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Translation-Invariant Kernels
for Multivariable Approximation

Věra Kůrková and David Coufal

Abstract—Suitability of shallow (one-hidden-layer) networks
with translation-invariant kernel units for function approxima-
tion and classification tasks is investigated. It is shown that
a critical property influencing capabilities of kernel networks
is how the Fourier transforms of kernels converge to zero.
The Fourier transforms of kernels suitable for multivariable
approximation can have negative values, but must be almost ev-
erywhere nonzero. In contrast, the Fourier transforms of kernels
suitable for maximal margin classification must be everywhere
nonnegative, but can have large sets where they are equal to
zero (e.g., they can be compactly supported). Behavior of Fourier
transforms of multivariable kernels is analyzed using the Hankel
transform. The general results are illustrated by examples of
both uni- and multivariable kernels (such as Gaussian, Laplace,
rectangle, sinc and cut power kernel).

Index Terms—Translation-invariant kernels; radial kernels;
function approximation; classification; Fourier and Hankel trans-
forms.

I. INTRODUCTION

Artificial neural networks were introduced as computational
models composed from perceptrons representing simplified
models of neurons [1]. Perceptrons compute highly nonlocal
functions in the form of plane waves with shapes defined by
activation functions (originally mostly sigmoidal ones, recently
also piecewise linear rectifiers). A disadvantage of perceptron
networks is the lack of transparency of representations in the
form of plane waves as clearly expressed in the classical
monograph [2, p. 676]: “But always the use of plane waves
fails to exhibit clearly the domains of dependence and the role
of characteristics.”

As an alternative to biologically inspired perceptrons, var-
ious types of computational units were proposed because
of their good mathematical properties. Radial-basis-functions
(RBF) in the form of spherical waves [3] were followed
by more general hyper-basis-functions [4] induced by Green
functions of differential operators playing roles of smoothing
in regularization techniques. Later, units formed by symmetric
positive definite kernels became popular. Geometrical proper-
ties of Hilbert spaces induced by these kernels play a crucial
role in classification by the support vector machine (SVM)
algorithm [5], in regularization [6], [7], [8], and a variety of
learning techniques [9], [10], [11], [12], [13].

V. Kůrková and D. Coufal are with the Department of Machine Learning,
Institute of Computer Science of the Czech Academy of Sciences, 182 07
Prague, Pod Vodárenskou věžı́, 2, Czech Republic (e-mail: vera@cs.cas.cz,
david.coufal@cs.cas.cz).

This work was partially supported by the Czech Science Foundation grant
GA18-23827S and institutional support of the Institute of Computer Science
RVO 6798580.

Manuscript received Month XX, 2019; revised Month XX, 2020.

The term “kernel” was introduced by Hilbert in 1904
[14, p. 291] for functions of two variables K(x, y) form-
ing “kernels of integral operators”

∫
f(y)K(x, y) dy, which

model many phenomena investigated in physics. Some of
these kernels are named for the mathematicians who studied
them - e.g., Gauss, Weierstrass, Abel, Laplace, Poisson. Also
computational units being functions of two vector variables
(input and parameter) can be seen as kernels. Many kernels
used in various branches of applied mathematics turned out
to be suitable for generating computational units. Some of
them became popular in applications. In particular, translation-
invariant kernels defined as translations of one-variable func-
tions generate computational units possessing many useful
properties. Translation-invariant kernels formed by radial ker-
nels in the shape of “bump” functions have localized character.
The most widely used kernel is the Gaussian. With varying
widths, it is the most common kernel in RBF networks
and with fixed widths in the SVM algorithm. Also, inverse
multiquadric and thin-plate spline have been popular in kernel
models. Other translation-invariant kernels with interesting
mathematical properties are Laplace and cut power kernels,
rectangular pulse and sinc function [15], [16].

In this paper, we explore general translation-invariant ker-
nels with the aim of selecting those that are suitable for use
as computational units. The first important factor influencing
this selection is capability of kernel networks to express
sufficiently large sets as input-output functions, ideally dense
enough to find an input-output function arbitrarily close to any
reasonable function. The second factor is the applicability of
methods for regularization that made RBF networks and SVM
so popular. The essential properties of kernels needed for the-
oretically justified application of these methods is symmetry
and positive definitness. Kernels with these properties induce
reproducing kernel Hilbert spaces whose geometrical structure
is essential in mathematical theory of regularization and SVM.

We analyze suitability of kernel computational units for
function approximation and/or classification in terms of prop-
erties of their Fourier transforms. For typical kernels, the
transforms are real, uniformly continuous and converging
with increasing frequencies to zero. They can be classified
according to the form of this convergence: some of them are
band-limited (equal zero above certain frequency), some are
positive monotonically decreasing, while others are oscillating
between positive and negative values.

