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Estimates of the Number of Hidden Units and Variation
with Respect to Half-spaces

Abstract

We estimate variation with respect to half-spaces in terms of “flows through
hyperplanes”. Our estimate is derived from an integral representation for
smooth compactly supported multivariable functions proved using properties
of the Heaviside and delta distributions. Consequently we obtain conditions
which guarantee approximation error rate of order O( 1√

n
) by one-hidden-layer

networks with n sigmoidal perceptrons.

Keywords. approximation of functions, one-hidden-layer sigmoidal networks,
estimates of the number of hidden units, variation with respect to half-spaces,
integral representation

1 Introduction

Approximating functions from Rd to Rm by feedforward neural networks has been
widely studied in recent years, and the existence of an arbitrarily close approxima-
tion, for any continuous or Lp function defined on a compact set, has been proven for
one-hidden-layer networks with perceptron or radial-basis-function units with quite
general activation functions (see e.g., Mhaskar & Micchelli, 1992, Park & Sandberg,
1993).

However, estimates of the number of hidden units that guarantee a given accu-
racy of approximation are less understood. Most upper estimates grow exponen-
tially with the number of input units, i.e. with the number d of variables of the
function f to be approximated (e.g., Mhaskar & Micchelli, 1992, Kůrková, 1992).
A general result by deVore et al. (1989) confirms that there is no hope for a better
estimate when the class of multivariable functions being approximated is defined in
terms of the bounds of partial derivatives and parameters of approximating networks
are chosen continuously. But in applications, functions of hundreds of variables are
approximated sufficiently well by neural networks with only moderately many hid-
den units (e.g., Sejnowski & Yuhas, 1989).

Jones (1992) introduced a recursive construction of approximants with “dimen-
sion-independent” rates of convergence to elements in convex closures of bounded
subsets of a Hilbert space and proposed to apply it to the space of functions achiev-
able by a one-hidden-layer neural network (in fact, the idea of applying Jones’ result
to neural networks seems to have been a joint effort of Jones and Barron as both
authors acknowledged in their papers – see Jones (1992) and Barron (1993)). Ap-
plying Jones’ estimate Barron (1993) showed that it is possible to approximate any
function satisfying a certain condition on its Fourier transform within L2 error of
O( 1√

n
) by a network whose hidden layer contains n perceptrons with a sigmoidal

activation function.
Using a probabilistic argument Barron (1992) extended Jones’ estimate also to

supremum norm. His estimate holds for functions in the convex uniform closure of
the set of characteristic functions of half-spaces multiplied by a real number less
than or equal to B. He called the infimum of such B the variation with respect
to half-spaces and noted that it could be defined for any class of characteristic
functions.

In this paper, we prove two main results which are complementary. The first
one (Theorem 3.5) bounds variation with respect to half-spaces for functions that
can be represented by an integral equation corresponding metaphorically to a neu-
ral network with a weighted continuum of Heaviside perceptrons. The bound on
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variation is the L1-norm of the weighting function. The second one (Theorem 4.1)
provides, for compactly supported functions on Rd, for d odd, with continuous d-th
order partial derivatives, such a representation with weights corresponding to flows
orthogonal to hyperplanes determined by the input weights and biases.

For these functions we derive an upper bound on their variation with respect to
half spaces over a compact subset J of Rd equal to 1

2 (2π)1−d times the integral over
the cylinder Sd−1 × R of the absolute value of the integral of the d-th directional
derivative of f over the intersection of J with the cozero hyperplane determined by
a point in the cylinder Sd−1 ×R (corresponding to the affine functions determined
by perceptron parameters: weight vector and bias).

Estimating these integrals we show that the variation with respect to half-spaces
of a function f over a compact subset J of Rd is bounded above by the supremum of
absolute values of integrals of directional derivatives of order d of f over orthogonal
hyperplanes multiplied by a d-dimensional volume. For single variable functions
our bound is identical to a well-known formula for total variation, which in the
1-dimensional case is the same as variation with respect to half-spaces.

Consequently, for d odd and f a compactly supported, real-valued function on
Rd with continuous partial derivatives of order d, we can guarantee approximations
for L2-norm with error rate at most O( 1√

n
) by one-hidden-layer networks with n

sigmoidal perceptrons for any bounded sigmoidal activation function.
Our proof is based on properties of the Heaviside and delta distributions. We

use a representation of the d-dimensional delta distribution as an integral over the
unit sphere Sd−1 in Rd that is valid only for d odd. To obtain a representation
for all positive integers d, one could extend functions f defined on Rd to Rd+1 by
composition with a projection from Rd+1 to Rd.

The remainder of the paper is organized as follows: Section 2 investigates func-
tions in the convex closures of parameterized families of continuous functions and
integral representations. Section 3 considers variation with respect to half-spaces,
while section 4 gives an integral representation theorem and its consequence for a
bound on variation. Section 5 is about rates of approximation and dimension inde-
pendence. Section 6 is a brief discussion, while the proofs are given in section 7.

2 Approximation of functions in convex closures

Let R, N denote the set of real and natural numbers, respectively.
Recall that a convex combination of elements s1, . . . , sm (m ∈ N ) in a lin-

ear space is a sum of the form
∑m

i=1 aisi, where the ai are all non-negative and∑m
i=1 ai = 1. A subset of a vector space is convex if it contains every convex com-

bination of its elements; we denote the set of all convex combinations of elements
of X by conv X, which is clearly a convex set, and call it the convex hull of X.

