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1. Introduction. Finding a function that fits given data amounts to minimizing an error functional. To
improve the stability of solutions of such an optimization task, various regularization methods can be used
(Bertero [8]). In Tikhonov regularization, a stabilizer is added that penalizes undesired properties of the solution.
A commonly used stabilizer is the square of the norm on a reproducing kernel Hilbert space (RKHS). Squares
of norms on Hilbert spaces are strictly convex (which guarantees uniqueness of solutions) and include the class
of high-frequency filters (Girosi [20]). RHKS’ were formally defined by Aronszajn [4], but their theory is based
on previous works by Mercer, Schönberg and others (see, e.g., Schönberg [37]).
RKHS’ were introduced into data analysis by Parzen and Wahba in the 1960s, as a framework for data

smoothing by spline models (see, e.g., Wahba [40]). Since the 1980s, RKHS’ have been extensively used in
statistics (see, e.g., Berlinet and Thomas-Agnan [7] and the references therein). Kernel spaces also play an
important role in machine learning and neurocomputing. A classification algorithm modifying the input-space
geometry by using a kernel (called potential function) was proposed by Aizerman et al. [2] in 1960s, and
later extended by Cortes and Vapnik [14] to the concept of support vector machine (see, e.g., Schölkopf and
Smola [36]). Kernels were introduced into neurocomputing by Poggio and Girosi [34] as kernel networks, an
extension to radial-basis-function networks. For a brief historical outline of RKHS’, see Parzen [32].
Most neural-network learning algorithms decrease the empirical error functional. Among them, the ones

designed to improve generalization decrease this error together with an additional term penalizing undesired
solutions. For example, in weight-decay regularization, a term bounding from above the kernel norm of the
solution is added as a stabilizer (Burger and Neubauer [12]).
A theoretical analysis of regularization in neural-network learning was made by Girosi et al. [21] and Poggio

and Girosi [34]. Girosi [20] realized that the high-frequency filters used as stabilizers belong to the class of
squares of norms on RKHS’. Thus the Representer Theorem (first derived by Kimeldorf and Wahba [25, 26])
describing solutions of regularization problems in RKHS’ can also be applied in learning theory to model
generalization (see, e.g., the synthesis paper Cucker and Smale [15] or Poggio and Smale [35] and the references
therein). The optimal solution characterized by this theorem can be interpreted as an input-output function of a
kernel network approximating the data as well as satisfying some global smoothness condition. In particular, for
convolution kernels, it can be interpreted as a function computable by a radial-basis-function network. However,
the network computing the optimal solution has as many units as the size of the data sample. So, for large
data samples, the computation of network parameters requires the numerical solution of large systems of linear
equations. This may limit practical applications of algorithms based on this theorem. By contrast, standard
neural-network learning algorithms operate on networks with a number of units much smaller than the size of
the data sample (see, e.g., Fine [18]).
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In this paper, we compare suboptimal solutions achievable by using kernel networks having an a priori bounded
number of units with theoretically optimal solutions described by the Representer Theorem. We estimate the
speed of convergence of infima of the regularized expected error functional over kernel models with an increasing
number of terms to its global minimum described by the Representer Theorem. By applying the results to the
discrete case we obtain estimates for empirical error functionals defined by samples of data.
The upper bounds are formulated in terms of the regularization parameter, of the moduli of continuity and

convexity of the regularized expected error functional, and of two norms of the function at which the global
minimum is achieved: the norm on the ambient RKHS and a certain variational norm tailored to the type of
kernel. The variational norm is a critical term for the speed of convergence. We estimate its magnitude by using
a suitable integral representation of the optimal solution. Thus we obtain upper bounds of the form a/n+b/

√
n,

where n is the number of kernel computational units and a and b depend on the regularization parameter and
on some properties of the kernel and the regression function.
The paper is organized as follows. In §2, the notation is defined, and the minimum point of the regularized

expected error functional is expressed in terms suitable for estimation of its variational norm. In §3, upper
bounds are derived on infima of the regularized expected error over kernel models formed by linear combinations
of at most n kernel computational units. In §4, these estimates are applied to the discrete case (corresponding
to the empirical error functional) and compared with our earlier estimates from Kůrková and Sanguineti [29].
Section 5 provides a brief summary discussion. For the reader’s convenience, we include appendices containing
definitions concerning RKHS’, convex functionals, and the proof of an auxiliary result on moduli of continuity
and convexity of the regularized expected error.

2. Minimization of the regularized expected error. Let X be a compact subset of �d, Y a bounded subset
of �, and � a nondegenerate (i.e., all nonempty open sets have positive measures) probability measure on X×Y .
In mathematical learning theory and statistics (see, e.g., Cucker and Smale [15], Vapnik [39]), learning from
data has been modeled as minimization of the expected error (also called expected risk or theoretical error).

