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Abstract. An alternative to the classical Ritz method for approximate optimization is investi-
gated. In the extended Ritz method, sets of admissible solutions are approximated by their intersec-
tions with sets of linear combinations of all n-tuples of functions from a given basis. This alternative
scheme, called variable-basis approximation, includes functions computable by trigonometric poly-
nomials with free frequencies, free-node splines, neural networks, and other nonlinear approximating
families. Estimates of rates of approximate optimization by the extended Ritz method are derived.
Upper bounds on rates of convergence of suboptimal solutions to the optimal one are expressed in
terms of the degree n of variable-basis functions, the modulus of continuity of the functional to be
minimized, the modulus of Tikhonov well-posedness of the problem, and certain norms tailored to
the type of basis. The results are applied to convex best approximation and to kernel methods in
machine learning.
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1. Introduction. In many high-dimensional optimization problems (e.g., rout-
ing in communications networks, stochastic optimal control, management of water
resources, large-scale traffic networks [13, 24, 46, 81]), optimal solutions cannot be
found analytically or, even when they can be found, they may not be computable
efficiently by numerical methods. However in some cases, optimal solutions can be
approximated by suboptimal ones. In the classical Ritz method [37], such an approx-
imation is accomplished by a sequence of solutions over intersections of the original
admissible set with a nested family of linear subspaces of increasing dimensionality.

Although linear approximation methods have many convenient properties, their
practical applications are limited by the “curse of dimensionality” [14], i.e., an expo-
nential growth, as a function of the number of variables, of the dimension a linear
subspace would need to achieve a desired accuracy of approximation of the optimal
solution. Experimental results indicate that the Ritz method is often unable to deal ef-
ficiently with high-dimensional optimization tasks [81]. Theoretical results estimating
rates of convergence of the Ritz method for the case of admissible solutions dependent
on only one variable were derived in [6, 19, 27, 36, 41, 73], but we have not found in
the literature any estimates for the multivariable case.

Since the late 1980s, neural networks became a successful alternative to linear
methods for approximate solutions of high-dimensional optimization problems (see,
e.g., [18, 23, 47, 61, 62, 74]). Also a new branch of nonlinear approximation theory
investigating approximation capabilities of neural networks have been developed [11,
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12, 21, 38, 45, 51, 54, 55, 56]. In a series of papers [3, 8, 9, 64, 65, 66, 80, 81], a
new method of approximate optimization was developed, called in [81] the extended
Ritz method. In these papers, approximate solutions were used that were obtained
over restrictions of sets of admissible solutions to linear combinations of all n-tuples
of functions with varying “free” parameters, instead of linear combinations of first
n functions from a basis with fixed ordering as in the classical Ritz method. In the
extended Ritz method, a nested family of linear subspaces of increasing dimensionality,
which in the Ritz method approximates the set of admissible solutions, is replaced by
a nested family of nonlinear approximating sets called variable-basis functions. The
variable-basis approximation scheme includes a variety of nonlinear approximators
such as free-nodes splines [31, Chapter 13], polynomials with free frequencies and
phases [32], feedforward neural networks [38, 48, 56].

For bases formed by functions computable by neural-network units or, more
generally, for bases consisting of functions parameterized by vectors from finite-
dimensional Euclidean spaces, the extended Ritz method reduces the original op-
timization task to the problem of finding optimal values of finitely many parameters.
This is a nonlinear programming problem, for which various algorithms are available
[1, 4, 16, 18, 39, 76, 79].

The extended Ritz method with such bases was successfully tested on a vari-
ety of problems with admissible solutions dependent on a large number of variables:
stochastic optimal control [64, 65, 66, 80] and optimal estimation of state variables [3]
in nonlinear dynamic systems with a large number of state variables, team optimal
control problems [8], optimal control of freeway traffic [81], routing in large-scale com-
munication networks [9, 10], optimal fault diagnosis [5], etc. Numerical comparisons
with the classical Ritz method showing advantages of the extended Ritz method were
made in [81].

Motivated by these experimental results, we investigate the extended Ritz method
theoretically. We derive upper bounds on the speed of convergence of suboptimal
solutions over nested families of variable-basis functions of increasing degree to the
optimal solution over the whole admissible set. The upper bounds depend on the
degree n of the variable-basis functions, a norm tailored to the type of the basis, the
modulus of continuity of the functional to be minimized, and the modulus of well-
posedness of the problem. As our bounds are not merely asymptotic, they enable
one to estimate the quality of suboptimal solutions achievable over admissible sets for
any degree n (in particular, for n small enough to allow an implementation of such
suboptimal solutions).

By inspection of the derived estimates we obtain some insights into optimization
problems for which the extended Ritz method performs well. The critical term in
our bounds is of the form 1/

√
n multiplied by a certain norm of the optimal solution.

Such a norm is tailored to the basis used in the extended Ritz method. To keep this
norm small with increasing number of variables of admissible solutions one has to
increase a certain type of regularity related to smoothness [12, 21, 50, 54].

We illustrate our results on two examples. In the first one, we apply them to
the problem of convex best approximation and in the second one, to learning from
data modelled as a minimization of a regularized empirical error functional over a
reproducing kernel Hilbert space.

The paper is organized as follows. Section 2 introduces basic concepts and results
from optimization theory, which are used throughout the paper. Section 3 describes
the variable-basis approximation scheme and the extended Ritz method. Section
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4 contains our main results on rates of convergence of the extended Ritz method
and Section 5 their interpretation in the special case of convex problems. Sections
6 and 7 apply the derived estimates to convex best approximation and to kernel
methods in machine learning, resp. Section 8 contains a brief discussion. For the
reader’s convenience, we include an Appendix containing some tools from nonlinear
approximation theory that are used in the paper.

2. Preliminaries. By a normed linear space (X, ‖.‖) we mean a real normed
linear space. We write only X when it is clear which norm is used. R denotes the set
of real numbers and R+ the set of positive reals. For a positive integer d, Ω ⊆ Rd

and p ∈ [1,∞), (Lp(Ω), ‖.‖p) denotes the space of measurable, real-valued functions
on Ω such that

∫
Ω
|f(x)|p dx < ∞ endowed with the Lp-norm.

A ball and a sphere of radius r centered at h ∈ X are denoted by Br(h, ‖.‖) =
{f ∈ X : ‖f − h‖ ≤ r} and Sr(h, ‖.‖) = {f ∈ X : ‖f − h‖ = r}, respectively. We
write shortly Br(‖.‖) = Br(0, ‖.‖) and merely Br(h) = Br(h, ‖.‖), Br = Br(0) when
it is clear which norm is used; similarly for spheres.

A Banach space X is called uniformly convex if for any ε ∈ (0, 2], there exists
δ > 0 such that if ‖f‖ = ‖g‖ = 1 and ‖(f + g)/2‖ > 1 − δ, then ‖f − g‖ < ε
(i.e., whenever the midpoint of the line segment joining two points on the unit sphere
approaches the sphere, then the endpoints of the segment must approach each other).

Sequences (of elements of linear spaces or sets) are denoted by {xn} instead of
{xn : n ∈ N+}, where N+ is the set of positive integers.

A functional Φ : X → (−∞, +∞] is called proper if it is not identically equal to
+∞. The set dom Φ = {f ∈ X : Φ(f) < +∞} is called the domain of Φ.

Φ is continuous at f ∈ dom Φ if for all ε > 0, there exists η > 0 such that
for every g ∈ domΦ, ‖f − g‖ < η implies |Φ(f) − Φ(g)| < ε and αf : R+ → R+

defined as αf (t) = sup{|Φ(f) − Φ(g)| : f, g ∈ dom Φ, ‖f − g‖ ≤ t} is the modulus
of continuity of Φ at f . We write merely α instead of αf when f is clear from the
context. Φ is Lipschitz continuous on M with a Lipschitz constant c if for all f, g ∈ M ,
|Φ(f)− Φ(g)‖ ≤ c‖f − g‖.

A functional Φ is convex on a convex set M ⊆ X if for all h, g ∈ M and all
λ ∈ [0, 1], Φ(λh + (1 − λ)g) ≤ λΦ(h) + (1 − λ)Φ(g). Φ is uniformly convex on
a convex set M ⊆ X if there exists a non-negative function δ : R+ → R+, such
that δ(0) = 0, for all t > 0, δ(t) > 0 and for all h, g ∈ M and all λ ∈ [0, 1],
Φ(λh + (1− λ)g) ≤ λΦ(h) + (1− λ)Φ(g)− λ(1− λ)δ(‖h− g‖). Any such function δ is
called a modulus of convexity of Φ (see, e.g, [59])1.

Using standard notation [34], we denote by

(M, Φ)

the problem of minimization of a functional Φ over a subset M of X. M is called a
set of admissible solutions or admissible set. When both M and Φ are convex, (M, Φ)
is called a convex optimization problem.

A sequence {gn} of elements of M is called Φ-minimizing over M if limn→∞ Φ(gn) =
infg∈M Φ(g). By the definition of infimum, for any problem (M, Φ) where M is non-
empty, there always exists a minimizing sequence. We denote by argmin (M, Φ) =
{go ∈ M : Φ(go) = infg∈M Φ(g)} the set of minimum points of the problem (M, Φ)

1The terminology is not unified: some authors use the term “strictly uniformly convex” instead
of “uniformly convex,” and reserve the latter term for the case where δ : [0, +∞) → [0, +∞) merely
satisfies δ(0) = 0 and for some t0 > 0, δ(t0) > 0 (see, e.g., [78], [33, p. 10]).
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and for ε > 0, we denote by argminε (M, Φ) = {gε ∈ M : Φ(gε) < infg∈M Φ(g) + ε}
the set of its ε-near minimum points.

The following proposition summarizes elementary properties of uniformly convex
functionals.