When we require measurability, it will be with respect to Lebesgue measure in
some subset of Rk. By λk(A) is to denoted the k-dimensional Lebesgue measure of
a set A ⊂ Rk.

For a topological space X C(X) denotes the set of all continuous real-valued
functions on X and ‖.‖C denotes the supremum norm. For a subset X of Rd and
a positive integer d Ck(X) denotes the set of all real-valued functions on X with
continuous iterated partial derivatives of order k; C∞(X) the set of all functions
with continuous partial derivatives of all orders. For p ∈ [1,∞) and a subset X of
Rd Lp(X) denotes the space of Lp functions and ‖.‖p denote the Lp-norm.

For any topological space X with a topology τ , we write clτA for the closure of a
subset A of X (smallest closed subset containing A). So clC denotes the closure in the
topology of uniform convergence and clLp the closure with respect to Lp-topology.
Closure of the convex hull is called the convex closure. For a function f : X → R
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the support of f denoted by supp(f) is defined by supp(f) = clτ{x ∈ X; f(x) 6= 0}.
For f : X → R and A ⊂ X, f |A denotes the restriction of f to A; when it is clear
from context, we omit the subscript.

Jones (1992) estimated rates of approximation of functions from convex closures
of bounded subsets of a Hilbert space; see also Barron (1993), p.934.

Theorem 2.1 Let H be a Hilbert space with a norm ‖.‖, B be a positive real number
and G a subset of H such that for every g ∈ G ‖g‖ ≤ B. Then for every f ∈
cl conv G, for every c > B2 − ‖f‖2 and for every natural number n there exists fn

that is a convex combination of n elements of G such that

‖f − fn‖2 ≤ c

n
.

To use this theorem to estimate the number of hidden units in neural networks,
one takes G to be the set of functions computable by single-hidden-unit networks
for various types of computational units. Convex combinations of n such functions
can be computed by a network with n hidden units and one linear output unit.

Several authors have derived characterizations of such sets of functions from
integral representations (e.g., Barron, 1993, used Fourier representation, Girosi and
Anzellotti, 1993, convolutions with signed measures). Here we formulate a general
characterization of this type for parameterized families of functions.

For X, Y topological spaces, a function φ : X × Y → R, a positive real number
B and a subset J ⊆ X define G(φ,B, J) = {f : J → R; f(x) = wφ(x, y); w ∈
R, |w| ≤ B, y ∈ Y }. So G(φ,B, J) consists of a family of real-valued functions on J
parameterized by y ∈ Y and then scaled by a constant at most B in absolute value.

Theorem 2.2 Let d be any positive integer, J be a compact subset of Rd and let
f ∈ C(J) be any function that can be represented as f(x) =

∫
Y

w(y)φ(x,y)dy,

where Y ⊆ Rk for some positive integer k, w ∈ C(Y ) is compactly supported and
φ ∈ C(Rd × Y ). Then f ∈ clCconv G(φ,B, J), with B =

∫
Jφ
|w(y)|dy, where

Jφ = {y ∈ Y ; (∃x ∈ J)(w(y)φ(x,y) 6= 0)}.

Notice that cl Jφ is compact and when φ is never 0, then Jφ = supp(w).
To apply this theorem to perceptron type networks with an activation func-

tion ψ : R → R put Y = Rd × R and define Pψ(x,v, b) = ψ(v · x + b). So
G(Pψ, B, J) denotes the set of functions computable by a network with d inputs,
one hidden perceptron with an activation function ψ and one linear output unit with
weight bounded by B in absolute value. Typically, ψ is sigmoidal, i.e. it satisfies
limt→∞ ψ(t) = 1 and limt→−∞ ψ(t) = 0. Note that many authors add to definition
of a sigmoidal function an additional assumption that the function is monotonically
increasing. However, for our results this weaker definition is sufficient.

Corollary 2.3 Let ψ : R → R be a continuous activation function, φ = Pψ, d be
any positive integer, J be a compact subset of Rd and f ∈ C(J) be any function
that can be represented as f(x) =

∫
K

w(v, b)ψ(v · x + b)d(v, b), where K ⊆ Rd+1,
w ∈ C(Rd × R) is compactly supported. Then f ∈ clCconv G(Pψ, B, J), with B =∫

Jφ
|w(v, b)|d(v, b), where Jφ = {(v, b) ∈ Rd×R; (∃x ∈ J)(w(v, b)ψ(v ·x+b) 6= 0)}.

So for functions computable by perceptron networks with a “continuum” of
hidden units, we can find a suitable bound B for Jones’ theorem by taking B =∫

Jφ
|w(v, b)|dvdb.
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3 Variation with respect to half-spaces

Let ϑ denote the Heaviside function (ϑ(x) = 0 for x < 0 and ϑ(x) = 1 for x ≥ 0).
It is easy to see that for J a proper subset of Rd G(Pϑ, B, J) = {g : J → R;
g(x) = wϑ(e · x + b), e ∈ Sd−1, w, b ∈ R, |w| ≤ B}, where Sd−1 denotes the unit
sphere in Rd (for J = Rd these two sets only differ by constant functions of norm
at most B).

