is contin-

uous.

Then

‖ f ‖�(Y) ≤ ‖w‖L1(Y,μ).

If, in addition, (X , ‖.‖X ) is a Hilbert space, then for all positive integers n,

‖ f − spann�(Y)‖2
X ≤

s2
�‖w‖2

L1(Y,μ) − ‖ f ‖2
X

n
.

Theorem 7. Let X = Lq (�, ρ), q ∈ [1,∞), where � ⊆ R
d and ρ is a σ -finite

measure. Let f ∈ X satisfy for ρ-a.e. x ∈ �,

f (x) =
∫

Y
w(y)φ(x, y) dμ(y),
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where Y, w, φ, and μ satisfy the following three conditions:

(i) Y is an open subset of R
p, p a positive integer, and (Y,S, μ) is a Radon

measure space.
(ii) �(Y) is a bounded subset of X , w ∈ L1(Y, μ), and w� : Y → X is contin-

uous.
(iii) φ : � × Y → R is ρ × μ-measurable.

Then for all positive integers n, for all q ∈ [1,∞),

‖ f ‖�(Y) ≤ ‖w‖L1(Y,μ),

for all q ∈ (1,∞) and q ′ satisfying 1/q + 1/q ′ = 1, r = min(q , q ′), s =
max(q , q ′),

‖ f − spann�(Y)‖X ≤ 21+1/r s�‖w‖L1(Y,μ)

n1/s
,

and for q = 2,

‖ f − spann�(Y)‖2
X ≤

s2
�‖w‖2

L1(Y,μ) − ‖ f ‖2
X

n
.

As most steps of the proofs of theorems 6 and 7 are the same, we give
a joint proof, which splits only at the step verifying the equality of evalu-
ations of the Bochner integral I (w�) at ρ-a.e. x ∈ � to Lebesgue integrals∫

Y w(y)φ(x, y) dμ(y).

Proof of Theorems 6 and 7. Since Y is an open subset of R
p , it is well known

(and easy to check) that Y is the union of a countable family of compact
subsets Ym, which may be taken to be nested, so

Y = ∪∞
m=1Ym

with Ym ⊆ Ym+1. This condition could replace the stronger requirement that
Y is open in theorems 6 and 7.

For all m ≥ 1 and all x ∈ �, let wm : Y → R, φm(x, .) : Y → R, and �m :
Y → X , resp., be defined as w, φ(x, .), and � on Ym and as 0 on Y \ Ym. As
μ is a Radon measure, all compact sets Ym have finite measures, and so

fm(x) :=
∫

Y
wm(y)φm(x, y) dμ(y) =

∫
Ym

w(y)φ(x, y) dμ(y)

are finite for all m. Thus, by theorems 1 and 2, I (wm�m) = fm and
‖ fm‖�(Ym) ≤ ‖w|Ym‖L1(Ym) ≤ ‖w‖L1(Y). As �(Ym) ⊂ �(Y), we get ‖ fm‖�(Y) ≤
‖ fm‖�(Ym) ≤ ‖w‖L1(Y).
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We show that limm→∞ ‖ f − fm‖X = 0 by first using Lebesgue-dominated
convergence to verify that w� is Bochner integrable with limm→∞ ‖I (w�) −
I (wm�m)‖X = 0 and then by showing that

I (w�) = f. (4.5)

By definition of wm and �m, for every y ∈ Y \ Y0, there exists my such
that for all m ≥ my, wm(y)�m(y) = w(y)�(y) and so for μ-a.e. y ∈ Y,
limm→∞ ‖wm(y)�m(y) − w(y)�(y)‖X = 0. For all y ∈ Y, ‖wm(y)�m(y)‖X ≤
s�w(y). As s�w ∈ L1(Y, μ) by proposition 1, w� ∈ I(Y, μ;X ) and

lim
m→∞ ‖I (w�) − I (wm�m)‖X = 0.

To establish equation 4.5, there are two cases.
For spaces with bounded evaluation functionals (see theorem 6),

by proposition 2, I (w�)(x) = Tx(I (w�)) = ∫
Y Tx(w�(y)) dμ(y) = ∫

Y(w�(y))
(x) dμ(y) = ∫

Y w(y)φ(x, y) dμ(y) = f (x). So equation 4.5 holds.
For X = Lq (�, ρ) (see theorem 6), we must show that for ρ-a.e. x ∈ �,

f (x) = I (w�)(x). It is equivalent to showing that for each bounded linear
functional F on X , F (I (w�)) = F ( f ). By the Riesz representation theorem
(Martı́nez & Sanz, 2001), for any such F , there exists a gF ∈ Lq ′

(�, ρ) such
that for all g ∈ Lq (�, ρ), F (g) = ∫

�
gF (x)g(x)dρ(x), where 1/q + 1/q ′ = 1.