Proposition 2.1. Let (X, ‖.‖) be a normed linear space, M ⊆ X be convex and
Φ be a uniformly convex functional on M with a modulus of convexity δ. Then the
following hold:
(i) if Ψ is convex on M , then Φ + Ψ is uniformly convex on M with a modulus of
convexity δ;
(ii) if Φ : X →R then for every f ∈ X, the translated functional Φ(·−f) is uniformly
convex on M − f with a modulus of convexity δ;
(iii) if go ∈ argmin(M, Φ), then for every g ∈ M , δ(‖g − go‖) ≤ Φ(g)− Φ(go);
(iv) if (X, ‖.‖) is a Hilbert space, then the functional ‖.‖2 : X → R is uniformly
convex with a modulus of convexity δ(t) = t2.

Proof. (i) and (ii) follow directly from the definitions.
(iii) By the definition of uniformly convex functional, for every λ ∈ [0, 1] we have
λ(1−λ)δ(‖g−go‖) ≤ λΦ(g)+(1−λ)Φ(go)−Φ(λg+(1−λ)go). As Φ(go) ≤ Φ(λg+(1−
λ)go), we get λ(1−λ)δ(‖g− go‖) ≤ λΦ(g)+ (1−λ)Φ(go)−Φ(go) = λ (Φ(g)− Φ(go)).
Hence (1 − λ)δ(‖g − go‖) ≤ Φ(g) − Φ(go). Taking the infimum over λ, we obtain
δ(‖g − go‖) ≤ Φ(g)− Φ(go).
(iv) It is easy to check that for every h, g ∈ X and λ ∈ [0, 1], we have ‖λh+(1−λ)g‖2 ≤
λ‖h‖2 + (1− λ)‖g‖2 − λ(1− λ)‖h− g‖2.

The problem (M, Φ) is Tikhonov well-posed if it has a unique minimum to which
every minimizing sequence converges [34, p. 1]. The modulus of Tikhonov well-
posedness of (M, Φ) at a minimum point go is a function ξgo : R+ → R+ such that
for every t ∈ R+, ξgo(t) = infg∈M∩St(go) Φ(g) − Φ(go). Note that the modulus of
Tikhonov well-posedness is defined for any problem that has a minimum point, even
when such a problem is not Tikhonov well-posed.

The linear span of M is spanM = {∑n
i=1 wigi : wi ∈ R, gi ∈ M, n ∈ N+}. The

convex hull of M is conv M = {∑n
i=1 wigi : wi ∈ [0, 1],

∑n
i=1 wi = 1, gi ∈ M, n ∈ N+}.

The topological interior of M is intM = {g ∈ M : (∃ ε > 0) (Bε(g) ⊂ M)} and its clo-
sure is cl M = {f ∈ X : (∀ε > 0) (Bε(f) ∩M) 6= ∅)}. If clM = Y for Y ⊆ X, then M
is said to be dense in Y . The diameter of M is defined as diamM = sup{‖f − g‖ :
f, g ∈ M}.

For a subset M of a normed linear space, its affine hull is defined as aff M ={∑n
i=1 wigi : wi ∈ R,

∑n
i=1 wi = 1, gi ∈ M, n ∈ N+

}
. An element g ∈ X is

called a relatively interior point of M ⊆ X if it is an interior point of M in the
topological sense with respect to the topology induced on aff M . The set of all
relative interior points of M is called the relative interior of M and denoted by ri M .
Thus, ri M = {g ∈ aff M : ∃ ε > 0, Bε(g) ∩ aff M ⊆ M}. Note that riM is the
interior of M as a subset of its affine hull, instead of the whole space X.

The Minkowski functional of M ⊆ X is the functional pM : X → [0, +∞] defined
for every f ∈ X as

pM (f) = inf{λ ∈ R+ : f/λ ∈ M} .

M is called absorbing if dompM = X. For every M , pM is positively homogeneous and
if M is convex, then pM is convex, too. The following proposition states elementary
properties of Minkowski functionals of convex sets containing zero, which will be used
in our proofs.
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Proposition 2.2. Let (X, ‖.‖) be a normed linear space, M be a subset of X
containing 0 and r0 = sup{r > 0 : Br(‖.‖) ⊆ M}. Then the following hold:
(i) if M is convex, then M ⊆ {f ∈ X : pM (f) ≤ 1};
(ii) if M is convex, then {f ∈ X : pM (f) < 1} ⊆ M ;
(iii) if M is closed and convex, then M = {f ∈ X : pM (f) ≤ 1};
(iv) if 0 ∈ intM , then dompM = X;
(v) if 0 ∈ int M and if r0 < ∞, then for every f ∈ dompM , pM (f) ≤ ‖f‖/r0;
(vi) if M is convex and 0 ∈ intM , then pM is Lipschitz on X with a constant c = 1/r0

if r0 < ∞ and c = 0 if r0 = ∞.

Proof. (i) By the definition of pM , f ∈ M implies pM (f) ≤ 1, and so M ⊆ {f ∈
X : pM (f) ≤ 1}.

(ii) Let f ∈ X be such that pM (f) < 1. By the definition of pM , there exists
λ < 1 such that f/λ ∈ M . As M is convex and 0 ∈ M , f = λ (f/λ) + (1− λ) 0 ∈ M .

(iii) By (i) and (ii), it is sufficient to check that for every f ∈ X with pM (f) = 1,
f ∈ M . By the definition of pM , there exists a sequence {λi} such that limi→∞ λi = 1
and for every i, f/λi ∈ M . As M is closed and f = limi→∞(f/λi), we have f ∈ M .

(iv) As 0 ∈ intM , there exists r > 0 such that Br(‖.‖) ⊆ M . So for every
f ∈ Br(‖.‖), pM (f) ≤ 1. Let g ∈ X. Then, pM (g) = pM (r ‖g‖ (g/r ‖g‖)) and by the
positive homogeneity of pM , pM (g) = (‖g‖/r) pM ( r (g/‖g‖)). As ‖r g/‖g‖ ‖ = r, we
have r g/‖g‖ ∈ Br(0) and so pM (g) = (‖g‖/r) pM ( r (g/‖g‖)) ≤ ‖g‖/r < ∞.

(v) By the definition of pM , for every r > 0 such that Br(‖.‖) ⊆ M and every
f ∈ dompM we have pM (f) ≤ ‖f‖/r. Hence, by the definition of r0, pM (f) ≤ ‖f‖/r0.

(vi) When M is convex, pM is also convex. By the convexity and positive homo-
geneity of pM , we have (1/2)pM (f) = pM ((1/2)f) = pM ((1/2)g + (1/2)(f − g)) ≤
(1/2)pM (g) + (1/2)pM (f − g). Thus, pM (f)− pM (g) ≤ pM (f − g) ≤ ‖f − g‖/r0. By
exchanging the roles of f and g, we obtain the inequality −‖f − g‖ ≤ pM (f)−pM (g).
Hence |pM (f)− pM (g)| ≤ ‖f − g‖/r0.

3. Variable-basis approximation and the extended Ritz method. The
classical Ritz method [37, p. 192] for approximate optimization replaces the problem
(M, Φ) with a sequence of problems

{(
M ∩Xn, Φ

)}
,

where for each n, Xn is an n-dimensional subspace of X. Under suitable conditions
on Φ, M , and {Xn}, for every n there exists a minimum point gn of the approx-
imate problem (M ∩ Xn, Φ), the sequence {gn} converges to some go ∈ M , and
limn→∞ Φ(gn) = Φ(go).

Typically, the subspaces Xn are generated by the first n elements of a subset of
X with a fixed linear ordering. So this approximation scheme can be called fixed-
basis approximation in contrast to variable-basis approximation, which uses nonlinear
approximating sets formed by linear combinations of at most n elements of a given
subset G of X. Such sets are denoted by spann G = {∑n

i=1 wigi : wi ∈ R, gi ∈ G}.
We call n the degree of the variable-basis functions in spann G. The variable-basis
approximation scheme includes free-node splines [31, Chapter 13], polynomials with
free frequencies and phases [32], radial-basis-function networks with variable variances
and centers [38], feedforward neural networks [48, 56], and so on.
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In an alternative to the classical Ritz method, the problem (M, Φ) is approximated
by a sequence of problems

{M ∩ spannG, Φ)}.
For G formed by parameterized families of the form G = {ga : a ∈ A} with A ⊆ Rp

this method was applied to a variety of tasks in a series of papers [3, 8, 9, 64, 65, 66, 80]
and [81], where it was called the extended Ritz method. Here we use this term even
more generally for an approximate optimization by the sequence of problems {M ∩
spannG}, where G is any set.

Sets spannG are not convex, and so, when the classical Ritz method is replaced
with the extended one, minimum points over approximate admissible sets might not
exist. However, the requirement of achieving a minimum point can be relaxed to a
merely εn-near minimum, for which we shall formulate our estimates.

Typically, a basis is formed by functions parameterized by vectors from a finite-
dimensional Euclidean space. For such bases, minimization over M ∩spann G reduces
to a finite-dimensional nonlinear programming problem. Such a problem can be solved
by algorithms based on gradient descent with stochastic perturbations [17, pp. 38-40,
103-104], genetic algorithms [39], simulated annealing [1], global stochastic optimiza-
tion based on Monte Carlo [79] or quasi-Monte Carlo [77, Chapter 4] methods, etc.
When a basis is formed by functions computable by neural-network units, various
standard learning algorithms can be applied (see, e.g., [4, 16, 18, 40, 76] and the
references therein). In [5, 10, 81], applications of some of these algorithms to the
extended Ritz method are described and illustrated by numerical results showing the
algorithms’ effectiveness in a variety of cases.

A sequence of εn-near minimum points of Φ over M ∩ spannG might converge to
a minimum point of Φ over the whole M much faster than minima over M ∩ Xn in
the classical Ritz method. Indeed, the union of subspaces spanned by all n-tuples of
elements of a set G is “much larger” than a single n-dimensional subspace generated
by the first n elements of G, and so the functional to be minimized might achieve over
such unions of subspaces values that are closer to the infimum over the whole M .