Let J ⊂ Rd and let F(J) be a linear space of functions from J to R and τ be a
topology on F(J). For f ∈ F(J) put

V (f, τ, J) = inf{B ∈ R; f ∈ clτ conv G(Pϑ, B, J)}
and call V (f, τ, J) the variation of f on J with respect to half-spaces and topology
τ . For f : Rd → R, if f |J ∈ F(J), then we write V (f, τ, J) instead of V (f |J , τ, J).
The following proposition shows that when the topology τ is induced by a norm,
this infimum is achieved.

Proposition 3.1 Let d be a positive integer, J ⊂ Rd, F(J) be a linear space of
functions on J with a topology τ induced by a norm ‖.‖. Then for every f ∈ F(J)
f ∈ clτ conv G(Pϑ, V (f, τ, J), J).

When J is fixed, variation with respect to half-spaces is a norm on function
spaces as described in the next proposition.

Proposition 3.2 For every positive integer d, for every J ⊂ Rd and for every
topology τ induced by a norm ‖.‖ on a linear space F(J) of functions from J to R
(i) the set of functions B(J) = {f ∈ F(J); V (f, τ, J) < ∞} is a linear subspace of
F(J),
(ii) V (., τ, J) is a norm on its factor space B(J)/ ∼, where the equivalence ∼ is
defined by f ∼ g when ‖f − g‖ = 0,
(iii) for every f ∈ F(J) ‖f‖ ≤ V (f, τ, J) sup{‖ϑ(e · x + b)‖; e ∈ Sd−1, b ∈ R}.

So we have an elementary lower bound on the variation with respect to half-
spaces. In particular, for any compact J ⊂ Rd and f ∈ C(Rd) ‖f‖C ≤ V (f, C, J),
while for f ∈ Lp(J) for some p ∈ [1,∞) λd(J)−1/p‖f‖p ≤ V (f,Lp, J), where λd

denotes the Lebesgue measure on Rd.
Let p ∈ [1,∞]. For every X ⊆ Lp(J) we have clCX ⊆ clLpX; hence, V (f,Lp, J) ≤

V (f, C, J). In addition to changing the topology, one could also change the func-
tion ψ generating Pψ. The first one of the following two estimates is obtained
using an approximation of the Heaviside function ϑ in the L1-norm by a sequence
of sigmoidal functions with increasing steepness. The second one follows from a
possibility to approximate uniformly any continuous non-decreasing sigmoid by a
“staircase” function.

Proposition 3.3 Let σ : R→ R be a bounded sigmoidal function. Then for every
positive integer d, for every compact J ⊂ Rd and for every p ∈ [1,∞)

clLpconv G(Pϑ, B, J) ⊆ clLpconv G(Pσ, B, J).

Proposition 3.4 Let σ : R → R be a non-decreasing continuous sigmoidal func-
tion. Then for every positive integer d, for every compact J ⊂ Rd and for every
B ≥ 0,

clCconv G(Pσ, B, J) ⊆ clCconv G(Pϑ, B, J)

and for every p ∈ [1,∞),

clLpconv G(Pσ, B, J) ⊆ clLpconv G(Pϑ, B, J).
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So in Lp-topology variation with respect to half-spaces is unchanged if the Heav-
iside function is replaced by any continuous non-decreasing sigmoidal function.

Recall that for a function f : R → R and an interval [s, t] ⊂ R total variation
of f on [s, t] denoted by T (f, [s, t]) is defined to be sup{∑k

i=1 |f(ti+1)− f(ti)|; s =
t1 < . . . < tk = t, k ∈ N} (see e.g., McShane, 1944). For functions of one variable
satisfying f(s) = 0, the concept of total variation on [s, t] coincides with the concept
of variation with respect to half-spaces (half-lines) and the topology of uniform
convergence, since T (f, [s, t]) = V (f, C, [s, t]) (this follows from Lemma 7.1 or see
Barron, 1992, also Darken et al., 1993, Theorem 6). In contrast to variation with
respect to half-spaces total variation is only a semi-norm (see Hewitt & Stromberg,
1965, p.271).

When generalizing to functions of several variables, there is no unique way to
extend the notion of total variation since we lose the linear ordering property. One
well-known method divides d-dimensional cubes into boxes with faces parallel to
the coordinate hyperplanes. One defines
T (f, J) = supJ

∑k
i=1 |f(Ji)|, where J is the set of all subdivisons {Ji; i = 1, . . . , k}

of J into boxes and f(Ji) =
∑2d

j=1(−1)ν(j)f(xij), where {xij ; j = 1, . . . , 2d} are
the corner points of Ji and ν(j) = ±1 is a parity (see McShane, 1944). For d ≥ 2
this concept is different from Barron’s variation with respect to half-spaces. For
example, the characteristic function χ of the set {(x1, x2) ∈ [0, 1]2; x1 ≥ x2} has
the variation w.r.t. half-spaces and any topology equal to 1, while the total variation
T (χ, [0, 1]2) is infinite.

For a differentiable function, total variation can be characterized as an integral
of the absolute value of its derivative. Formally, if J ⊂ R is an interval and f ′ ∈
L1(J) then T (f, J) =

∫
J
|f ′(x)|dx (see McShane, 1944, p.242). The following result

extends this bound to variation with respect to half-spaces.