��	f �=
∫
X×Y

	f 	x�− y�2 d�� (1)

over a suitable set of admissible solutions.
The probability measure � induces on X the marginal probability measure �X , defined for all subsets S ⊆X as

�X	S�= �	�−1	X���

where �� X× Y →X denotes the projection from X× Y to X.
The minimum of �� over the space �

2
�X
	X� of �X-square-integrable functions on X is achieved at the regres-

sion function f�, defined for every x ∈X as

f�	x�=
∫
Y
y d�	y � x��

where �	y � x� is the conditional 	w.r.t. x� probability measure on Y . It is easy to see that ��	f �= 
f −f�
2�2
�X

+
��	f�� for all f ∈�2

�X
	X� (see, e.g., Cucker and Smale [15]). We denote

sY = sup��y� � 	y ∈ Y �	∃x ∈X��	y � x� �= 0���

In Tikhonov’s regularization (Tikhonov [38]), the functional �� is replaced with the functional ��+��, where
� is called a stabilizer and � a regularization parameter. Suitable stabilizers are squares of norms on Hilbert
spaces. They are strictly convex and thus guarantee the uniqueness of the minimum points of the corresponding
regularized functionals. Among such stabilizers, a special role is played by norms on reproducing kernel Hilbert
spaces (RKHS’) (see Appendix A). They can penalize solutions with undesired high-frequency oscillations, since
high-frequency filters of the form

�	f �= 	2��−d
∫
�d

f̂ 	s�2

k̂	s�
ds

with k̂ > 0 (where k̂ denotes the Fourier transform of k) are squares of norms on RKHS’ generated by convolution
kernels (Girosi [20]) (see Appendix A).
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The expected error regularized by such a stabilizer is the functional �����K on the RKHS induced by the
kernel K, defined as

�����K	f �=��	f �+�
f 
2K =
∫
X×Y

	f 	x�− y�2d�+�
f 
2K�
Let LK� �

2
�X
	X�→�2

�X
	X� denote the integral operator defined for every f ∈�2

�X
	X� as

LK	f �	u�=
∫
X
f 	v�K	u� v�d�X�

Recall that, for K continuous and X compact, LK is a compact operator (Friedman [19, pp. 238, 188]). For
K symmetric, LK is self-adjoint, and for K positive-definite, LK is positive (Friedman [19, pp. 237, 233]).
So for a continuous, symmetric, and positive-definite kernel, LK has an orthonormal family of eigenfunctions
��i� with positive eigenvalues � i�. The sequence � i�, ordered in a nonincreasing way, is either finite (when
K is degenerate) or convergent to zero. By the Mercer Theorem (see, e.g., Cucker and Smale [15, p. 34]),
K	u� v� =∑�

i=1  i�i	u��i	v�, where the convergence is absolute for all u� v ∈ X and uniform on X × X and∑�
i=1  i is convergent (Cucker and Smale [15, p. 36]). For a function f =∑�

i=1 ci �i ∈�2
�X
	X�, we denote


f 
l1 =
�∑
i=1

�ci��

When K is continuous and X is compact, the regularized expected error functional �����K achieves its mini-
mum over the RKHS �K	X� defined by K. The minimum point satisfies

f� = 	I +�L−1
K �−1	f�� (2)

(for the proof, see, e.g., p. 42 of the synthesis work (Cucker and Smale [15])). Note that for a nondegenerate
kernel K, the functional L−1

K is defined only on a proper subspace of �2
�X
	X�.

The optimal solution f� can be alternatively expressed as an image of the regression function f� under an
integral operator. Such an expression (which will be needed in Lemma 3.1) uses an operator K�� X ×X → �
defined as

K�	u� v�=
�∑
i=1

 i
 i +�

�i	u��i	v�� (3)

The kernel K� is positive definite, since the class of symmetric positive definite kernels contains all product
kernels and is closed with respect to linear combinations with positive coefficients as well as to pointwise limits
(Berg et al. [6]). The following proposition summarizes properties of K� and of the integral operator LK�

defined
for every f ∈�2

�X
	X� as

LK�
	f �	u�=

∫
X
f 	v�K�	u� v�d�X�

Proposition 2.1. Let d be a positive integer, X ⊂�d compact, Y ⊂� bounded, � a nondegenerate proba-
bility measure on X× Y , K� X×X→� a continuous, positive definite kernel, and � > 0. Then