As F is a bounded linear functional, by proposition 2, we have

F (I (w�)) =
∫

Y
w(y)F (�(y)) dμ(y)

=
∫

Y

∫
�

w(y)gF (x)φ(x, y) dρ(x) dμ(y).

On the other hand,

F ( f ) =
∫

�

gF (x) f (x) dρ(x) =
∫

�

∫
Y

w(y)gF (x)φ(x, y) dμ(y) dρ(x).

Since μ and ρ are σ -finite, we can apply Fubini’s theorem (Hewitt &
Stromberg, 1965) to show that the two iterated integrals are equal. For the
verification that the absolute integral I = ∫

Y |w(y)F (�(y)) |dμ(y) is indeed
finite, replace μ by the finite measure S → ∫

S |w(y)|dμ(y) and use Hölder’s
inequality (Martı́nez & Sanz, 2001) to see that

I ≤ ‖w‖L1(Y,μ)‖gF ‖Lq ′ (�,ρ) sup
y∈Y

‖�(y)‖Lq (�,ρ).
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In both the Hilbert space and Lq cases, limm→∞ ‖ f − fm‖X = 0 and thus
by lemma 1, ‖ f ‖�(Y) ≤ ‖w‖L1(Y). The upper bound on ‖ f − spann�(Y)‖X
then follows by theorem 2 (in the Hilbert space case) and theorem 3 (in the
Lq -space case).

Thus, for functions representable as networks with infinitely many units,
the growth of model complexity with increasing accuracy depends on the
L1-norm of the output-weight function.

5 Approximation by Perceptron Networks

In this section, we use the following specialization of theorem 7 about
parameterized families in L2(�) = L2(�, λ), where λ denotes the Lebesgue
measure.

Corollary 1. Let � ⊆ R
d , d ≥ 1, be Lebesgue measurable, and suppose that f ∈

L2(�) is such that for λ-a.e. x ∈ �,

f (x) =
∫

Y
w(y)φ(x, y) dy,

where Y, w, and φ satisfy the following three conditions:

(i) Y is an open subset of R
p and p a positive integer.

(ii) �(Y) is a bounded subset of L2(�), w ∈ L1(Y), and w� : Y → L2(�) is
continuous.

(iii) φ : � × Y → R is Lebesgue measurable.

Then

‖ f ‖�(Y) ≤ ‖w‖L1(Y)

and for all positive integers n,

‖ f − spann�(Y)‖2
L2(�) ≤

s2
�‖w‖2

L1(Y) − ‖ f ‖2
L2(�)

n
.

A function σ : R → R is called sigmoidal when it is nondecreasing and
limt→−∞ σ (t) = 0 and limt→∞ σ (t) = 1. For every compact � ⊂ R

d , the map-
ping

�σ : R
d × R → L2(�),
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which is defined for all x ∈ � as �σ (v, b)(x) := φσ (v, b)(x) = σ (v · x + b),
maps parameters (input weights v and biases b) of perceptrons with the
activation function σ to functions computable by such perceptrons.

Let ϑ : R → R denote the Heaviside function, that is, ϑ(t) = 0 for t < 0
and ϑ(t) = 1 for t ≥ 0, and Sd−1 denote the unit sphere in R

d . It is easy
to see that for any bounded subset � of R

d , �ϑ (Sd−1 × R) = �ϑ (Rd × R).
Kůrková et al. (1997) showed that for every � ⊂ R

d compact and every
continuous sigmoidal function σ , �σ (Rd × R)-variation in L2(�) is equal
to �ϑ (Sd−1 × R)-variation. Thus, by theorem 2, upper bounds on variation
with respect to Heaviside perceptrons give estimates on rates of approx-
imation by perceptron networks with an arbitrary continuous sigmoidal
activation function.

It is easy to check that for � compact, �ϑ : Sd−1 × R → L2(�) is continu-
ous, �ϑ (Sd−1 × R) is a bounded subset ofL2(�), and φϑ : � × Sd−1 × R → R

is Lebesgue measurable. Moreover, Sd−1 × R can be expressed as a union of
a nested family of compact sets. Thus, by corollary 1 for function f ∈ L2(�)
representable for all x ∈ � as f (x) = ∫

Sd−1×R
w(e, b)ϑ(e · x + b) de db with

w ∈ L1(Sd−1 × R), �ϑ (Sd−1 × R)-variation of f is bounded from above by
‖w‖L1(Sd−1×R).