Theorem 3.5 Let d be a positive integer, K ⊆ Sd−1×R, J be a compact subset of
Rd and f ∈ C(J) be any function which can be represented as f(x) =

∫
K

w(e, b)ϑ(e ·
x + b)d(e, b), where w ∈ C(Sd−1 ×R) is compactly supported and supp(w) ⊆ K.
Then f ∈ clCconv G(Pϑ, B, J), where B =

∫
K
|w(e, b)|d(e, b); that is, V (f, C, J) ≤∫

K
|w(e, b)|d(b, e).

4 Integral representation theorem

To estimate variation with respect to half-spaces using Corollary 3.5 we need an
integral representation theorem of the form of a neural network with continuum of
Heaviside perceptrons {ϑ(e · x + b); e ∈ Sd−1, b ∈ R}. The following theorem pro-
vides such a representation with output weights w(e, b) corresponding to orthogonal
“flows of order d” of f through cozero hyperplanes Heb = {y ∈ Rd; e · y + b = 0}.

Recall (see e.g., Rudin, 1964) that for e a unit vector in Rd and f a real-valued
function defined on Rd, the directional derivative of f in direction e is defined
by Def(y) = limt→0

f(y+te)−f(y)
t and the k-th directional derivative is inductively

defined by D
(k)
e f(y) = De(D

(k−1)
e f)(y). It is well-known (see e.g., Rudin, 1964,

p.222) that Def(y) = 5f(y)·e. More generally, the k-th order directional derivative
is a weighted sum of the corresponding k-th order partial derivatives, where the
weights are polynomials in the coordinates of e multiplied by multinomials (see
e.g., Edwards, 1994, p.130). Hence existence and continuity of partial derivatives
implies existence and continuity of directional derivatives.

Theorem 4.1 For every odd positive integer d every compactly supported function
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f ∈ Cd(Rd) can be represented as

f(x) = −ad

∫

Sd−1

∫

R

(∫

Heb

D(d)
e f(y)dy

)
ϑ(e · x + b)dbde,

where ad = −1
d−1
2 /(2(2π)d−1).

Our proof of Theorem 4.1 makes use of the theory of distributions. For a positive
integer k, denote by δk the delta distribution operating by convolution as the identity
on the linear space D(Rk) of all test functions (i. e. the subspace of C∞(Rk)
containing compactly supported functions). For d odd, one can represent the delta
distribution δd as an integral over the unit sphere δd(x) = ad

∫
Sd−1 δ1

(d−1)(e · x)de
(see Courant & Hilbert, 1992, p.680) ( by δ1

(d−1) is denoted the d-1-st distributional
derivative of δ1). We also utilize the fact that δ1 is the first distributional derivative
of ϑ.

Extension to all compactly supported functions with continuous partial deriva-
tives of order d follows from a basic result of distribution theory: each continuous
compactly supported function can be uniformly approximated on Rd by a sequence
of test functions (see e.g., Zemanian, 1987, p.3).

Integral representation 4.1 together with Theorem 3.5 gives an estimate of vari-
ation with respect to half-spaces toward which we have been aiming.

Theorem 4.2 If d is an odd positive integer, J ⊂ Rd is compact, and f ∈ Cd(Rd)
is compactly supported, then

V (f, C, J) ≤ |ad|
∫

Sd−1

∫

R
|wf (e, b)|dbde,

where wf (e, b) =
∫

Heb
D

(d)
e f(y)dy and |ad| = (1/2)(2π)1−d.

It is easy to verify that when d = 1 Corollary 4.2 gives the estimate V (f, C, J) ≤∫
R |f ′(b)|db which, for f with supp(f) = J , agrees with the above mentioned char-

acterization of total variation for functions of one variable; a1 = 1/2 and the sphere
S0 consists of two points so the constant comes out correctly.

In Corollary 4.2, instead of integrating over Sd−1×R we can restrict to integra-
tion only over J∗ = {(e, b) ∈ Sd−1×R; (∃x ∈ J)(

∫
Heb

D
(d)
e f(y)dy)ϑ(e ·x+ b) 6= 0}.

Note that J∗ ⊆ {(e, b) ∈ Sd−1 × R;Heb ∩ supp(f) 6= ∅ & H+
eb ∩ J 6= ∅}, where

H+
eb = {x ∈ Rd; e · x + b ≥ 0}. It is easier to compute a slightly larger integral over

Jf = {(e, b) ∈ Sd−1 ×R; Heb ∩ supp(f) 6= ∅}.
Bounding the integral in Corollary 4.2 and applying Theorem 3.5 we get the

following corollary.

Corollary 4.3 If d is an odd positive integer, J ⊂ Rd is compact, and f ∈ Cd(Rd)
is compactly supported, then

V (f, C, J) ≤ |ad|λd(Jf )W (f),

where |ad| = (1/2)(2π)1−d, Jf = {(e, b) ∈ Sd−1 ×R;Heb ∩ supp(f) 6= ∅}, W (f) =
sup{|wf (e, b)|; (e, b) ∈ Jf} and wf (e, b) =

∫
Heb

D
(d)
e f(y)dy.

Note that the first factor in this bound, ad, as a function of d is converging to
zero exponentially fast.

The second factor, λd(Jf ), is the measure of the subset of Sd−1×R of parameters
of all hyperplanes intersecting supp(f) non-trivially. This measure can be much
smaller than the measure of supp(f) itself. For instance, when supp(f) is the ball
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of radius r centered at the origin, then one can easily check that Jf is an annulus
consisting of Sd−1 × [−r,+r]. The volume of the ball supp(f) is a constant times
rd, but the volume of Jf only involves a linear term in r.