(i) K� is a continuous positive definite kernel;
(ii) LK�

	�i�= 	 i/	 i +����i;
(iii) LK�

� 	�2
�X
	X��
�
�2

�X
�→ 	�K	X��
�
K� is a compact operator;

(iv) �K	X�=�K�
	X� and 
�
2K�

= 
�
2�2
�X

+�
�
2K .
Proof. Properties (i) and (ii) follow from the definitions of K� and LK�

.
(iii) Let f =∑�

i=1 ci�i ∈�2
�X
	X�, so

∑�
i=1 c

2
i <�. Then, LK�

	f �=∑�
i=1 ci	 i/	 i +����i and

∑�
i=1 	ci  i�

2 ·
	 i + ��−2 −1

i ≤ 	 1/�
2�
∑�

i=1 c
2
i < �. As �K	X� is a linear subspace of �2

�X
	X� formed by those f =∑�

i=1 ci �i ∈�2
�X
	X�, for which

∑�
i=1 c

2
i / i <� (Cucker and Smale [15]), we get LK�

	f � ∈�K	X�.
(iv) By the definition of K� and by (A2) from Appendix A, we get 
f 
2K�

=∑�
i=1 c

2
i 	 i +��/ i =

∑�
i=1 c

2
i +

�
f 
2K = 
f 
2�2
�X

+�
f 
2K . So 
f 
K�
<� if and only if 
f 
K <�. �

Using Proposition 2.1, we reformulate the characterization (2) of the minimum point of the regularized
expected error �����K over �K	X� in terms of LK�

.

Theorem 2.1. Let d be a positive integer, X ⊂�d compact, Y ⊂� bounded, � a nondegenerate probability
measure on X × Y , and K� X ×X → � a continuous kernel. Then in �K	X�, �����K has a unique minimum
point

f� = LK�
	f���

In Lemma 3.1, we shall exploit this representation to estimate the norm 
f�
K .
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3. Rates of approximate minimization of the regularized expected error. Although the regression func-
tion f� minimizing ���K�� may not be in �K	X�, its image under the operator LK�

is present because LK�
maps

the whole �2
�X
	X� into its linear subspace �K	X�. So LK�

	f�� can be approximated in K-norm (hence also
uniformly: See (A1) in Appendix A) by a sequence of linear combinations of functions from the set

GK = �Kx � x ∈X��
where Kx� X→� is defined as Kx	y�=K	x� y�. However, the sequence of the numbers of terms in the linear
combinations might be unbounded, or even when it is bounded, the bound may be too large.
Many neural-network learning algorithms are based on the minimization of a regularized discretized version

of the expected error, called empirical error. For example, in algorithms with the so-called weight-decay regu-
larization (see, e.g., Burger and Neubauer [12]), the hypothesis set is made up of input-output functions of the
form f =∑n

i=1wiK	xi� �� and the functional

�	f �=
n∑
i=1

�wi�

is used as a stabilizer. Since 
f 
K ≤∑n
i=1 �wi�K	xi� xi�≤ sK

∑n
i=1 �wi�, such algorithms decrease 
f 
2K .

To compare the theoretically optimal solution f� with suboptimal solutions achievable by using computational
models with a reasonably small number of terms, we estimate the speed of convergence of infima of ���K��

over the sets

spannGK =
{ n∑
i=1

wiKxi
�wi ∈�� xi ∈X

}
�

with increasing n. For positive definite kernels (see Appendix A), the sets GK are linearly independent, thus the
sets spannGK are not convex. Thus, results from convex optimization theory (Borwein and Lewis [11]) cannot
be applied and one has to consider infima instead of minima of �����K over spannGK .
To estimate the rate of convergence of these infima, we exploit an upper bound from Kůrková and

Sanguineti [29, Theorem 4.2] on convergence of approximate infima of continuous functionals; this bound is
based on tools from nonlinear approximation theory. It depends on moduli of continuity and convexity (for their
definitions, see Appendix B) of the functional to be minimized and on two norms of its minimum point (in
our case, f�) over the whole space: the norm 
�
 on the ambient space (in our case, 
�
K) and a certain norm
determined by a set G, called G-variation. It is defined for a bounded subset of a normed linear space 	X�
�
�
as the Minkowski functional of the closure (with respect to the topology induced by 
�
) of the symmetric
convex hull of G, i.e.,


f 
G = inf
{
c > 0

∣∣∣ f
c
∈ cl conv	G∪−G�

}
�

(see, e.g, Kůrková and Sanguineti [27] for the properties of 
�
G). In our case, we use the variation with respect
to GK , i.e., the norm 
�
GK

.
We first estimate moduli of continuity and convexity of �����K on �K	X� (for the proof, see Appendix C).