Sufficiently smooth functions that are either compactly supported or
have sufficiently rapid decay at infinity (along with their derivatives) can
be expressed as networks with infinitely many Heaviside perceptrons. For
d odd, such functions have a representation of the form

f (x) =
∫

Sd−1×R

w f (e, b)ϑ(e · x + b) dedb, (5.1)

with

w f (e, b) = a (d)
∫

He,b

(
D(d)

e ( f )
)
(y) dy, (5.2)

where He,b = {x ∈ R
d | x · e + b = 0} and a (d) = (−1)(d−1)/2(1/2)(2π)1−d ; D(d)

e

denotes the directional derivative of order d in the direction e . The weight
function w f (e, b) is thus a flow of order d through the hyperplane, scaled
by a (d), which goes to zero exponentially fast as d → ∞.

Representation 5.1 was first derived in Ito (1991) (see theorem 3.1, propo-
sition 2.2, and an equation on p. 387 of his paper). Ito used the Radon
transform (see, e.g., Adams & Fournier, 2003) to prove that all functions
from the Schwartz class have such a representation. In Kůrková et al.
(1997), the same formula was derived for all compactly supported func-
tions from Cd (Rd ), d odd, via an integral formula for the Dirac delta func-
tion. Equation 5.1 was extended to functions of weakly controlled decay in
Kainen, Kůrková, and Vogt (in press). These are the functions that satisfy for
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all multi-indexes α with 0 ≤ |α| = α1 + . . . αd < d , lim‖x‖→∞(Dα f )(x) = 0
(where Dα = (∂/∂x1)α1 . . . (∂/∂xd )αd ) and there exists ε > 0 such that for each
multi-index α with |α| = d ,

lim
‖x‖→∞

(Dα f )(x)‖x‖d+1+ε = 0.

The class of functions of weakly controlled decay contains both above-
mentioned classes (the Schwartz class and the class of all compactly sup-
ported functions from Cd (Rd )). In particular, it contains the gaussian func-
tion γd (x) = exp(−‖x‖2).

Thus, applying corollary 1 and the remark at the beginning of the proof
of theorems 6 and 7 to the integral representation 5.1 and taking advantage
of the equality of �σ (Rd+1)-variation and �ϑ (Sd−1 × R)-variation (Kůrková
et al., 1997), we get for a large class of functions the following upper bound
on rates of approximation by perceptron networks. To avoid complicated
notation, in the upper bound inL2(�)-norm in the next theorem, we assume
that suitable functions are restricted to the set �.

Theorem 8. Let σ : R → R be a continuous sigmoidal function or σ be the
Heaviside function, d be an odd positive integer, f ∈ Cd (Rd ) be either compactly
supported with � = supp( f ) or f be of weakly controlled decay, and � be any
compact subset of R

d . Then for all positive integers n,

‖ f − spann�σ (�)‖2
L2(�) ≤

λ(�)2‖w f ‖2
L1(Sd−1×R) − ‖ f ‖2

L2(�)

n
,

where w f (e, b) = a (d)
∫

He,b
(D(d)

e ( f ))(y) dy, and a (d) = (−1)(d−1)/2(1/2)(2π)1−d .

An estimate in terms of the maximal value of the L1-norms of the par-
tial derivatives of the function to be approximated can be derived from
theorem 8 by combining it with an upper bound on the L1-norm of the
weighting function w f from Kainen et al. (2007). This bound is formulated
in terms of a Sobolev seminorm ‖.‖d,1,∞, which is defined as

‖ f ‖d,1,∞ = max
|α|=d

‖Dα f ‖L1(Rd ).

Kainen et al. (2007) showed that for all d odd and all f of weakly con-
trolled decay,

‖w f ‖L1(Sd−1×R) ≤ k(d)‖ f ‖d,1,∞,

where k(d) ∼ ( 4π
d

)1/2 ( e
2π

)d/2.
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Corollary 2. Let σ : R → R be a continuous sigmoidal function or the Heaviside
function, d be an odd positive integer, f ∈ Cd (Rd ) be either compactly supported
with � = supp( f ) or f be of weakly controlled decay, and � be any compact subset
of R

d . Then for all positive integers n,

‖ f − spann�σ (�)‖2
L2(�) ≤

k(d)2λ(�)2‖ f ‖2
d,1,∞ − ‖ f ‖2

L2(�)

n
,

where k(d) ∼ (
4π
d

)1/2 (
e

2π

)d/2
.