To estimate rates of convergence of approximate solutions that can be obtained by
the extended Ritz method, we take advantage of a result from nonlinear approximation
theory by Maurey (reported in [68, p.V.2, Lemma 2]), Jones [45, p. 611], and Barron
[12, p. 934, Lemma 1]. Here we use a reformulation of this result in terms of a
norm tailored to a given basis G. Such a norm, called G-variation and denoted by
‖.‖G, was introduced in [51] as an extension of the concept of variation with respect
to half-spaces [11]. For a subset G of a normed linear space (X, ‖.‖), G-variation is
defined as the Minkowski functional of the set cl conv (G ∪ −G):

‖f‖G = inf
{
c > 0 : c−1f ∈ cl conv (G ∪ −G)

}
.

So G-variation of f measures how much the set G should be dilated to contain f
in the closure of its symmetric convex hull. G-variation is a norm on the subspace
{f ∈ X : ‖f‖G < ∞} ⊆ X and

‖.‖ ≤ sG‖.‖G .(3.1)

Indeed, if for b > 0, f/b ∈ cl conv(G ∪ −G), then f/b = limε→0 hε, where hε ∈
conv(G∪−G) and so ‖hε‖ ≤ sG. Thus, ‖f‖ ≤ sG b. Hence, by the definition of ‖f‖G

we have ‖f‖ ≤ sG ‖f‖G.
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When G is an orthonormal basis of a separable Hilbert space, G-variation is
equal to the l1-norm with respect to G, which is defined for every f ∈ X as ‖f‖1,G =∑

g∈G |f · g| [58], [55]. Besides being a generalization of the notion of l1-norm, G-
variation is also a generalization of the concept of total variation studied in integration
theory [12].

The next theorem is a reformulation in terms of G-variation of the estimates
derived for Hilbert spaces by Maurey, Jones and Barron and of an extension of these
estimates to Lp-spaces, p ∈ (1,∞), derived by Darken et al. [28, Theorem 5]. For the
proof see the Appendix.

Theorem 3.1. Let (X, ‖.‖) be a normed linear space, G be its bounded subset
and sG = supg∈G ‖g‖. For every f ∈ X and every positive integer n, the following
estimates hold:
(i) if (X, ‖.‖) is a Hilbert space, then

‖f − spannG‖ ≤
√

(sG ‖f‖G)2 − ‖f‖2
n

;(3.2)

(ii) if (X, ‖.‖) = (Lp(Ω), ‖.‖p), where p ∈ (1,∞) and Ω ⊆ Rd is open, then

‖f − spann G‖ ≤ 21/p̄sG ‖f‖G

n1/q̄
,(3.3)

where q = p/(p− 1), p̄ = min(p, q), and q̄ = max(p, q).
In contrast to some estimates of rates of linear (i.e., fixed-basis) approximation

[67, pp. 232-233], where the denominator is of the form nc/d for some c > 0, in the
bounds from Theorem 3.1, the denominator is n1/2, independently of the number
d of variables. However, for both fixed-basis and variable-basis approximation the
numerators depend on d (see the Discussion).

4. Rates of approximate optimization over variable-basis functions. In
this section, we investigate approximate solutions {(M ∩ spannG, Φ)} of a problem
(M, Φ) that has a minimum point. The existence of such a point is guaranteed for
various convex problems in reflexive Banach spaces [26, 35, 59, 70]. Many problems
that do not have minimum points can be transformed into problems with minimum
points by regularization [34, p. 29]. So the following results apply to a wide class of
regularized problems.

Let go be a minimum point of the problem (M, Φ) to which the extended Ritz
method based on an approximation of M by sets M ∩ spannG is applied. As the
existence of minimum points of approximating problems (M ∩spannG, Φ) is not guar-
anteed, we consider εn-near minimum points. To estimate the speed of convergence
of these εn-near minimum points to the minimum point go of Φ over the whole M ,
we take advantage of Theorem 3.1. As this theorem estimates the distance of go from
spannG but not from M ∩ spannG, we construct an auxiliary sequence of elements of
M∩spannG using the following technical lemma. It extends [75, Lemma 3], proven for
finite-dimensional subspaces of a linear space, to subsets satisfying a kind of restricted
homogeneity condition. The next lemma applies to a closed convex admissible set M
containing zero. In the case when zero is in the interior of M , it gives an estimate in
terms of a Lipschitz constant of the Minkowski functional of M . When M is a ball
Br(‖.‖), such a Lipschitz constant is equal to 1/r.

Lemma 4.1. Let A and M be subsets of a normed linear space (X, ‖.‖), M be
closed and convex, 0 ∈ M , and λ A ⊆ A for all λ ∈ [0, 1). Then for every g ∈ M and
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every f ∈ A with pM (f) < +∞, there exists h ∈ M ∩A such that
(i) ‖h− g‖ ≤ ‖f − g‖+ ‖g‖

∣∣pM (f)− pM (g)
∣∣;

(ii) if 0 ∈ intM , then ‖h−g‖ ≤ (1+c ‖g‖) ‖f−g‖, where c is a Lipschitz constant
of pM on X.

Proof. (see Figure 4.1) (i) When f ∈ A ∩ M , the estimate holds trivially with
h = f . If f ∈ A− cl M , then f 6= 0 and so we can set h = pM (g)

pM (f) f . Hence pM (h) =
pM (g) ≤ 1, and by Proposition 2.2 (ii), h ∈ M . As f 6∈ M by Proposition 2.2 (iii), we
have pM (f) > 1. Thus h = pM (g)

pM (f) f with pM (g)
pM (f) < 1 and f ∈ A, which implies h ∈ A.

Hence h ∈ A ∩M and ‖h− g‖ =
∥∥∥ pM (g)

pM (f)f − g
∥∥∥ =

∥∥∥ pM (g)
pM (f) (f − g)−

(
1− pM (g)

pM (f)

)
g
∥∥∥ ≤∣∣∣ pM (g)

pM (f)

∣∣∣ ‖f − g‖+
∣∣∣1− pM (g)

pM (f)

∣∣∣ ‖g‖ < ‖f − g‖+
∣∣∣pM (f)−pM (g)

pM (f)

∣∣∣ ‖g‖ < ‖f − g‖+ |pM (f)−
pM (g)| ‖g‖.

(ii) If 0 ∈ intM , then, by Proposition 2.2 (v), pM is Lipschitz continuous on
X. Denoting by c its Lipschitz constant, we have

∣∣pM (f) − pM (g)
∣∣ ≤ c ‖f − g‖. So

‖h− g‖ ≤ ‖f − g‖+ ‖g‖
∣∣pM (f)− pM (g)

∣∣ implies ‖h− g‖ ≤ (1 + c ‖g‖) ‖f − g‖.

M

O

g

||g||

h

f

||f - g||

A

||h-g||

h = f p  (g) / p  (f)
M M

Fig. 4.1. The construction used in the proof of Lemma 4.1.

As we shall employ Lemma 4.1 (ii) in the proof of the next theorem estimating
rates of approximate optimization by the extended Ritz method, we need to assume
that 0 ∈ intM . Although this condition is restrictive, it still allows important ap-
plications. For example, when M is the whole ambient space X, one can apply the
next theorem to Tikhonov’s regularization (see [15, pp. 68-78] and the application in
Section 7.2), and when M is a ball of some radius r in the norm ‖.‖, one can apply
it to Ivanov’s regularization [15, pp. 68-78]. Also the case where M is a subspace of
X can be treated using the next theorem by replacing the ambient space X with M
(since M , as a closed subspace of X, is a Hilbert space).

Theorem 4.2. Let (X, ‖.‖) be a Hilbert space, M and G its subsets, G bounded,
sG = supg∈G ‖g‖, M closed, convex, and 0 ∈ intM . Let Φ : X → (−∞,+∞]
be a proper functional, go ∈ argmin (M, Φ), Φ continuous at go with a modulus
of continuity α, {εn} be a sequence of positive reals, and {gn} be such that gn ∈
argminεn

(M ∩ spann G, Φ). Then pM is Lipschitz on X, and if c is its Lipschitz
constant, then the following estimates hold for every integer n:

(i) infg∈M∩ spann G Φ(g)− Φ(go) ≤ α

((
1 + c‖go‖)

√
(sG‖go‖G)2−‖go‖2

n

)
;

(ii) if ‖go‖G < ∞ and limn→∞ εn = 0, then {gn} is a Φ-minimizing sequence over M
and
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Φ(gn)− Φ(go) ≤ α

((
1 + c‖go‖)

√
(sG‖go‖G)2−‖go‖2

n

)
+ εn;

(iii) if ξ is the modulus of Tikhonov well-posedness of (M, Φ) at go, then

ξ(‖gn − go‖) ≤ α

((
1 + c‖go‖)

√
(sG‖go‖G)2−‖go‖2

n

)
+ εn;

(iv) if Φ is uniformly convex on M with a modulus of convexity δ, then

δ(‖gn − go‖) ≤ α

(
(1 + c‖go‖)

√
(sG‖go‖G)2−‖go‖2

n

)
+ εn.

Lemma 4.1 (ii) allows us to construct an auxiliary sequence hε
n ∈ M ∩ spannG

satisfying ‖go − hε
n‖ ≤ C‖go − spannG‖+ ε, for a constant C = 1 + c‖go‖ dependent

only on ‖go‖ and on the Lipschitz constant c of pM . The following proof is based on
this idea combined with Theorem 3.1 (i).

Proof. As 0 ∈ intM , by Proposition 2.2 (iv) and (v), dompM = X and pM is
Lipschitz on X.

(i) For every n and every ε > 0, choose an ε-near best approximation fε
n of go from

spannG, i.e., ‖go − fε
n‖ < ‖go − spann G‖ + ε. As M is closed, convex, 0 ∈ intM ,

and fε
n ∈ dompM = X, by applying Lemma 4.1 (ii) with f = fε

n, g = go, and
A = spann G, we obtain that there exists hε

n ∈ M ∩ spann G satisfying

‖hε
n − go‖ ≤ (

1 + c‖go‖) ‖fε
n − go‖ ≤ (1 + c‖go‖)(‖go − spannG‖+ ε).(4.1)

As hε
n ∈ M ∩ spannG, we have infg∈M∩ spann G Φ(g) − Φ(go) ≤ Φ(hε

n) − Φ(go).
Estimating the right-hand side of this inequality in terms of the modulus of continuity
α of Φ at go, we obtain infg∈M∩ spann G Φ(g)−Φ(go) ≤ α

(‖hε
n−go‖). Combining this

estimate with inequality (4.1), we get

inf
g∈M∩ spann G

Φ(g)− Φ(go) ≤ α
(
(1 + c‖go‖)‖go − spannG‖+ ε

)
.