Proposition 3.1. Let d�n be positive integers, X ⊂�d compact, Y ⊂� bounded, � a nondegenerate prob-
ability measure on X× Y , K� X×X→� a continuous kernel, sK = supx∈X

√
K	x�x�, and � > 0. Then

(i) �����K is uniformly convex on �K	X� with a modulus of convexity '	t�≤ �t2;
(ii) �����K is continuous on (�K	X��
�
K� and for every g ∈�K	X�, the modulus of continuity of �����K at

g satisfies *g	t�≤ a2 t
2+ a1 t, where a2 = s2K +� and a1 = 2	
g
K	 s2K +��+ sKsY �;

(iii) there exists a unique minimum point f� of �����K over �K	X� and, for every f ∈�K	X�� 
f − f�
2K ≤
	�����K	f �−�����K	f���/��

The regularized expected error �����K is continuous and uniformly convex on �K	X�. Both its moduli of
convexity and continuity are bounded from above by quadratic functions; the function bounding its modulus of
continuity *g at some g ∈�K	X� depends on the norm 
g
K . In particular, for g = f� we get

*f�
	t�≤ +	t�= 	s2K +��t2+ 2	
f�
K	s2K +��+ sKsY �t� (4)

Combining Kůrková and Sanguineti [29, Theorem 4.2] with Proposition 3.1, we obtain the following upper
bound on rates of minimization of �����K over spann GK . For a functional �, a set � , and ,> 0, we denote by
argmin, 	���� the set of all ,-near minimum points, i.e.,

argmin
,

	����=
{
f ∈� ��	f � < inf

f∈�
�	f �+ ,

}
�
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Theorem 3.1. Let d�n be positive integers, X ⊂�d compact, Y ⊂� bounded, � a nondegenerate probability
measure on X×Y , K� X×X→� a continuous kernel, sK = supx∈X

√
K	x�x�, � > 0, f� the minimum point of

�����K over �K	X�, �,n�⊂�+, and fn ∈ argmin,n	spann GK������K�. Then,

(i) inff∈spann GK
�����K	f �−�����K	f��≤ +	

√
		sK
f�
GK

�2−
f�
2K�/n�;
(ii) 
fn− f�
2K ≤ 	1/��	+	

√
		sK
f�
GK

�2−
f�
2K�/n�+ ,n�;

(iii) supx∈X �fn	x�− f�	x��2 ≤ 	s2K/��	+	
√
		sK
f�
GK

�2−
f�
2K�/n�+ ,n��

The next lemma shows that, with increasing �, the K-norm of the regularized solution f� decreases at least
as fast as sY /2

√
�.

Lemma 3.1. Let d be a positive integer, X ⊂ �d compact, Y ⊂ � bounded, and � > 0. Then, for every
nondegenerate probability measure � on X×Y and every continuous positive semidefinite kernel K� X×X→�,
the unique minimum point f� of �����K over �K	X� satisfies


f�
K ≤ sY
2
√
�
�

Proof. Let f� = ∑�
i=1 ci �i. Then, by Theorem 2.1, f� = ∑�

i=1	ci i/	 i +����i and so 
f�
2K =∑�
i=1	ci i/	 i +���2	1/ i�=

∑�
i=1 c

2
i  i/	 i +��2. It is easy to check that, for all i,  i/	 i +��2 ≤ 1/4�, and

so 
f�
2K =∑�
i=1 c

2
i  i/	 i +��2 ≤ 	1/4��

∑�
i=1 c

2
i = 	1/4��
f�
2�2

�X

≤ s2Y /4�� �

Lemma 3.1 and Equation (4) imply the following estimate of the modulus of continuity *f�
of �����K at f�

formulated in terms of sK , sY , and the regularization parameter �:

*f�
	t�≤ 	s2K +��t2+ sY

(
s2K√
�
+ 2sK +√

�

)
t� (5)

To estimate 
f�
GK
we use an extension of Kůrková and Kainen [30, Theorem 2.2] stating that if f can be

expressed as

f 	v�=
∫
X
h	u�K	u� v�d 	u�= LK	h�� (6)

with K� X×X→� continuous, X compact, and h ∈�1
 	X�, where  is the Lebesgue measure, then


f 
GK
≤ 
h
�1

 
� (7)

In the next proposition, using the integral representation f� = LK�
	f��, we express f� as an element of the

range of LK .