The third factor W (f) is bounded above by X(f)Y (f), where X(f) is the largest
cross-sectional area,

X(f) = sup{λd−1(supp(f) ∩Heb); (e, b) ∈ Jf};

and Y (f) is the supremum of the absolute value of the average flow per unit area
across one of the hyperplane sections of supp(f),

Y (f) = sup
{ |wf (e, b)|

λd−1(Heb ∩ supp(f))

}
; (e, b) ∈ Jf}.

Getting a bound on X(f) is a geometric problem; results are known for two of
the simplest choices for supp(f): d-dimensional ball and cube.

The largest cross-section of any d-dimensional ball by a hyperplane is a d − 1-
dimensional ball. Hence for f with supp(f) = {x ∈ Rd; ‖x‖ ≤ r} we have X(f) =
λd−1({x ∈ Rd; ‖x‖ ≤ r, x1 = 0}). The volume of a d-dimensional ball of radius r is
rdπd/2(Γ(d−2/2))−1, where Γ is the Gamma function – so its volume as a function
of the dimension d converges to zero unless the radius is a function of d that is
growing fast enough (see Hamming, 1986, p.78).

For d-dimensional cubes, the maximal cross-section problem seems to be non-
trivial. Ball (1986) has shown that the largest cross-sectional area of a hyperplane
section of a d-dimensional cube is

√
2. Thus, for f with supp(f) = [0, 1]d, X(f) =√

2.
A weak upper bound on Y (f) is sup{|D(d)

e f(y)|;y ∈ supp(f)} since the average
flow cannot exceed the maximum flow. In applications, one might often find that
there is a natural bound F (f) on the maximum of orthogonal directional derivative
flow of f across any hyperplane. Then Y (f) ≤ F (f)/X(f) and hence W (f) ≤ F (f).

5 Dimension-independent rates of approximation
by neural networks

Since ϑ can be approximated in Lp-norm (p ∈ [1,∞)) by a sequence of steep sig-
moidals, estimates of variation with respect to half-spaces can be used to bound
approximation error achievable by one-hidden-layer neural networks with σ percep-
trons for any bounded sigmoidal activation function σ.

Let f ∈ Cd(Rd) be a compactly supported function and J ⊂ Rd be compact.
Denote by Bf the product of the upper bound on V (f, C, J) given by Corollary
4.2 with λd(J)

1
2 (an upper bound on L2-norms of characteristic functions of all

half-spaces of J ), i.e. Bf = |ad|λd(J)
1
2

∫
J∗

∣∣∣
∫

Heb
D

(d)
e f(y)dy

∣∣∣ d(e, b).
Theorem 2.1 together with Corollary 4.2 and Proposition 3.4 imply the following

estimate of rates of approximation by one-hidden-layer networks with sigmoidal
perceptrons.

Theorem 5.1 Let d be an odd positive integer, f ∈ Cd(Rd) be compactly supported
and σ : R → R be a bounded sigmoidal function. If c > B2

f − ‖f‖22 then for every
n ∈ N there exists a function fn computable by a neural network with a linear
output unit and n σ-perceptrons in the hidden layer such that ‖f − fn‖2 ≤

√
c
n .
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6 Discussion

Using the inverse Radon transform, Ito (1991) obtained an integral representation
similar to Theorem 4.1. Our proof of Theorem 4.1 uses a different approach and
describes the coefficients wf (e, b) in terms of the integral over the hyperplane pa-
rameterized by (e, b) of the iterated directional derivative.

Darken et al. (1993) extended Jones’ theorem to Lp spaces for p ∈ (1,∞) with a
slightly worse rate of approximation – of order onlyO(n−

1
q ), where q = max(p, p

p−1 ).
They also showed that in the case of L1 and L∞ the construction used by Jones does
not guarantee convergence to all functions in convex closures of bounded subsets.
However, for certain bounded subsets, including sets of functions computable by
perceptron networks, Barron (1992) derived an estimate of the uniform approxima-
tion error of the form V (f,C,J)√

n
. Similar estimates were obtained by Girosi (1995).

Since Corollary 4.2 bounds the variation with respect to half-spaces with respect
to the topology of uniform convergence, we can combine it with all of these results
to estimate both uniform and any Lp error in approximation by perceptron type
networks.

Note that our estimate of L2 approximation error, given in Theorem 5.1, is
different than the estimate obtained by Barron (1993) since we use the method
of “plane waves” while Barron used Fourier representation and then approximated
sigmoidal activation function by a linear combination of sines. Our bound also
involves the factor ad = ± 1

2 (2π)1−d.
The issue of the size of the numerator in estimates derived from Jones’ theorem

was raised by Barron (1993), p.932. He notes that when the numerator is derived
from an integral representation it may grow as a function of d exponentially fast
since it is an integral over a d-dimensional volume. However, our analysis following
Corollary 4.3 shows that all of the constants involved may, in fact, be small in
reasonable situations. In particular, the volume of the d-dimensional ball of radius
r is going as a function of d asymptotically to zero. So Barron’s estimates are even
somewhat better than were claimed in Barron (1993), p.932.