By Theorem 3.1 (i), we have

inf
g∈M∩ spann G

Φ(g)− Φ(go) ≤ α

(
(1 + c‖go‖)

√
(sG‖go‖G)2 − ‖go‖2

n
+ ε

)
.(4.2)

By infimizing (4.2) over ε, we obtain

inf
g∈M∩ spann G

Φ(g)− Φ(go) ≤ α

(
(
1 + c‖go‖)

√
(sG‖go‖G)2 − ‖go‖2

n

)
,

which completes the proof of (i).
(ii) By the definition of εn-minimum point, Φ(gn)−Φ(go) ≤ infg∈M∩ spann G Φ(g)−

Φ(go) + εn. So by item (i) we have

Φ(gn)− Φ(go) ≤ α

(
(
1 + c‖go‖)

√
(sG‖go‖G)2 − ‖go‖2

n

)
+ εn.(4.3)

If limn→∞ εn = 0 and ‖go‖G is finite, then the right-hand side of (4.2) converges to
zero and so {gn} is Φ-minimizing.
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(iii) By the definitions of εn-argmin and of the modulus of Tikhonov’s well-
posedness of (M, Φ) at go, and by item (i), we have
ξ(‖gn−go‖) = infg∈M ∩S‖gn−go‖(go) Φ(g)−Φ(go) ≤ Φ(gn)−Φ(go) < infg∈M ∩ spann G Φ(g)−
Φ(go) + εn ≤ α

((
1 + c‖go‖)

√
(sG‖go‖G)2−‖go‖2

n

)
+ εn.

(iv) By the definition of εn-argmin, Proposition 2.1 (iii) and item (i), we have
δ(‖gn − go‖) ≤ Φ(gn)− Φ(go) < infg∈M ∩ spann G Φ(g)− Φ(go) + εn

≤ α

(
(1 + c‖go‖)

√
(sG‖go‖G)2−‖go‖2

n

)
+ εn.

Theorem 4.2 shows that for ‖go‖G finite, the approximate minimum points {gn}
form a Φ-minimizing sequence over M and the speed of convergence of {Φ(gn)} to the

global minimum Φ(go) is bounded from above by α

((
1 + c‖go‖)

√
(sG‖go‖G)2−‖go‖2

n

)
+

εn.
When minimization is performed over the whole space, the Lipschitz constant of

the Minkowski functional pM = pX is equal to zero; thus, Theorem 4.2 gives an upper

bound α

(√
(sG‖go‖G)2−‖go‖2

n

)
+ εn, which depends on the modulus of continuity α

of Φ, G-variation and the ambient space norm of go.
When the admissible set is a ball Br(‖.‖), the Lipschitz constant is 1/r and we

get an upper bound α

((
1 + ‖go‖

r

) √
(sG‖go‖G)2−‖go‖2

n

)
+ εn.

As the estimates derived from Theorem 4.2 are not merely asymptotic, they can
be applied to any degree n of variable-basis functions.

Moreover, the estimates hold for any number d of variables of the admissible
solutions. Inspection of the upper bounds from Theorem 4.2 allows one to describe
problems for which the rates of approximate optimization do not exhibit the curse of
dimensionality (i.e., the degree n of variable-basis functions required for a satisfactory
approximate optimization does not grow exponentially with the number d of variables
of admissible solutions). A sufficient property of such problems is that the G-variation
of their minimum point go does not depend exponentially on the number d of variables.
Examples of classes of functions with small variations with respect to some bases used
in neurocomputing were given in [12, 58] (see also the Discussion).

The next theorem is an extension of Theorem 4.2 to Lp-spaces with p ∈ (1,∞).
Its proof proceeds similarly as the proof of Theorem 4.2, but instead of the upper
bound (i) from Theorem 3.1, it uses (ii). The same remarks about the assumption
0 ∈ intM and the replacement of X with M as those preceding Theorem 4.2 apply
here, as any closed subspace of a reflexive Banach space is a reflexive Banach space
[22, Proposition III.17].

Theorem 4.3. Let Ω ⊆ Rd, M and G be subsets of (Lp(Ω), ‖.‖p), p ∈ (1,∞),
G bounded, sG = supg∈G ‖g‖, M closed, convex, 0 ∈ intM , q = p/(p− 1), p̄ =
min(p, q), and q̄ = max(p, q). Let Φ : X → (−∞, +∞] be a functional, go ∈
argmin (M, Φ), Φ continuous at go with a modulus of continuity α, and {εn} be
a sequence of positive reals such that gn ∈ argminεn

(M ∩ spann G, Φ). Then pM is
Lipschitz on X and if c is its Lipschitz constant, then the following estimates hold for
every integer n:
(i) infg∈M∩ spann G Φ(g)− Φ(go) ≤ α

((
1 + c‖go‖) 21/p̄sG ‖go‖G

n1/q̄

)
;

(ii) if ‖go‖G < ∞ and limn→∞ εn = 0, then {gn} is a Φ-minimizing sequence over M
and



OPTIMIZATION BY THE EXTENDED RITZ METHOD 11

Φ(gn)− Φ(go) ≤ α
((

1 + c‖go‖) 21/p̄sG ‖go‖G

n1/q̄

)
+ εn;

(iii) if ξ is the modulus of Tikhonov’s well-posedness of (M, Φ) at go, then
ξ(‖gn − go‖) ≤ α

((
1 + c‖go‖) 21/p̄sG ‖go‖G

n1/q̄

)
+ εn;

(iv) if Φ is uniformly convex with a modulus of convexity δ, then
δ(‖gn − go‖) ≤ α

((
1 + c‖go‖) 21/p̄sG ‖go‖G

n1/q̄

)
+ εn.

In the calculus of variations, the notion of a direct method [37, p. 192] is used to re-
fer to a method for solving an optimization problem (M, Φ) by obtaining its minimum
point go as a limit of a Φ-minimizing sequence {gn} ⊆ M satisfying limn→∞ Φ(gn) =
Φ(go). Using this notion, we can rephrase our results as conditions on (M, Φ) under
which the extended Ritz method has some of the properties of a direct method. By
Theorems 4.2 and 4.3 for ‖go‖G finite, any sequence {gn} of εn-minimum points of
(M ∩ spannG, Φ) is Φ-minimizing and Φ(go) = limn→∞ Φ(gn) = Φ(limn→∞ gn). The
convergence of {gn} to go is not always guaranteed (it depends on the behavior of
the modulus of Tikhonov’s well-posedness of (M, Φ) at go). However, when applied
to convex best approximation problems (see Section 6) and to learning from data by
kernel methods (see Section 7), the extended Ritz method is a direct method.

5. Asymptotic estimates for convex problems. For convex problems with
the functional to be minimized bounded in a neighborhood of a minimum point, under
an additional assumption of density of M ∩ span G in M , the upper bounds from
Theorem 4.2 can be simplified. But the simplified bounds are only asymptotic as their
derivation takes advantage of the local behavior of the functional in a neighborhood
of a minimum point. For f, g : N+ → N+ we write g(n) ≤ O(f(n)) when there exists
a > 0 such that for all but finitely many n ∈ N+, g(n) ≤ a f(n).

Theorem 5.1. Let (X, ‖.‖) be a Hilbert space, M and G be its subsets, G bounded,
sG = supg∈G ‖g‖, M closed, convex, 0 ∈ intM , and M ∩ spanG dense in M . Let
Φ : X → (−∞, +∞] be a proper convex functional, go ∈ argmin (M, Φ) be such
that Φ is bounded in its neighborhood, {εn} be a sequence of positive reals such that
εn ≤ O(1/

√
n) and gn ∈ argminεn

(M ∩ spann G, Φ). Then the following estimates
hold:

(i) infg∈M∩ spann G Φ(g)− Φ(go) ≤ O
(√

(sG‖go‖G)2−‖go‖2
n

)
;

(ii) if ‖go‖G < ∞, then {gn} is a Φ-minimizing sequence over M and

Φ(gn)− Φ(go) ≤ O
(√

(sG‖go‖G)2−‖go‖2
n

)
;

(iii) if ξ is the modulus of Tikhonov’s well-posedness of (M, Φ) at go, then

ξ(‖gn − go‖) ≤ O
(√

(sG‖go‖G)2−‖go‖2
n

)
;

(iv) if Φ is uniformly convex with a modulus of convexity δ, then

δ(‖gn − go‖) ≤ O
(√

(sG‖go‖G)2−‖go‖2
n

)
.

Proof. (i) Let ν > 0 be such that Φ is bounded on Bν(go, ‖.‖). As Bν(go, ‖.‖) ⊆
dom Φ, we have go ∈ int dom Φ. Since Φ is a proper convex functional bounded on
Bν(go, ‖.‖), Φ is locally Lipschitz on Bν(go, ‖.‖) [35, Corollary 2.4, p. 12]. Let η ≤ ν
be such that Φ is Lipschitz continuous with a constant c1 on Bη(go, ‖.‖).