Proposition 3.2. Let d be a positive integer, X ⊂�d compact, Y ⊂� bounded, K� X×X→� a continuous
kernel, � i� the sequence of the eigenvalues of LK , � > 0, and f� be the unique minimum point of �����K over
�K	X�. Then, for every nondegenerate probability measure � on X× Y ,

(i) there exists f̄� ∈�2
�X
	X� such that f� = LK	f̄��;

(ii) 
f�
GK
≤∑�

i=1 �ci�1/	 i +��, where f� =
∑�

i=1 ci �i;
(iii) 
f�
GK

≤ 	1/��
f�
l1 �
Proof. (i) Let f� =

∑�
i=1 ci �i be the representation of f� as an element of �

2
�X
	X�. Define f̄� =

∑�
i=1 ci ·

	 i +��−1�i. By Theorem 2.1, f� = LK�
	f��=

∑�
i=1 ci	 i/	 i +����i =

∑�
i=1  i	ci/	 i +���i�= LK	f̄��.

(ii) By (i), f�	u�=
∫
X
f̄�	v�K	u� v�d�X . Inspection of the proof of Kůrková and Kainen [30, Theorem 2.2]

shows that Equation (6) implies Equation (7) also when  is replaced with any nondegenerate probability
measure. Thus, by continuity of K, we get 
f�
GK

≤ 
f̄�
�1
�X

≤∑�
i=1 �ci� · 1/	 i +��.

(iii) For all i 1/	 i +��≤ 1/�, so by (ii) we have 
f�
GK
≤ 	1/��

∑�
i=1 �ci� = 	1/��
f�
l1 . �

Proposition 3.2(iii) gives an estimate of 
f�
GK
in terms of the regularization parameter � and the l1-norm of

the regression function f�. Combining this estimate with Theorem 3.1 and the upper bound Equation (5) on the
modulus of continuity *f�

, we get the next upper bound on the speed of convergence of approximate infima of
the regularized expected error �����K over spann GK .

Theorem 3.2. Let d�n be positive integers, X ⊂�d compact, Y ⊂� bounded, K� X×X→� a continuous
kernel, sK = supx∈X

√
K	x�x�, � > 0, f� the unique minimum point of �����K over �K	X�, �,n� ⊂ �+, fn ∈

argmin,n	spann GK������K�, b = 	s2K + ��	sK/��
2, and c = 	sKsY /��	s

2
K/

√
� + 2sK + √

��. Then, for every
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Kůrková and Sanguineti: Minimization of the Regularized Expected Error
752 Mathematics of Operations Research 33(3), pp. 747–756, © 2008 INFORMS

nondegenerate probability measure � on X× Y , the following estimates hold:
(i) inff∈spann GK

�����K	f �−�����K	f��≤ 	b/n�
f�
2l1 + 	c/
√
n�
f�
l1;

(ii) 
fn− f�
2K ≤ 	1/��		b/n�
f�
2l1 + 	c/
√
n�
f�
l1 + ,n�;

(iii) supx∈X �fn	x�− f�	x��2 ≤ 	s2K/��		b/n�
f�
2l1 + 	c/
√
n�
f�
l1 + ,n�.

Proof. Theorem 3.1 implies

inf
f∈spann GK

�����K	f �−�����K	f��≤ +

(
sK
f�
GK√

n

)
� (8)


fn− f�
2K ≤ 1
�

(
+

(
sK
f�
GK√

n

)
+ ,n

)
� (9)

and

sup
x∈X

�fn	x�− f�	x��2 ≤
s2K
�

(
+

(
sK
f�
GK√

n

)
+ ,n

)
� (10)

By the estimate Equation (5) of the modulus of continuity *f�
and the estimate of 
f�
GK

from Proposi-
tion 3.2(iii), we get

+

(
sK
f�
GK√

n

)
≤ 	s2K +��

(
sK 
f�
l1
�
√
n

)2

+ sY

(
s2K√
�
+ 2sK +√

�

)
sK 
f�
l1
�
√
n

= s2K +�

n

(
sK
�

)2


f�
2l1 +
sK sY
�
√
n

(
s2K√
�
+ 2sK +√

�

)

f�
l1 � (11)

The bounds (i), (ii), and (iii) follow from Equation (11) combined with Equations (8), (9), and (10),
respectively. �

By Theorem 3.2, the larger �, the faster the convergence. For a fixed �, the estimates imply fast convergence
for probability measures � with small l1-norms of the regression functions f�.

4. Approximate minimization of the regularized empirical error. Let d be a positive integer, X ⊂ �d,
Y ⊂�, and z= �	xi� yi�⊂X×Y �i= 1� � � � �m� a sample of data. By �z we denote the empirical error functional,
defined as

�z	f �=
1
m

m∑
1=1
	f 	xi�− yi�

2�

The empirical error functional is a special case of the expected error; it is determined by the discrete probability
measure � on X × Y satisfying �	xi� yi�= 1/m and otherwise �	x� y�= 0. For such �, �z = ��. It is easy to
check that, in this case, the regression function f� satisfies for all i= 1� 0 0 0 �m, f�	xi�= yi, 	�

2
�X
	X��
�
�2

�X
�=

	�m�
�
2�m�, where 
u
22�m = 	1/m�
∑m

i=1 u
2
i , and 
f�
l1 = 	1/m�
y
1, where y = 	y1� 0 0 0 � ym�.