A result of DeVore et al. (1989) shows that an upper bound on partial deriva-
tives is not sufficient to guarantee dimension-independent rates of approximation
by one-hidden-layer neural networks with parameters depending continuously on an
approximated function. Our results show that it is sufficient that the product of
the volume of Jf times the largest cross-sectional area of a hyperplane section of
supp(f) times the largest average d-th iterate of the directional derivative orthog-
onal to a hyperplane (averaged over the intersection with supp(f)) is not growing
faster than (2π)d−1.

7 Proofs

First, we prove several technical lemmas.

Lemma 7.1 Let X, Y be sets, J ⊆ X, φ : X×Y → R be a function and B be a posi-
tive real number. Then conv G(φ,B, J) = {f : J →R; f(x) =

∑m
i=1 wiφ(x, yi); yi ∈

Y ; wi ∈ R,
∑m

i=1 |wi| ≤ B}
Proof.
It is easy to verify once it is recalled that any convex combination of elements, each
of norm not exceeding B, also is bounded in norm by B. 2

Lemma 7.2 Let (F(X), ‖.‖) be a normed linear space of real-valued functions on
X, f : X → R, {fi : X → R; i ∈ N} be a sequence of functions such that
limi→∞ fi = f in ‖.‖. Let φ : X × Y → R be such that supy∈Y ‖φ(x, y)‖ < ∞.
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Let {Bi; i ∈ N} be a sequence of real numbers such that limi→∞Bi = B and let for
every i ∈ N fi ∈ cl conv G(φ,Bi, X), where cl denotes the closure in the topology
induced by ‖.‖. If limi→∞ fi = f in ‖.‖, then f ∈ cl conv G(φ, B,X).

Proof.
Set c = supy∈Y ‖φ(x, y)‖. For every ε > 0 choose iε ∈ N such that for every
i > iε |B − Bi| < ε

3 and ‖f − fi‖ < ε
3 . Since fi ∈ cl conv G(φ, Bi, X) there exists

gi ∈ conv G(φ,Bi, X) such that ‖fi− gi‖ < ε
3 . So gi(x) =

∑mi

j=1 wijφ(x, yij), where∑mi

j=1 |wij | ≤ Bi. Put ŵij = wij − ε
2cmi

for wij > 0 and ŵij = wij + ε
2cmi

for
wij < 0. Put ĝi(x) =

∑mi

j=1 ŵijφ(x,yij). Since for all i ∈ N ∑mi

j=1 |ŵij | ≤ B we
have ĝi ∈ conv G(φ,B, X). For every i ≥ iε ‖f−ĝi‖ ≤ ‖f−fi‖+‖fi−gi‖+‖gi−ĝi‖ ≤
2ε
3 +

∑mi

j=1
ε

3cmi
‖φ(x, yij)‖ < ε. So, f ∈ cl conv G(φ,B, X). 2

Proof of Theorem 2.2.
Let {Pi; i ∈ N} be a sequence of partitions of Jφ such that for every i ∈ N
Pi+1 is refining Pi and diameters of all sets from Pi are smaller than ηi, where
limi→∞ ηi = 0. Let Pi = {Pij ; j ∈ Ii} and choose basepoints yij ∈ Pij . For x ∈ J ,
put fi(x) =

∑
j∈Ii

w(yij)φ(x,yij)λ(Pij) and let Bi =
∑

j∈Ii
|w(yij)|λ(Pij). By

Lemma 7.1, for every i ∈ N fi ∈ conv G(φ,Bi, J). Note that Bi and fi depend on
the partition including choice of basepoints.

Since limi→∞ ηi = 0, the sequence {fi; i ∈ N} converges to f on J pointwise.
Since w is continuous and compactly supported, the integral

∫
Jφ
|w(y)|dy = B exists

and limi→∞Bi = B. So by Lemma 7.2 it is sufficient to verify that {fi; i ∈ N}
converges to f uniformly on J .

It is well-known (see e.g., Kelley, 1955, p. 232) that an equicontinuous family
of functions converging pointwise on a compact set converges uniformly. For some
η > 0 choose i0 such that for every i ≥ i0

Bi

B < 1+η. We will show that continuity of
φ implies equicontinuity of {fi; i ≥ i0, i ∈ N}. Indeed, for ε > 0 put ε′ = ε

1+η . Since
J and supp(w) are compact, φ is uniformly continuous on J×supp(w). Hence there
exists ν such that if |x−x′| < ν then for every y ∈ Y |w(y)φ(x,y)−w(y)φ(x′,y)| <
ε′
B . Hence for every i ≥ i0 |fi(x) − fi(x′)| =

∑
j∈Ji

|w(yij)| λ(Pij) |φ(x,yij) −
φ(x′,yij)| < ε′Bi

B < ε. 2

Proof of Proposition 3.1.
By definition of V (f, τ, J) for every n ∈ N there exists Bn ∈ R such that V (f, τ, J) ≤
Bn < V (f, τ, J)+ 1

n and f ∈ conv G(Pϑ, Bn, J). Since limn→∞Bn = V (f, τ, J) and
putting fn = f we get by Lemma 7.2 f ∈ clτG(Pϑ, V (f, τ, J), J). 2