As M ∩ spanG is dense in M , limn→∞ ‖go − spannG‖ = 0, and so there exist
ε0 > 0 and n0 ∈ N+ such that ‖go − spann0

G‖+ ε0 ≤ η
1+c‖go‖ . For every n ≥ n0 and

ε ≤ ε0, choose fε
n ∈ spann G such that ‖go − fε

n‖ ≤ ‖go − spann G‖+ ε.
As M is closed, convex, 0 ∈ int M , and dom pM = X, we can apply Lemma 4.1
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(ii) with f = fε
n, g = go, and A = spann G to obtain hε

n ∈ M ∩ spann G satisfying

‖hε
n − go‖ ≤ (

1 + c‖go‖) ‖gε
n − go‖ < η.(5.1)

So hε
n is in the ball Bη(go, ‖.‖), on which Φ is Lipschitz continuous with the constant

c1. So we have

inf
g∈M∩ spann G

Φ(g)− Φ(go) ≤ Φ(hε
n)− Φ(go) ≤ c1 ‖hε

n − go‖.(5.2)

From (5.1) and (5.2) we obtain

inf
g∈M∩ spann G

Φ(g)− Φ(go) ≤ C ‖fε
n − go‖ ,(5.3)

where C = c1 (1 + c ‖go‖). By Theorem 3.1 (i) we get

‖go − fε
n‖ ≤ ‖go − spann G‖+ ε ≤

√
(sG‖go‖G)2 − ‖go‖2

n
+ ε.(5.4)

Infimizing over ε, we obtain from (5.3) and (5.4) for all n ≥ n0

inf
g∈M∩ spann G

Φ(g)− Φ(go) ≤ C

√
(sG‖go‖G)2 − ‖go‖2

n
.

(ii) As gn ∈ argminεn
(M ∩spann G), we have Φ(gn) < infg∈M∩ spann G Φ(g)+εn.

Combining this inequality with the one from item (i) and εn ≤ O(1/
√

n), we obtain

Φ(gn)− Φ(go) ≤ O
(√

(sG‖go‖G)2−‖go‖2
n

)
.

(iii) By the definitions of εn-argmin and of the modulus of Tikhonov’s well-
posedness of (M, Φ) at go and by item (i), we have for every n ≥ n0, ξ(‖gn − go‖) =
infg∈M ∩S‖gn−go‖(go) Φ(g)−Φ(go) ≤ Φ(gn)−Φ(go) < infg∈M ∩ spann G Φ(g)−Φ(go) +

εn ≤ C
√

(sG‖go‖G)2−‖go‖2
n + εn. As εn ≤ O(1/

√
n), we obtain ξ(‖gn − go‖) ≤

O
(√

(sG‖go‖G)2−‖go‖2
n

)
.

(iv) By the definition of εn-argmin and by Propositions 2.1 (iii) and 5.1 (i), we
get for all n ≥ n0, δ(‖gn − go‖) ≤ Φ(gn) − Φ(go) < infg∈M ∩ spann G Φ(g) − Φ(go) +

εn ≤ O
(√

(sG‖go‖G)2−‖go‖2
n

)
+ εn. As εn ≤ O(1/

√
n), we obtain δ(‖gn − go‖) ≤

O
(√

(sG‖go‖G)2−‖go‖2
n

)
.

Inspection of the proof of Theorem 5.1 shows that the expression

O
(√

(sG‖go‖G)2−‖go‖2
n

)
can be written for n ≥ no as C

√
(sG‖go‖G)2−‖go‖2

n , where

C = c1 (1+c ‖go‖), c is a Lipschitz constant of pM , and c1 is a Lipschitz constant of Φ
in a neighborhood of go. The proof also shows that for any sequences {εn} of positive
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reals and {gn} such that gn ∈ argminεn
(M, Φ), the statements of Theorem 5.1 (ii),

(iii) and (iv) hold with the bounds replaced with O
(√

(sG‖go‖G)2−‖go‖2
n

)
+ εn.

Applying Theorem 3.1 (ii) instead of Theorem 3.1(i) and following steps analogous
to those in the proof of Theorem 5.1, one can obtain for Lp-spaces estimates similar
to those stated in Theorem 5.1 for Hilbert spaces (the condition εn ≤ O(1/

√
n) has

to be replaced with εn ≤ O(n1/q̄), where q = p/(p− 1) and q̄ = max(p, q)).

6. Application to convex best approximation problems. The simplest ex-
ample illustrating the estimates derived in Section 4 is an application of the extended
Ritz method to a convex best approximation problem.

For any f ∈ X, let ef denote the functional defined as the distance from f , i.e.,
ef (g) = ‖g − f‖ for any g ∈ X.

When M is a closed convex subset of X, (M, ef ) is called a convex best approxi-
mation problem [34, p. 40]. We recall that M is a Chebyshev set if each f ∈ X has a
unique best approximation in M [29, p. 21] (i.e., there exists a unique go ∈ M such
that ‖f − go‖ = ‖f −M‖).

In [43], the classical Ritz method was used to solve approximately the problem
(M, ef ) with M a closed separable subspace of X, but rates of convergence were
not estimated. For X finite-dimensional, other approximate optimization methods
of the problem of best approximation have also been studied and, for some of them,
estimates of rates of convergence have been derived (e.g., [44, pp. 118-122]).

For X infinite-dimensional, a method of approximation of best approximation for
which estimates of rates of convergence are available is Dijkstra’s algorithm [29, p.
207] applied to a special class of admissible sets M of the form

⋃r
i=1 Mi, where Mi

are closed affine sets and r is finite [29, p. 201].
Here, taking advantage of the upper bounds from Section 4 we estimate rates of

convergence of approximate solutions of the problem (M, ef ), where M is closed and
convex, that are obtained by the extended Ritz method. Applying Theorem 4.2 to
the best approximation problems (M, ef ) and (M, e2

f ), we derive the following upper
bounds.

Theorem 6.1. Let M and G be subsets of a Hilbert space (X, ‖.‖), G be bounded,
sG = supg∈G ‖g‖, M be closed, convex, 0 ∈ intM , and f ∈ X. Then pM is Lipschitz
on X and if c is its Lipschitz constant, then there exists a unique minimum point go

of (M, ef ) such that the following estimates hold for every integer n:
(i) infg∈M∩spann G ef (g)− ef (go) = ‖f −M ∩ spann G‖ − ‖f −M‖
≤ (1 + c‖go‖)

√
(sG‖go‖G)2−‖go‖2

n ;
(ii) if M is bounded, {εn} is a sequence of positive reals, and for every n, gn ∈
argminεn

(M ∩ spann G, e2
f ), then

‖gn − go‖2 ≤ 2 diamM

(
(1 + c‖go‖)

√
(sG‖go‖G)2−‖go‖2

n

)2

+ εn.

Proof. As every closed convex subset of a Hilbert space is Chebyshev [29, p. 35]),
the problem (M, ef ) has a unique minimum point.

By the triangle inequality, for every h, g ∈ X we have |ef (h)− ef (g)| ≤ ‖h− g‖.
So ef is uniformly continuous on X and its modulus of continuity is α(t) = t. Hence,
applying Theorem 4.2 (i) we obtain (i).

To derive (ii), we apply Theorem 4.2 (iv) to the functional e2
f . As ‖f − go‖2 =

infg∈M ‖f − g‖2, go is a minimum point of (M, e2
f ). By Proposition 2.1 (iv), the

functional ‖.‖2 is uniformly convex with a modulus of convexity δ(t) = t2.
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By the triangle inequality, for every h, g ∈ X we have |e2
f (h) − e2

f (g)| = (‖f −
h‖ − ‖f − g‖)(‖f − h‖ + ‖f − g‖) ≤ 2 diamM‖h − g‖, and so α(t) = 2 t diam M is
an upper bound on the modulus of continuity of e2

f . Thus, applying Theorem 4.2 (iv)

we get ‖gn − go‖2 ≤ 2 diamM

(
(1 + c‖go‖)

√
(sG‖go‖G)2−‖go‖2

n

)2

+ εn.

Combining Theorem 4.3 with estimates of moduli of convexity of Lp-spaces, p ∈
(1,∞), we obtain the following upper bounds.

Theorem 6.2. Let Ω ⊆ Rd, M and G be subsets of (Lp(Ω), ‖.‖p), p ∈ (1,∞),
G bounded, sG = supg∈G ‖g‖, M closed, convex, 0 ∈ int M , f ∈ X, q = p/(p− 1),
p̄ = min(p, q), q̄ = max(p, q), and αp, αq be moduli of continuity of ep

f , eq
f , respec-

tively, at f . Then pM is Lipschitz on X and if c is its Lipschitz constant, then there
exists a unique minimum point go of (M, ef ) such that the following estimates hold
for every integer n:
(i) for every positive integer n, infg∈M∩spann G ef (g)−ef (go) ≤ (

1+c‖go‖) 21/p̄sG ‖go‖G

n1/q̄ ;
(ii) if M is bounded, {εn} is a sequence of positive reals, p ∈ (1, 2] and gn ∈
argminεn

(M ∩ spann G, eq
f ), then

‖gn − go‖q ≤ 2q−2 αq

(
(1 + c‖go‖)21/p̄sG ‖go‖G

n1/q̄

)
+ εn;

(iii) if M is bounded, {εn} is a sequence of positive reals, p ≥ 2 and gn ∈ argminεn
(M ∩

spann G, ep
f ), then

‖gn − go‖p ≤ 2p−2 αp

(
(1 + c‖go‖) 21/p̄sG ‖go‖G

n1/q̄

)
+ εn.

Proof. Since for all p ∈ (1,∞), (Lp(Ω), ‖.‖p) is a uniformly convex space [2, 2.29]
and every convex best approximation problem in a uniformly convex space is Tikhonov
well-posed [34, p. 40], there exists a unique go ∈ M such that ‖f − go‖p = ‖f −M‖p,
hence the problem (M, ef ) has a unique minimum point.

(i) By the triangle inequality, for every h, g ∈ X we have |ef (h)−ef (g)| ≤ ‖h−g‖p.
So ef is uniformly continuous on X and its modulus of continuity is α(t) = t. Hence,
applying Theorem 4.3 (i) we obtain (i).

(ii) When p ∈ (1, 2], the estimate follows from Theorem 4.3 (iv) applied to the
functional eq

f with q = p/(p− 1) combined with Proposition A.3 (i).
(ii) When p ≥ 2, the estimate follows from Theorem 4.3 (iv) applied to the

functional ep
f combined with Proposition A.3 (ii).

So Theorems 6.1 (i) and 6.2 (i) extend Theorem 3.1 on approximation by spannG
to approximation by M ∩spannG, where M is closed, convex, with zero in its interior,
in particular M = Br(‖.‖) for some r > 0.