For a kernel K and a regularization parameter � > 0, we denote the regularized empirical error functional by

�z���K	f �=
1
m

m∑
i=1
	f 	xi�− yi�

2+�
f 
2K�

Recall that the unique minimum point f� of �z���K over �K	X� satisfies (see, e.g., Cucker and Smale [15, p. 42])

f� =
m∑
i=1

ciKxi
� (12)

where c= 	c1� 0 0 0 � cm� is the unique solution of the well-posed linear system

	�m� +�1x2�c= y � (13)

� is the m×m identity matrix and �1x2ij =K	xi� xj� is the m×m Gram matrix of the kernel K with respect
to x= 	x1� 0 0 0 � xm� and y = 	y1� 0 0 0 � ym�.
As a corollary of Theorem 3.2, we obtain the following estimates for minimization of �z���K over spann GK .

Corollary 4.1. Let d�m�n be positive integers, X ⊂ �d, Y ⊂ �, K� X × X → � a kernel, sK =
supx∈X

√
K	x�x�, � > 0, z= �	xi� yi� ∈ X × Y � i= 1� 0 0 0 �m�, ymax =max��yi� � i= 1� � � � �m�, f� be the unique

solution of 	�K	X���z���K�, �,n� a sequence of positive real numbers, and �fn� a sequence of ,n-near minimum
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points of 	spann GK��z���K�, b= s2K	s
2
K +��/�2 and c= ymax	sK/��	s

2
K/

√
�+ 2sK +√

��. Then
(i) inff∈spann GK

�z���K	f �−�z���K	f��≤ b
y
21/m2 n+ c
y
1/m
√
n;

(ii) 
fn− f�
2K ≤ 	1/��	b
y
21/m2n+ c 
y
1/m
√
n+ ,n�;

(iii) supx∈X �fn	x�− f�	x��2 ≤ 	s2K/��	b
y
21/m2n+ c
y
1/m
√
n+ ,n�.

In Kůrková and Sanguineti [29], we derived estimates for minimization of the regularized empirical error
directly from properties of �z���K . In Kůrková and Sanguineti [29, Theorem 5.4], we obtained the following
upper bounds:

inf
f∈spann GK

�z���K	f �−�z���K	f��≤
b′

n
+ c′√

n
� (14)


fn− f�
2K ≤ 1
�

(
b′

n
+ c′√

n
+ ,n

)
� (15)

sup
x∈X

�fn	x�− f�	x��2 ≤
s2K
�

(
b′

n
+ c′√

n
+ ,n

)
� (16)

where

b′ = 	s2K +��

(
sK
y
2
�
√
m

)2

� (17)

c′ = 2
(
	s2K +��

√
 max
y
2
�m

+ ymaxsK

)
sK
y
2
�
√
m

� (18)

and  max is the maximum eigenvalue of the Gram matrix �1x2.
In Table 1, the upper bounds derived in this paper as a special case of those obtained for the expected error

are compared with estimates derived in Kůrková and Sanguineti [29] directly for the empirical error.
Note that, if � is not too small, then, for data for which 
y
1 is close to

√
m
y
2, the coefficient 	s2K + ��

	sK
y
1/�m�2 of the term 1/n is close to the coefficient 	s2K + ��	sK
y
2/�
√
m�2. So, in this case, the results

from Kůrková and Sanguineti [29, Theorem 3.1] and Corollary 4.1 are quite similar. However, in this case, the
coefficients of the term 1/

√
n differ. For  max ≤ �/4, the estimate

(
s2K
�
2
√
 max+ 2sK + 2√ max

)
sK ymax 
y
1

�m
� (19)

of the coefficient 2		s2K + ��
√
 max
y
2/�m + ymaxsK�sK
y
2/�

√
m at the term 1/

√
n from Kůrková and

Sanguineti [29, Theorem 3.1] is better than the coefficient
(
s2K√
�
+ 2sK +√

�

)
sK 
y
1
�m

ymax (20)

from Corollary 4.1.

5. Discussion. The Representer Theorem describes theoretically the optimal solution of a learning task with
a generalization capability modeled by using a global condition on the solution, which can be expressed in terms
of a kernel norm. We have compared such an optimal solution with suboptimal ones, which can be achieved by
various neural-network algorithms operating on networks with a limited number n of computational units. We
have estimated the speeds of convergence of such suboptimal solutions.