Proof of Proposition 3.2.
(i) It is easy to verify that for every f, g ∈ B(J), V (f + g, τ, J) ≤ V (f, τ, J) +
V (g, τ, J) and for every a ∈ R, V (af, τ, J) = |a|V (f, τ, J). In particular, V (f +
c, τ, J) = V (f, τ, J) + |c| for every constant c. Thus, B(J) is a linear subspace of
F(J) and V (f, τ, J) is a pseudo-norm on B(J).
(ii) Since τ is generated by a norm, by Proposition 3.1, V (f, τ, J) = min{B; f ∈
clτ conv G(Pϑ, B, J)}. If V (f, τ, J) = 0 then there exists a sequence {fi; i ∈ N}
such that f = limi→∞ fi in τ and for every i ∈ N fi ∈ conv G(Pϑ, 0, J). Since for
all i ∈ N fi is a constant equal to 0, we have ‖f‖ = 0. Thus, V (f, τ, J) is a norm.
(iii) For any g ∈ conv G(Pϑ, V (f, τ, J), J) ‖g‖ ≤ V (f, τ, J) sup{‖ϑ(e · x + b)‖; e ∈
Sd−1, b ∈ R}. So the statement follows by continuity with respect to τ . 2

Proof of Proposition 3.3.
When B = 0 both G(Pϑ, B, J) and G(Pσ, B, J) consist only of the zero function
and so they are equal. Assume that B > 0 and let f ∈ clLp conv G(Pϑ, B, J).
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Then for every ε > 0 ‖f −∑k
i=1 wiϑ(ei · x + bi)‖p < ε

2 , where
∑k

i=1 |wi| ≤ B. By
boundedness of σ, for every i ∈ {1, . . . , k} limm→∞ σ(m(ei ·x+bi)) = ϑ(ei ·x+bi) in
Lp(J). So there exists m0 ∈ N such that for every m ≥ m0 and for all i = 1, . . . , k

‖σ(m(ei ·x+ bi))−ϑ(ei ·x+ bi)‖p < ε
2B . Hence ‖f −∑k

i=1 wiσ(m(vi ·x+ bi))‖p <

‖f −∑k
i=1 wiϑ(ei ·x+ bi)‖p + ‖∑k

i=1 wi(ϑ(ei ·x+ bi)−σ(m(ei ·x+ bi)))‖p < ε. 2

Proof of Proposition 3.4.
Similarly as in the proof of Proposition 3.3 we can assume that B > 0. Let
f ∈ conv G(Pσ, B, J), i.e. f(x) =

∑m
i=1 wiσ(vi · x + bi) with

∑m
i=1 |wi| ≤ B.

Let ε > 0. Since σ is a non-decreasing continuous function with limt→−∞ σ(t) = 0
and limt→+∞ σ(t) = 1, there exists k ∈ N and aj , cj ∈ R (j = 1, . . . , k) such

that for every t ∈ R
∣∣∣σ(t) − ∑k

j=1 ajϑ(t + cj)
∣∣∣ < ε

B and for every j = 1, . . . , k

aj ≥ 0 and
∑k

j=1 aj = 1. Define fε(x) =
∑m

i=1

∑k
j=1 wiajϑ(vi · x + bi + cj). Then

fε ∈ conv G(Pϑ, B, J) and for every x ∈ J |f(x) − fε(x)| ≤ ∑m
i=1 |wi|

∣∣∣σ(vi ·
x + bi) −

∑m
j=1 ϑ(vi · x + bi + cj)

∣∣∣ ≤ ∑m
i=1 |wi| ε

B ≤ ε. Hence conv G(Pσ, B, J) ⊆
clCconv G(Pϑ, B, J) and so also clCconv G(Pσ, B, J) ⊆ clCconv G(Pϑ, B, J). Simi-
larly clLp conv G(Pσ, B, J) ⊆ clLp conv G(Pϑ, B, J). 2

Lemma 7.3 Let K ⊆ Sd−1 × R and w be a measurable and bounded function on
K. For every m ∈ N let σm be the function on R defined by σm(t) = (1+ e−mt)−1.
Then
limm→∞

∫
K

w(e, b)σm(e · x + b)d(e, b) =
∫

K
w(e, b)ϑ(e · x + b)d(e, b) uniformly on

Rd.

Proof.
Because w is bounded, we only need to verify that limm→∞

∫
K
|(ϑ − σm)(e · x +

b)|d(e, b) = 0 uniformly on Rd. For every x ∈ Rd and for every m ∈ N ∫
K
|(ϑ −

σm)(e ·x+ b)|d(e, b) ≤ λd−1(Sd−1)
∫
R |(ϑ− σm)(t)|dt. Since ϑ = limm→∞ σm in L1

the proof is complete. 2

Proof of Theorem 3.5.
Let {σm;m ∈ N} be the sequences of functions defined in Lemma 7.3. For every
m ∈ N define fm(x) =

∫
K

w(e, b)σm(e · x + b)d(e, b), i.e. fm is obtained from the
integral representation of f by replacing the Heaviside function ϑ with σm.

Let B =
∫

K
|w(e, b)|d(e, b). For every m, if φ = Pσm , then Jφ = {(e, b) ∈

Sd−1 ×R; (∃x ∈ J)(w(e, b)σm(e · x + b) 6= 0)} = supp(w). Since supp(w) ⊆ K we
have

∫
Jφ
|w(e, b)|d(e, b) = B. By Corollary 2.3 and the remark following Theorem

2.2 for every m ∈ N fm ∈ clC conv G(Pσm , B, J).
By definition for all m ∈ N G(Pσm , B, J) = G(Pσ, B, J). By Proposition 3.4

clC conv G(Pσ, B, J) ⊆ clCconv G(Pϑ, B, J). Since by Lemma 7.3 f = limm→∞ fm

uniformly on J we can apply Lemma 7.2 to get f ∈ clCconv G(Pϑ, B, J). 2

To prove Theorem 4.1 we need two technical lemmas. The first one can be found
in Courant & Hilbert (1992), p.680.