Corollary 6.3. Let M and G be subsets of a normed linear space (X, ‖.‖),
G be bounded, sG = supg∈G ‖g‖, M be closed, convex, 0 ∈ intM , f ∈ M , go =
argmin(M, ef ). Then pM is Lipschitz on X and if c is its Lipschitz constant, then
the following estimates hold for every positive integer n:

(i) if (X, ‖.‖) is a Hilbert space, then

‖f −M ∩ spann G‖ ≤ (1 + c‖go‖)
√

(sG‖go‖G)2−‖go‖2
n + ‖f − go‖ ;

(i) if (X, ‖.‖) = (Lp(Ω), ‖.‖p), where p ∈ (1,∞), Ω ⊆ Rd is open, q = p/(p− 1),
p̄ = min(p, q), and q̄ = max(p, q), then

‖f −M ∩ spann G‖ ≤ (1 + c‖go‖)(1 + c‖go‖) 21/p̄sG ‖go‖G

n1/q̄ + ‖f − go‖.
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Note that for M = X, Corollary 6.3 gives the same estimate as Theorem 3.1,
since the Lipschitz constant of pM is equal to 0 and go = f .

7. Application to learning from data. Learning from a sample {(xi, yi) ∈
Rd × R, i = 1, . . . , m} of empirical data can be modelled as minimization of the
empirical error functional (also called the empirical risk functional), defined as

E(f) =
1
m

m∑

i=1

(f(xi)− yi)
2
.

However, the empirical error does not take into account any global properties
of the input/output mapping from which the sample was chosen. Such properties
can be expressed through regularization, which replaces the functional E with Eγ,Ψ =
E + γ Ψ, where Ψ is a suitable functional called stabilizer and γ is a positive real
number called regularization parameter. The stabilizer penalizes the solutions with
some undesired properties such as high-frequency oscillations, while the regularization
parameter plays the role of a tradeoff between fitting to the empirical data and fitting
to the properties of solutions represented by the stabilizer.

An important class of stabilizers are squares of norms on reproducing kernel
Hilbert spaces. A reproducing kernel Hilbert space (RKHS) (HK(Ω), ‖.‖K) is a Hilbert
space of functions defined on a set Ω such that for every x ∈ Ω, the evaluation
functional Fx, defined for any f ∈ HK(Ω) as Fx(f) = f(x), is bounded. For any
RKHS there exists a unique symmetric, positive semidefinite mapping K : Ω×Ω → R,
called kernel, such that for any f ∈ HK(Ω) and any x ∈ Ω, Fx(f) = 〈f,K(x, .)〉K [7]
(a mapping K : Ω×Ω →R is positive semidefinite on Ω if for all positive integers m,
all (a1, . . . , am) ∈ Rm, and all (x1, . . . , xm) ∈ Ωm,

∑m
i,j=1 aiajK(xi, xj) ≥ 0).

By the Cauchy-Schwartz inequality, for every f ∈ HK(Ω) and x ∈ Ω we have
|f(x)| = |〈f, K(x, ·)〉K | ≤ ‖f‖K

√
K(x, x) ≤ cK ‖f‖K , where cK = supx∈Ω

√
K(x, x).

Thus for every kernel K

sup
x∈Ω

|f(x)| ≤ cK‖f‖K .(7.1)

With ‖.‖2K as a stabilizer, the regularized functional obtained from E is of the
form

Eγ,K(f) =
1
m

m∑

i=1

|f(xi)− yi|2 + γ‖f‖2K .(7.2)

The Representer Theorem (see, e.g., [25, p. 42], [69, pp. 538-539]) states that the
problem (HK(Ω), Eγ,K) has a unique minimum point go of the form

go(x) =
m∑

i=1

aiK(x, xi).(7.3)

It even gives a formula for computing the parameters a = (a1, . . . , am) as the unique
solution of the well-posed system of linear equations

(K[x] + γ m I )
a = y ,(7.4)

where y = (y1, . . . , ym), K[x] is the m×m matrix defined as K[x]ij = K(xi, xj), and
I is the identity matrix [69] (see also [25]).
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Thus, to compute the coefficients of the linear combination a = (a1, . . . , am)
it is necessary to solve the inverse problem (7.4), which may be ill-conditioned. To
guarantee for a given m a small condition number [63, p. 33] of the matrixK[x]+γ m I,
the regularization parameter γ must be “large” [57]. On the other hand, a “large” γ
does not allow good interpolation of the empirical data. This limits the applicability
of algorithms for computing the solution of the problem (HK(Ω), Eγ,K) given by the
Representer Theorem.

It has been argued in [38, p. 219] that the “regularization principles lead to
approximation schemes that are equivalent to networks with one layer of hidden
units.” Indeed, the unique minimum point of the problem (HK(Ω), Eγ,K) is in the set
spanmGK , where GK = {K(x, ·) : x ∈ Ω}. Functions from this set can be computed
by neural networks with m hidden units. In particular for the Gaussian kernel, they
can be computed by radial-basis-function networks with Gaussian units. A drawback
of this elegant result is that the number of network hidden units needed to compute
the function minimizing Eγ,K is equal to the size of the sample of input/output data.
For large data sets, such networks might not be implementable. Moreover, in typi-
cal applications of neural networks, a number of hidden units much smaller than the
number of data is chosen before learning.

Using Theorem 4.2, we derive an approximate version of the Representer The-
orem. It estimates how quickly approximate solutions achievable by networks with
n hidden units converge to the global minimum point described by the Representer
Theorem. We first state basic properties of the functional Eγ,K .

Proposition 7.1. Let Ω be a nonempty set, K : Ω × Ω → R be a kernel,
cK = supx∈Ω

√
K(x, x), γ > 0, m be a positive integer, {(x1, y1), . . . , (xm, ym)} ⊂

(Ω×R)m, Eγ,K(f) = 1
m

∑m
i=1 |f(xi)−yi|2 +γ‖f‖2K , and ymin = {|yi| : i = 1, . . . ,m}.

Then
(i) the functional Eγ,K is uniformly convex on HK(Ω) with a modulus of convexity
δ(t) = γ t2;
(ii) at every f ∈ HK(Ω), Eγ,K is continuous with a modulus of continuity bounded
from above by α(t) = a2t

2 + a1t, where a1 = 2
(‖f‖K c2

K + ymin cK + γ‖f‖K

)
and

a2 = c2
K + γ;

(iii) when M ⊂ HK(Ω) is closed, convex, and bounded, or when M = HK(Ω), the
problem (M, Eγ,K) has a unique minimum point go;
(iv) for any minimum point go of (M, Eγ,K) and any f ∈ M ,
‖f − go‖2K ≤ |Eγ,K(f)−Eγ,K(go)|

γ .
Proof. (i) It is easy to show that E is convex, so (i) follows from Proposition 2.1

(i) and (iv).
(ii) Let f ∈ HK(Ω), t > 0 and g ∈ HK(Ω) be such that ‖f − g‖K < t. Then,

|Eγ,K(f)− Eγ,K(g)| =
∣∣∣∣∣
1
m

m∑

i=1

(
(f(xi)− yi)2 − (g(xi)− yi)2

)
+ γ

(‖f‖2K − ‖g‖2K
)
∣∣∣∣∣

≤
∣∣∣∣∣
1
m

m∑

i=1

(
f(xi)− g(xi)

) (
f(xi) + g(xi)− 2yi

)
∣∣∣∣∣ + γ

∣∣∣ ‖f‖K − ‖g‖K

∣∣∣ (‖f‖K + ‖g‖K)

≤ sup
x∈Ω

|f(x)− g(x)|
∣∣∣sup
x∈Ω

|f(x) + g(x)| − 2ymin

∣∣∣ + γ ‖f − g‖K (‖f‖K + ‖g‖K) .
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Thus by (7.1), |Eγ,K(f)−Eγ,K(g)| ≤ cK ‖f − g‖K

∣∣∣cK‖f + g‖K − 2ymin

∣∣∣ + γ ‖f −
g‖K (‖f‖K + ‖g‖K) . As ‖g‖K < ‖f‖K + t, we obtain

|Eγ,K(f)− Eγ,K(g)| < t cK

∣∣∣2‖f‖K cK + t cK − 2ymin

∣∣∣ + γt (2‖f‖K + t)

≤ t cK

(
2‖f‖K cK + t cK + 2ymin

)
+ γt (2‖f‖K + t)

= t2 (c2
K + γ) + 2t

(
‖f‖K c2

K + ymin cK + γ‖f‖K

)
.

Hence, ‖f−g‖K < t implies |Eγ,K(f)−Eγ,K(g)| < α(t) = a2t
2+a1t, where a2 = c2

K +γ
and a1 = 2

(‖f‖K c2
K + ymin cK + γ‖f‖K

)
.

(iii) When M ⊂ HK(Ω) is closed, convex, and bounded, the existence of a unique
minimum point of (M, Eγ,K) follows from (i) and [70, Theorem 5], and when M =
HK(Ω), it follows from the Representer Theorem [69, pp. 538-539].

(iv) follows from (i) and Proposition 2.1 (iii).
So the modulus of continuity of Eγ,K at any f ∈ HK(Ω) is bounded from above

by the quadratic function a2t
2 + a1t. Note that a2 depends on m, cK and γ, while a1

depends, in addition to these values, also on ‖f‖K and ymin.
Applying Proposition 7.1 and Theorem 4.2 to the problem (H(Ω), Eγ,K), we obtain

the following estimates, which hold for any n (but are only useful for n < m, as the
minimum point go is in spanmGK).