Table 1. Upper bounds from Kůrková and Sanguineti [29, Theorem 3.1] and Corollary 4.1.

Upper bounds Upper bounds from
from Corollary 4.1 Kůrková and Sanguineti [29, Theorem 3.1]

1
n

	s2K +��

(
sK
y
1
�m

)2

	s2K +��

(
sK
y
2
�
√
m

)2

1√
n

(
s2K√
�
+ 2sK +√

�

)
sK
y
1
�m

ymax 2
(
	s2K +��

√
 max
y
2
�m

+ ymaxsK

)
sK
y
2
�
√
m
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By contrast to studies (e.g., Burger and Neubauer [12]) that give only asymptotic results of the form �	1/
√
n�,

we have obtained upper bounds that hold for all n. Moreover, we have specified characteristics of the data
(properties of the regression function) and the kernels on which the estimates depend.
Our estimates have been derived using a result from nonlinear approximation theory developed by Maurey

(reported in Pisier [33, Lemma 2, p. V.2]), Jones [24, p. 611], and Barron [5, p. 934, Lemma 1]. As this result
gives a bound on the worst-case error (it holds for all functions with the same variation norm), our estimates
may not be tight: For some regression functions, faster rates might hold.
Because Maurey-Jones-Barron’s theorem is not constructive, it does not suggest a method to build suitable

networks. In practical applications, network parameters are searched for by algorithms based on gradient descent
with stochastic perturbations (Bertsekas [9, pp. 38–40, 103–104]), genetic algorithms (Goldberg [22]), simulated
annealing (Aarts and Korst [1]), global stochastic optimization based on Monte Carlo or quasi-Monte Carlo
methods (Yin [41]), and Basis Pursuit (Chen et al. [13]). Among learning algorithms explicitly developed for
neural networks, see, e.g., Alessandri et al. [3], Bertsekas and Tsitsiklis [10], Grippo [23], and the references
therein; for algorithms implementing weight-decay, see Burger and Neubauer [12] and Chen et al. [13].

Appendix A. Reproducing kernel Hilbert spaces (RKHS’). For RKHS’ we refer the reader to
Aronszajn [4], Berg et al. [6]. For their role in statistics and in learning theory, see, e.g., Berlinet and Thomas-
Agnan [7] and Schölkopf and Smola [36], respectively. Here we just recall basic concepts and definitions.
A Reproducing Kernel Hilbert Space (RKHS) is a Hilbert space X formed by functions defined on a nonempty

set X such that, for every u ∈X, the evaluation functional �u, defined for any f ∈X as �u	f �= f 	u�, is bounded
(Aronszajn [4], Berg et al. [6], Cucker and Smale [15]).
RKHS’ can be characterized in terms of kernels, which are symmetric positive semidefinite functions K� X×

X→�, i.e., functions satisfying, for all positive integers m, all 	w1� 0 0 0 �wm� ∈�m and all 	u1� 0 0 0 � um� ∈Xm,
m∑

i� j=1
wi wj K	ui� uj�≥ 0�

Every kernel K� X × X → � generates an RKHS �K	X� that is the completion of the linear span of the set
�Ku � u ∈ X�, with the inner product defined as �Ku�Kv�K = K	u� v� and the induced norm 
·
K (see, e.g.,
Aronszajn [4] and Berg et al. [6, p. 81]).
By the reproducing property and the Cauchy-Schwartz inequality, for every f ∈�K	X� and every u ∈X, one

has �f 	u�� = ��f �Ku�K � ≤ 
f 
K
√
K	u�u�≤ sK 
f 
K , where sK = supu∈X

√
K	u�u�. Thus, for every kernel K,

sup
u∈X

�f 	u�� ≤ sK
f 
K� (A1)

The role of 
�
2K as a stabilizer can be illustrated by two examples of classes of kernels. The first is formed
by Mercer kernels, i.e., continuous, symmetric, and positive definite functions K� X ×X → �, where X ⊂ �d

is compact. For a Mercer kernel K, 
f 
2K can be expressed using eigenvectors and eigenvalues of the compact
linear operator LK� �2	X�→		X� , defined, for every f ∈�2	X�, as LK	f �	x�=