Lemma 7.4 For every odd positive integer d

δd(x) = ad

∫

Sd−1
δ
(d−1)
1 (e · x)de,

where ad = (−1)
d−1
2 /(2(2π)d−1).
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Lemma 7.5 For all positive integers d,k, for every function f ∈ Cd(Rd) and for
every unit vector e ∈ Rd and for every b ∈ R ∂k

∂bk

∫
Heb

f(y)dy =
∫

Heb
De

(k)f(y)dy.

Proof.
First, we will verify that the statement is true for k = 1:

∂

∂b

∫

Heb

f(y)dy = lim
t→0

t−1

(∫

Heb

f(y)dy −
∫

Heb+t

f(y)dy

)
=

lim
t→0

t−1

∫

Heb

(f(y+te)−f(y))dy =
∫

Heb

lim
t→0

t−1(f(y+te)−f(y)) =
∫

Heb

Def(y)dy.

Suppose that the statement is true for k − 1. Then

∂k

∂bk

∫

Heb

f(y)dy = lim
t→0

t−1

(∫

Heb

D(k−1)
e f(y)dy −

∫

Heb+t

D(k−1)
e f(y)dy

)
=

lim
t→0

t−1

∫

Heb

(
D(k−1)

e f(y + te)−D(k−1)
e f(y)

)
dy =

∫

Heb

lim
t→0

t−1
(
D(k−1)

e f(y + te)−D(k−1)
e f(y)

)
=

∫

Heb

D(k)
e f(y)dy.2

Proof of Theorem 4.1.
We first prove the theorem for test functions. For f ∈ D(Rd) by definition of
the delta distribution we have f(x) = (f ∗ δd)(x) =

∫
Rd f(z)δd(x − z)dz (see e.g.,

Zemanian, 1987). By Lemma 7.3 δd(x − z) = ad

∫
Sd−1 δ1

(d−1)(e · x − e · z)de.

Thus, f(x) = ad

∫
Sd−1

∫
Rd f(z)δ1

(d−1)(x · e − z · e)dzde. So rearranging the inner
integration, we have
f(x) = ad

∫
Sd−1

∫
R

∫
Heb

f(y)δ1
(d−1)(x · e + b)dydbde, where Heb = {y ∈ R;y · e =

−b}. Let u(e, b) = ad

∫
Heb

f(y)dy, so f(x) =
∫

Sd−1

∫
R u(e, b)δ1

(d−1)(x · e + b)dbde.

By definition of distributional derivative
∫
R u(e, b)δ1

(d−1)(e · x + b)db =

(−1)d−1
∫
R

∂d−1u(e,b)
∂bd−1 δ1(e · x + b)db for every e ∈ Sd−1 and x ∈ Rd. Since d is odd,

we have
∫
R u(e, b)δ1

(d−1)(e · x + b)db =
∫
R

∂d−1u(e,b)
∂bd−1 δ1(e · x + b)db.

Since the first distributional derivative of the Heaviside function is the delta
distribution (see e.g., Zemanian, 1987, p.47), it follows that for every e ∈ Sd−1 and
x ∈ Rd

∫
R u(e, b)δ1

(d−1)(e · x + b)db = − ∫
R

∂du(e,b)
∂bd ϑ(e · x + b)db.

By Lemma 7.4 ∂du(e,b)
∂bd = ∂d

∂bd

∫
Heb

f(y)dy =
∫

Heb
D

(d)
e f(y)dy. Hence, f(x) =

−ad

∫
Sd−1

∫
R

(∫
Heb

D
(d)
e f(y)dy

)
ϑ(e · x + b)dbde.

Now let f ∈ Cd(Rd) be compactly supported. Then there exists a sequence
{fi; i ∈ N} of test functions converging to f uniformly on Rd (see e.g., Zemanian,
1987, p.3). It is easy to check that for every e ∈ Sd−1 {D(d)

e fi; i ∈ N} converges
uniformly on Rd to D

(d)
e f . Hence we can interchange limit and integration (see

e.g., Edwards, 1994, p.233). So limi→∞
∫

Heb
D

(d)
e fi(y)dy =

∫
Heb

D
(d)
e f(y)dy. Put

gi(x, e, b) =
∫

Heb

(
D

(d)
e fi(y)dy

)
ϑ(e ·x+b) and g(x, e, b) =

∫
Heb

(
D

(d)
e f(y)dy

)
ϑ(e ·

x + b). It is easy to see that for every x ∈ Rd

limi→∞ gi(x, e, b) = g(x, e, b) uniformly on Sd−1 × R. Hence for every x ∈ Rd

f(x) = limi→∞
∫

Sd−1

∫
R gi(x, e, b)dbde =

∫
Sd−1

∫
R g(x, e, b)dbde =
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∫
Sd−1

∫
R

(∫
Heb

D
(d)
e f(y)dy)

)
ϑ(e ·x + b)dbde (using again interchangebility of inte-

gration and limit for a sequence of functions converging uniformly). 2
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