Theorem 7.2. Let Ω be a nonempty set, K : Ω × Ω → R be a kernel, cK =
supx∈Ω

√
K(x, x), (HK(Ω), ‖.‖K) be the RKHS defined by K, GK = {K(x, .) : x ∈

Ω}, (x1, . . . , xm) ∈ Ωm, (y1, . . . , ym) ∈ Rm, ymin = {|yi| : i = 1, . . . , m}, γ > 0,
Eγ,K(f) = 1

m

∑m
i=1 |f(xi) − yi|2 + γ ‖f‖K , go(x) =

∑m
i=1 wiK(x, xi) be the unique

minimum point of the problem (HK(Ω), Eγ,K) given by the Representer Theorem, and
{εn} be a sequence of positive reals such that gn ∈ argminεn

(spann GK , Eγ,K). Then
for every positive integer n, the following estimates hold:

(i) infg∈spann GK
Eγ,K(g)− Eγ,K(go) ≤ α

(√
(cK‖go‖GK

)2−‖go‖2
K

n

)
;

(ii) if ‖go‖G < ∞ and limn→∞ εn = 0, then {gn} is an Eγ,K-minimizing sequence
over HK(Ω) and

Eγ,K(gn)− Eγ,K(go) ≤ α

(√
(cK‖go‖GK

)2−‖go‖2
K

n

)
+ εn;

(iii) γ ‖gn − go‖2K ≤ α

(√
(cK‖go‖GK

)2−‖go‖2
K

n

)
+ εn;

(iv) γ supx∈Ω |gn(x)− go(x)|2 ≤ cK

(
α

(√
(cK‖go‖GK

)2−‖go‖2
K

n

)
+ εn

)
,

where α(t) = a2t
2 + a1t, a1 = 2

(‖go‖K c2
K + ymin cK + γ‖go‖K

)
and a2 = c2

K + γ.
Proof. Statements (i) and (ii) follow from Theorem 4.2 with M = HK(Ω), c = 0

(in this case, pM is the constant functional equal to zero), Φ(f) = Eγ,K(f), G = GK ,
and sG = supx∈Ω ‖K(x, .)‖K = supx∈Ω

√
〈K(x, .),K(x, .)〉K = supx∈Ω

√
K(x, x) =

cK . By Proposition 7.1 (i) and (ii), Eγ,K is uniformly convex with a modulus of
convexity δ(t) = γ t2, and is continuous at go with a modulus of continuity α(t) =
a2t

2 + a1t.
(iii) follows from (ii) and Proposition 7.1 (iii).
(iv) follows from (7.1) and item (iii).
For this application of Theorem 4.2, an explicit formula (7.3) describing the min-

imum point go is given by the Representer Theorem. Taking advantage of this
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formula, estimates of ‖go‖GK
and ‖go‖ in terms of the properties of the sample

{(xi, yi), i = 1, . . . , m}, the kernel K, and the regularization parameter γ were derived
in [57].

8. Discussion. We have derived upper bounds on rates of approximate opti-
mization by the extended Ritz method for problems (M, Φ) having a minimum point,
where Φ is continuous and M is closed, convex, containing 0 in its interior. The
bounds can be applied to a variety of problems with sets of admissible solutions equal
to the ambient space, to its subspaces (restating the problems for the subspaces), and
to balls of some radii in the ambient norm. Such admissible sets occur, for example,
in Tikhonov’s and Ivanov’s regularizations.

The critical term in the bounds is of the form 1/
√

n multiplied by the variation
norm of the minimum point. To take advantage of these bounds, one needs some
insights into the behavior of the variation norm tailored to the basis used for the
extended Ritz method. Various methods based on integral representations (such as
the Fourier transform [12, 21, 45, 58] and the Radon transform [49, 54]) have been
proposed to estimate the variation norm. For a survey of properties of G-variation
see [53].

The role of variation norms in variable-basis approximation can be clarified by a
comparison with the role played by Sobolev norms in linear approximation. Rates of
linear approximation of order O(n−1/2) for functions of d variables can be achieved
when the approximation is restricted to functions from balls in Sobolev norms of
degree s = d/2 [67, pp. 232-233 ]. Similarly, in variable-basis approximation rates
bounded from above by rn−1/2 can be obtained by restricting the approximation to
balls of radii r in G-variations. Note that the “O” notation in estimates of rates of
linear approximation of functions from balls in Sobolev norms hides “constants” that
may depend on d [67, pp. 232-241]. Moreover with d increasing, balls in Sobolev
spaces of degree s = d/2 “shrink”, since some d-variable functions in the unit balls in
the Sobolev norms ‖.‖d/2,p with “large” ((d+1)/2)-th derivatives cannot be extended
to (d + 1)-variable functions from the unit balls in the Sobolev norms ‖.‖(d+1)/2,p.
In contrast to the linear case, in variable-basis approximation with certain types of
bases (such as those generated by neural-network computational units [53]) there exist
families of sets of d-variable functions that can be approximated with rates n−1/2 and
do not shrink as d increases.

Acknowledgments. The authors thank R. Zoppoli (University of Genoa) for
stimulating their interest in the theoretical investigation of approximate optimization
by the extended Ritz method. They are also grateful to P. C. Kainen and A. Vogt
(both of Georgetown University) for fruitful comments and discussions.

Appendix A. For the reader’s convenience, here we state and prove the results
from nonlinear approximation theory, which are used in Section 4.

The following theorem states Maurey-Jones-Barron’s estimate in a slightly refor-
mulated way. The proof, which is a mild simplification of the argument from [12, p.
934, Lemma 1], is from [53]. By convnG is denoted the set of all convex combinations
of at most n elements of the set G, i.e.,

convn G =

{
n∑

i=1

wigi : wi ∈ [0, 1],
n∑

i=1

wi = 1, gi ∈ G

}
.

Theorem A.1. Let G be a bounded subset of a Hilbert space (X, ‖.‖) and
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sG = supg∈G ‖g‖, then for every f ∈ cl conv G and for every positive integer n,

‖f − convnG‖ ≤
√

s2
G
−‖f‖2
n .

Proof. Since the distance from convnG is continuous on (X, ‖.‖) [72, p. 391],
it is sufficient to verify the statement for f ∈ conv G. Let f =

∑m
j=1 ajhj be a

representation of f as a convex combination of elements of G. Set c = s2
G − ‖f‖2.

We show by induction that there exist a sequence {gi} of elements of G such that the
barycenters fn =

∑n
i=1

gi

n satisfy e2
n = ‖f − fn‖2 ≤ c

n .
First check that there exists g1 ∈ G such that f1 = g1 satisfies e2

1 = ‖f−f1‖2 ≤ c.
As

∑m
j=1 aj‖f − hj‖2 = ‖f‖2 − 2 〈f,

∑m
j=1 ajhj〉 +

∑m
j=1 aj‖hj‖2 ≤ s2

G − ‖f‖2 = c,
there must exist at least one j ∈ {1, . . . ,m} for which ‖f − hj‖2 ≤ c.

Setting g1 = hj and assuming that we already have g1, . . . , gn, we derive the
estimate by induction. We express e2

n+1 in terms of e2
n as e2

n+1 = ‖f − fn+1‖2 =
‖ n

n+1 (f − fn) + 1
n+1 (f − gn+1)‖2 = n2

(n+1)2 e2
n + 2n

(n+1)2 〈f − fn, f − gn+1〉+ 1
(n+1)2 ‖f −

gn+1‖2.
Analogously to the first step, we consider a convex combination of the last two

terms from the formula expressing e2
n+1 in terms of e2

n. Thus we obtain∑m
j=1 aj

(
2n

(n+1)2 〈f − fn, f − hj〉+ 1
(n+1)2 ‖f − hj‖2

)
= 2n

(n+1)2 〈f−fn, f−∑m
j=1 ajhj〉+

1
(n+1)2

(
‖f‖2 − 2 〈f,

∑m
j=1 ajhj〉+

∑m
j=1 aj‖hj‖2

)
= 1

(n+1)2 (
∑m

j=1 ajgj − ‖f‖2) ≤
1

(n+1)2 (s2
G − ‖f‖2) = c

(n+1)2 . So there must exist some j ∈ {1, . . . ,m} such that
2n

(n+1)2 〈f − fn, f − gn+1〉+ 1
(n+1)2 ‖f − gn+1‖2 ≤ c

(n+1)2 .

Setting gj = hj , we get e2
n+1 ≤ n2

(n+1)2 e2
n + c

(n+1)2 . It can be easily verified by
induction that this recursive formula together with e2

1 ≤ c gives e2
n ≤ c

n .
In [28], Maurey-Jones-Barron’s estimate was extended to Lp-spaces, p ∈ (1,∞),

with a more sophisticated argument replacing inner products with peak functionals
and taking advantage of Clarkson’s inequalities stated in the following proposition
from [42, pp.225,227].

Proposition A.2 (Clarkson’s inequalities). Let Ω ⊆ Rd, f, g ∈ (Lp(Ω), ‖.‖p),
p ∈ (1,∞), and q = p/(p− 1), then for p ∈ (1, 2]

∥∥∥∥
f + g

2

∥∥∥∥
q

p

+
∥∥∥∥

f − g

2

∥∥∥∥
q

p

≤
(

1
2
‖f‖p

p +
1
2
‖g‖p

p

)q−1

(A.1)

∥∥∥∥
f + g

2

∥∥∥∥
p

p

+
∥∥∥∥

f − g

2

∥∥∥∥
p

p

≥ 1
2
‖f‖p

p +
1
2
‖g‖p

p(A.2)

and for p ≥ 2
∥∥∥∥

f + g

2

∥∥∥∥
p

p

+
∥∥∥∥

f − g

2

∥∥∥∥
p

p

≤ 1
2
‖f‖p

p +
1
2
‖g‖p

p(A.3)

∥∥∥∥
f + g

2

∥∥∥∥
q

p

+
∥∥∥∥

f − g

2

∥∥∥∥
q

p

≥
(

1
2
‖f‖p

p +
1
2
‖g‖p

p

)q−1

.(A.4)

The next estimates follow from Clarkson’s inequalities.
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Proposition A.3. Let Ω ⊆ Rd, p ∈ (1,∞), and q = p/(p − 1), p̄ = min(p, q),
then:
(i) if p ∈ (1, 2], the functional eq

f is uniformly convex with a modulus of convexity
δ(t) = tq

2q−2 ;
(ii) if p ≥ 2, the functional ep

f is uniformly convex with a modulus of convexity δ(t) =
tp

2p−2 ;
(iii) for all f, g ∈ (Lp(Ω), ‖.‖p) , ‖f + g‖p̄

p + ‖f − g‖p̄
p ≤ 2

(‖f‖p̄
p + ‖g‖p̄

p

)
.