∫
X
K	x�u� f 	u�du � where

�2	X� and 		X� denote the spaces of square integrable and of continuous functions on X, respectively. By
the Mercer Theorem (Cucker and Smale [15, p. 34]),


f 
2K =
�∑
i=1

c2i
 i
� (A2)

where the  i’s are the eigenvalues of LK and the ci’s are the coefficients of the representation f =∑�
i=1 ci�i,

where ��i� is the orthonormal basis of �K	X� formed by the eigenvectors of LK .
Note that the sequence � i� is either finite or convergent to zero (for K smooth enough, the convergence to

zero is rather fast (Dunford and Schwartz [17, p. 1119])). Thus, the stabilizer 
�
2K penalizes functions for which
the sequences of coefficients �ci� do not converge to zero sufficiently quickly. So the functional 
�
2K plays the
role of a high-frequency filter.
The second class of kernels illustrating the role of 
�
2K as a stabilizer consists of convolution kernels, i.e.,

kernels defined on �d×�d such that K	x� y�= k	x−y�, for which the Fourier transform k̃ of k is positive. For
such kernels, the value of the stabilizer at any f ∈�K	X� can be expressed as


f 
2K = 1
	2��d/2

∫
�d

f̃ 	*�
2

k̃	*�
d*�

(see, e.g., Girosi [20] and Schölkopf and Smola [36, p. 97]). The function 1/k̃ plays a role analogous to that of
the sequence �1/ i� in the case of a Mercer kernel. For example, the Gaussian kernel is a convolution kernel
with a positive Fourier transform.
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Appendix B. Convex functionals. For concepts related to optimization and convexity, we refer readers to
Borwein and Lewis [11].
A modulus of continuity of a functional �� 	��
�
�→ � at f ∈ � is defined, for every t > 0, as *f 	t�=

sup���	f �−�	g��� 
f − g
 ≤ t��
A functional � is convex on a convex set M ⊆ � if for all h�g ∈M and all  ∈ 10�12, one has �	 h+

	1 −  �g� ≤  �	h� + 	1 −  ��	g� and � is uniformly convex if there exists a function '� �+ → �+ such
that '	0� = 0, for all t > 0, '	t� > 0, and for all h�g ∈M and all  ∈ 10�12, �	 h+ 	1−  �g� ≤  �	h�+
	1− ��	g�− 	1− �'	
h− g
�. Any such function ' is called a modulus of convexity of �.

Appendix C. Proof of Proposition 3.1. This proof follows steps similar to those of the proof of properties
of the regularized empirical error from Kůrková and Sanguineti [29, Proposition 5.1].

(i) It is easy to check that the sum of a convex functional and a uniformly convex functional with modulus
of convexity ' is a uniformly convex functional with the same modulus ', and that the square of the norm on a
Hilbert space is a uniformly convex functional with the modulus of convexity bounded from above by t2 (see,
e.g., Kůrková and Sanguineti [28, Proposition 2.1(iv)]). The convexity of �� can be easily proved by using the
Fubini Theorem (Friedman [19, p. 85]).
(ii) We first estimate the modulus of continuity of ��. By the Fubini Theorem (Friedman [19, p. 85]) and

(A1), for every f � g ∈�K	X�, we have

���	f �−��	g�� ≤
∫
X×Y

�	f 	x�− g	x�� 	f 	x�+ g	x�− 2y��d�

≤ sK
f − g
K
∫
X×Y

�	f 	x�+ g	x�− 2y��d�

≤ sK
f − g
K
∫
X

∫
Y
	�f 	x�+ g	x�� + �2y��d�	y � x�d�X

≤ sK
f − g
K
(∫

X
	sK
f − g
K + 2sK
g
K�d�X +

∫
Y
�2y�d�	y � x�

)
� (C1)

As
∫
Y
�2y�d�	y � x�≤ 2sY , we get

���	f �−��	g�� ≤ sK
f − g
K	sK
f − g
K + 2sK
g
K + 2sY ��
So �� is continuous on 	�K	X��
�
K�, and its modulus of continuity at g is bounded from above by s2Kt

2 +
2sK	sK
g
K + sY �t.
Since


f 
2K −
g
2K = �f − g� f + g�K ≤ 
f − g
K	
f − g
K + 2
g
K��
the modulus of continuity of �
�
2K at g is bounded from above by �t2+ 2
g
K�t.
Thus, �����K is continuous on 	�K	X��
�
K� with the modulus of continuity at g bounded from above by

	s2K +��t2+ 2		s2K +��
g
K + sKsY �t.
(iii) The existence of a unique minimum point f� is guaranteed by Theorem 2.1. By Dontchev [16, p. 10]

(see also Kůrková and Sanguineti [29, Proposition 4.1(ii)]), for every functional � that is uniformly convex over
a convex set M with a modulus of convexity ' and a minimum point f o, for any f ∈M we have '	
f − f o
�≤
�	f �−�	f o�. Hence, for every f ∈�K	X� we get �
f − f�
2K ≤ ������K	f �−�����K	f���.
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