6 Conclusion

To apply tools from nonlinear approximation theory (the Maurey-Jones-
Barron theorem and its extensions) in investigating model complexity of
neural networks, we developed a unifying framework for the estimation
of variational norms. Our proof technique is based on the idea of Girosi
and Anzellotti (1993) of using the Bochner integral of mappings of param-
eters to functions computable by hidden units. Our estimates hold under
mild assumptions on hidden units and output-weight functions and can be
applied to a wide range of function spaces and computational models of
variable-basis or “dictionary” type. In fact, we believe that the hypothesis
of continuity is too strong; w and φ measurable (in all variables) should be
sufficient. But the formulation here is enough for our applications.

We have shown that for functions representable as networks with in-
finitely many units, the growth of model complexity with increasing accu-
racy depends on the L1-norms of the output-weight functions. This leads
to estimates of rates of approximation by sigmoidal perceptron networks.
However, our estimates can also be combined with many other integral rep-
resentations, for example, convolutions with gaussian and Bessel kernels,
which were studied in Girosi and Anzellotti (1993) and Kainen, Kůrková,
and Sanguineti (2009).

Appendix: Properties of Bochner Integral

The Bochner integral is a generalization of the Lebesgue integral to func-
tions with values in a Banach space. Here we recall the definition of the
Bochner integral and some related concepts, notations, results, and tech-
niques needed in the proofs in our letter (for more details see, e.g., Zaanen,
1961).

Let (Y,S, μ) be a measure space and (X , ‖.‖X ) be a Banach space. A
function s : Y → X is called simple if it achieves a finite set of values; that
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is, there exist m ≥ 1, f1, . . . , fm ∈ X ; P1, . . . , Pm ∈ S such that for all j =
1, . . . , m, μ(Pj ) < ∞, for all distinct pairs i, j = 1, 2, . . . , m, Pi ∩ Pj = ∅, and

s =
m∑

j=1

f jχPj ,

where χP denotes the characteristic function of the subset P of Y.
Let

I (s) :=
m∑

j=1

μ(Pj ) f j ∈ X .

Then I (s) is independent of the representation of s as a linear combination
of characteristic functions (Zaanen, 1961).

A function h : Y → X is called strongly measurable (with respect to μ)
provided there exists a sequence {sk} of simple functions such that, for
μ-a.e. y ∈ Y,

lim
k→∞

‖sk(y) − h(y)‖X = 0.

A function h : Y → X is Bochner integrable (with respect to μ) if it is strongly
measurable and there exists a sequence {sk} of simple functions sk : Y → X
such that

lim
k→∞

∫
Y

‖sk(y) − h(y)‖X dμ(y) = 0. (A.1)

If equation A.1 holds, the sequence {I (sk)} converges to an element I (h) ∈
X , independent of the sequence of simple functions, called the Bochner
integral of h (with respect to μ).

Let I(Y, μ;X ) denote the family of all functions from Y to X that are
Bochner integrable with respect to μ.

The following theorem asserts that for h strongly measurable, Bochner
integrability of a mapping h : Y → X is equivalent to Lebesgue integrability
of ‖h‖ : Y → R.

Theorem 9 (Bochner). Let (X , ‖ · ‖X ) be a Banach space and (Y,S, μ) a measure
space. Let h : Y → X be strongly measurable. Then

h ∈ I(Y, μ;X ) if and only if
∫

Y
‖h(y)‖X dμ(y) < ∞.

The next two results, which can be found in Zaanen (1961) and Martı́nez
and Sanz (2001), are used in proofs in section 4. The first one generalizes
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Lebesgue-dominated convergence, while the second one describes a key
linearity property.

Proposition 1. Let (Y,S, μ) be a measure space and (X , ‖.‖X ) a Banach space. If
{hn}∞n=1 ⊂ I(Y, μ;X ) and h : Y → X satisfies

lim
n→∞

‖hn(y) − h(y)‖X = 0,

for μ-a.e. y ∈ Y, and if there exists g ∈ L1(Y, μ) with ‖hn(y)‖X ≤ g(y) for μ-a.e.
y in Y, then

h ∈ I(Y, μ;X ) and lim
n→∞

‖I (h) − I (hn)‖X = 0.

Proposition 2. Let (Y,S, μ) be a measure space, (X , ‖.‖X ) a Banach space, h ∈
I(Y, μ;X ), and let T be a bounded linear functional on X . Then

T(I (h)) =
∫

Y
T (h(y)) dμ(y).
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works. In K. Warwick & M. Kárný (Eds.), Computer-intensive methods in control
and signal processing: Curse of dimensionality (pp. 261–270). Boston: Birkhauser.
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