Proof. (i) By [2, Lemma 2.24], for every 1 ≤ r < ∞ and a, b ≥ 0, (a + b)r ≤
2r−1(ar + br). Thus, by (A.1) we have∥∥∥ f+g

2

∥∥∥
q

p
+

∥∥∥ f−g
2

∥∥∥
q

p
≤ 2q−2

((
1
2‖f‖p

p

)q−1 +
(

1
2‖g‖p

p

)q−1
)

. As p(q − 1) = q, we obtain
∥∥∥ f+g

2

∥∥∥
q

p
+

∥∥∥ f−g
2

∥∥∥
q

p
≤ 2q−2

2q−1

(‖f‖q
p + ‖g‖q

p

)
= 1

2 (‖f‖q
p + ‖g‖q

p).

(ii) follows directly from (A.3).
(iii) First suppose that p ∈ (1, 2]. Then p ≤ q and so p̄ = min{p, q} = p. Thus, by
(A.2) we have

‖f‖p
p + ‖g‖p

p ≤ 2

(∥∥∥∥
f + g

2

∥∥∥∥
p

p

+
∥∥∥∥

f − g

2

∥∥∥∥
p

p

)
(A.5)

Set φ = f+g
2 and ψ = f−g

2 . Then f = φ + ψ and g = φ − ψ. So from (A.5) we get
‖ψ + φ‖p

p + ‖φ − ψ‖p
p ≤ 2(‖φ‖p

p + ‖ψ‖p
p) = ‖ψ + φ‖p̄

p + ‖ψ − φ‖p̄
p ≤ 2

(‖ψ‖p̄
p + ‖φ‖p̄

p

)
,

which proves (iii) for p ∈ (1, 2].
Now suppose p ≥ 2. Then p ≥ q and so p̄ = min{p, q} = q and 1/(q − 1) = p− 1.

By (A.4) we have

(‖f‖p
p + ‖g‖p

p) ≤ 2

(∥∥∥∥
f + g

2

∥∥∥∥
q

p

+
∥∥∥∥

f − g

2

∥∥∥∥
q

p

) 1
q−1

(A.6)

= 2

(∥∥∥∥
f + g

2

∥∥∥∥
q

p

+
∥∥∥∥

f − g

2

∥∥∥∥
q

p

)p−1

.

As above, set φ = f+g
2 and ψ = f−g

2 . Then f = φ + ψ and g = φ− ψ. So from (A.7)
we get

‖ψ + ψ‖p
p + ‖φ− ψ‖p

p ≤ 2
(‖φ‖q

p + ‖ψ‖q
p

)p−1
.(A.7)

Since for every r ∈ [1,∞) and a, b ≥ 0 we have (a+ b)r ≤ 2r−1(ar + br) [2, 2.24], with
a = ‖φ + ψ‖q

p, b = ‖φ− ψ‖q
p, and r = p/q = p− 1 it follows

‖ψ + φ‖p
p + ‖φ− ψ‖p

p =
(
‖φ + ψ‖q p

q
p + ‖φ + ψ‖q p

q
p

)

≥ 1
2p−2

(‖ψ + φ‖q
p + ‖φ− ψ‖q

p

)p−1(A.8)

Thus, by (A.7) and (A.8) we obtain
(‖φ + ψ‖q

p + ‖φ + ψ‖q
p

)p−1 ≤ 2p−1
(‖φ‖q

p + ‖ψ‖q
p

)p−1 .
Hence ‖φ + ψ‖q

p + ‖φ + ψ‖q
p ≤ 2

(‖φ‖q
p + ‖ψ‖q

p

)
= 2

(‖φ‖p̄
p + ‖ψ‖p̄

p

)
as q = p̄ . This

proves (iii) for p ≥ 2.
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The next theorem is a slight reformulation of [28, Theorem 5]. The proof is a
simplification of the argument from [28, proof of Theorem 5]. For a Banach space
(X, ‖.‖) and f ∈ X, we denote by Πf a peak functional for f , i.e., a continuous linear
functional such that ‖Πf ‖ = 1 and Πf (f) = ‖f‖ [20, p. 1].

Theorem A.4. Let Ω ⊆ Rd be open, G be a subset of (Lp(Ω), ‖.‖p), p ∈ (1,∞),
f ∈ cl conv G and r > 0 be such that G ⊆ Br(f, ‖.‖). Then for every positive integer
n, ‖f − spannG‖p ≤ 21/p̄r

n1/q̄ , where q = p/(p− 1), p̄ = min(p, q), and q̄ = max(p, q).
Proof. As in the proof of Theorem A.1, it is sufficient to verify the statement for

f ∈ conv G. Let f =
∑m

j=1 ajhj be a representation of f as a convex combination of
elements of G. We show by induction that there exist a sequence {gi} of elements of
G such that the barycenters fn =

∑n
i=1

gi

n satisfy en = ‖f − fn‖ ≤ 21/p̄ r
n1/q̄ .

First check that there exists g1 ∈ G such that f1 = g1 satisfies e1 = ‖f − f1‖p ≤
21/p̄ r. This holds trivially as G ⊆ Br(f, ‖.‖), so for any g ∈ G we have ‖f − g‖ ≤ r <
21/p̄ r. Hence we can set f1 = g1 for any g1 ∈ G.

Assume that we already have g1, . . . , gn, then fn+1 = n
n+1 fn + 1

n+1 gn+1 =
1

n+1

∑n+1
i=1 gi. We shall express ep̄

n+1 in terms of ep̄
n.

Let Πn be a peak functional for f − fn. Since
∑m

j=1 aj (f − hj) = 0, by linearity

of Πn we have 0 = Πn

(∑m
j=1 aj (f − hj)

)
=

∑m
j=1 aj Πn(f − hj). Thus, there must

exist j ∈ {1, . . . ,m} such that Πn(f − hj) ≤ 0. Set gn+1 = hj , so Πn(f − gn+1) ≤ 0.
Thus, by Proposition A.3 (iii) we get

ep̄
n+1 = ‖f − fn+1‖p̄

p =
∥∥∥∥

n

n + 1
(f − fn) +

1
n + 1

(f − gn+1)
∥∥∥∥

p̄

p

≤ 2

(∥∥∥∥
n

n + 1
(f − fn)

∥∥∥∥
p̄

p

+
∥∥∥∥

1
n + 1

(f − gn+1)
∥∥∥∥

p̄

p

) ∥∥∥∥
n

n + 1
(f − fn)− 1

n + 1
(f − gn+1)

∥∥∥∥
p̄

p

.

(A.9)
As ‖Πn‖ = 1 and Πn(f − gn+1) ≤ 0, we have ‖ n

n+1 (f − fn) − 1
n+1 (f − gn+1)‖p ≥∥∥∥Πn

(
n

n+1 (f − fn)− 1
n+1 (f − gn+1)

)∥∥∥
p
≥

∥∥∥Πn

(
n

n+1 (f − fn)
)∥∥∥

p
= n

n+1 ‖Πn(f − fn)‖p =
n

n+1 ‖f − fn‖p. Hence

−
∥∥∥∥

n

n + 1
(f − fn)− 1

n + 1
(f − gn+1)

∥∥∥∥
p̄

p

≤ −
(

n

n + 1
‖f − fn‖p

)p̄

.(A.10)

By (A.9) and (A.10), ep̄
n+1 = ‖f−fn+1‖p̄

p ≤ 2
(
‖ n

n+1 (f − fn)‖p̄
p + ‖ 1

n+1 (f − gn+1)‖p̄
p

)
−

(
n

n+1 ‖f − fn‖p

)p̄

= 2
(n+1)p̄ ‖f − gn+1‖p̄

p +
(

2
n+1

)p̄

‖f − fn‖p̄
p = 2

(n+1)p̄ ‖f − gn+1‖p̄
p +

(
2

n+1

)p̄

ep̄
n . As en = ‖f − fn‖ ≤ 21/p̄ r

n1/q̄ , we get ep̄
n+1 ≤ 2 rp̄

(n+1)p̄ +
(

n
n+1

)p̄ (
21/p̄ r
n1/q̄

)p̄

=
2 rp̄

(n+1)p̄

(
1 + np̄

np̄/q̄

)
= 2 rp̄

(n+1)p̄

(
1 + np̄−p̄/q̄

)
. It can be easily verified that p̄ − p̄

q̄ = 1
in both cases, p̄ = p (and so q̄ = q = p

p−1 ) and p̄ = q (and so q̄ = p). Thus

ep̄
n+1 ≤ 2 rp̄

(n+1)p̄ (n + 1) . As p̄ − 1 = p̄
q̄ for both p̄ = p (hence q̄ = q) and p̄ = q (hence

q̄ = p), we get ep̄
n+1 ≤ 2 rp̄

(n+1)p̄−1 = 2rp̄

(n+1)p̄/q̄ , i.e., en+1 ≤ 21/p̄r
(n+1)1/q̄ .
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Theorem 3.1 is a corollary of Theorems A.1 and A.4 in terms of G-variation. For
t > 0, we define G(t) = {wg : g ∈ G,w ∈ R, |w| ≤ t}.
Proof of Theorem 3.1. (i) As spann G ⊇ convn G, by Theorem A.1 applied to G(‖f‖G)

we have ‖f − spann G‖ ≤ ‖f − convn G(‖f‖G)‖ ≤
√

(sG ‖f‖G)2−‖f‖2
n .

(ii) As spann G ⊇ convn G, by applying Theorem A.4 to G(‖f‖G) we get ‖f −
spann G‖ ≤ 21/p̄ r

n1/q̄ for every r such that G(‖f‖G) ⊆ Br(f, ‖.‖). Set r = 2 sG ‖f‖G. By
(3.1), for every h ∈ G(‖f‖G) we have ‖h − f‖ ≤ ‖h‖ + ‖f‖ ≤ sG ‖h‖G + sG ‖f‖G ≤
2 sG ‖f‖G. So G(‖f‖G) ⊆ B2r‖f‖G

(f, ‖.‖), hence ‖f − spann G‖ ≤ 21/p̄ sG ‖f‖G

n1/q̄ .
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