We show that for function approximation, kernels with
almost everywhere nonzero Fourier transforms are suitable,
while for classification with maximal margin (SVM), kernels
with nonnegative Fourier transforms are needed as such ker-
nels are positive definite.
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In neurocomputing, functions typically depend on many
variables. Thus we investigate Fourier transforms of multi-
variable kernels. Fourier transforms of radial functions are
radial, but often they cannot be expressed analytically. Their
expressions use the Hankel transform, which is an integral
transform formulated in terms of special functions, called
Bessel functions of the first kind. Using the Hankel transform,
we analyze multivariable Fourier transforms of kernels of
interest such as Laplace and cut power kernels or circ function.

Our analysis shows that one cannot take for granted that
computational units which are suitable for classification tasks
performed by SVM [5] with good generalization capabilities
are also suitable for function approximation. Necessary and
sufficient conditions for these two tasks are different and
we present examples of kernels which satisfy merely one
of these conditions. We also characterize translation-invariant
kernels, which generate networks with both benefits: sufficient
expressibility needed for function approximation and sym-
metry and positive definiteness needed for maximal margin
classification. A preliminary version of some results from
this paper appeared in a Czech-Slovak conference proceedings
[17] and in a conference proceedings [18]. In [17], a sketch
of an alternative proof of Theorem 3.1 was given and in
both [17] and [18], some examples of kernels with various
properties of Fourier transforms were demonstrated. In this
paper, results from these conference papers are presented
with more mathematical rigor. They are combined to create
a unifying framework characterizing all four classes of kernels
with respect to universality and positive definiteness. Analysis
of the case of multivariate kernels, which requires expressions
of their Fourier transforms in terms of the Hankel transform,
is included.

The paper is organized as follows. Section II contains no-
tation and a background material on kernel units, one-hidden-
layer networks, and Fourier and Hankel transforms. Section III
is devoted to approximation of functions by kernel networks.
In Section IV, conditions for function approximation are
compared with conditions on maximal margin classification
and regularization. In Section V, properties of multivariable
kernels are analyzed. Section VI contains some concluding
remarks. Appendix contains our alternative argument of the
Wiener Closure Theorem.

II. PRELIMINARIES

The set of input-output functions of a one-hidden-layer
network with one linear output unit has the form

spanG :=

{
n∑
i=1

wigi |wi ∈ R, gi ∈ G,n ∈ N+

}
, (1)

where the set G is called a dictionary [19], and R, N+ denote
the sets of real numbers and positive integers, respectively.
Recently, one-hidden-layer networks became called shallow to
distinguish them from deep ones with more than one hidden
layers.

Dictionaries can be formally described as

Gψ = Gψ(X,Y ) := {ψ(x, y) : X → R | y ∈ Y } , (2)

where ψ : X × Y → R is a function of two variables, x ∈
X ⊆ Rd an input vector and y ∈ Y ⊆ Rs a parameter.

In this paper, we focus on dictionaries of translation-
invariant (shift-invariant) kernel units, which are generated by
translations of suitable one-variable functions. For a function
k : Rd → R, we denote by K : Rd ×Rd → R the function of
two variables defined as

K(x, y) = k(x− y). (3)

We denote by

GK = GK(X) := {K(x, y) : X → R | y ∈ X} , (4)

the dictionary of kernel units induced by the kernel K.
An important subclass of translation-invariant kernels are

radial translation-invariant kernels. A function Φ : Rd → R
is called radial if it can be expressed as

Φ(x) = ϕ(‖x‖), (5)

where ϕ : [0,∞) → R is a one-variable function and ‖x‖
is a norm on Rd, usually the Euclidean one. Thus a radial
translation-invariant kernel K : Rd × Rd → R has the form

K(x, y) = ϕ(‖x− y‖), (6)

where ϕ : [0,∞)→ R.
Radial-basis-function units (RBF) compute translations of

radial functions. When they have a fixed width, they have the
form

ϕ(‖x− a‖), (7)

where a ∈ Rd is called a center and ϕ : [0,∞) → R is a
one-variable function, typically such that limr→∞ ϕ(r) = 0.
RBF with variable widths b > 0 compute functions

ϕb(‖x− a‖) = ϕ(‖x− a‖/b). (8)

Recall [20, p. 30], that a kernel K : X × X → R, where
X ⊆ Rd, is called positive definite if for any positive integer
n ∈ N+, any x1, . . . , xn ∈ X and any c1, . . . , cn ∈ R,

n∑
i=1

n∑
j=1

cicjK(xi, xj) ≥ 0. (9)

Similarly, a real function k : X → R, where X ⊆ Rd, is
called positive definite if for any positive integer n ∈ N+, any
x1, . . . , xn ∈ X and any c1, . . . , cn ∈ R,

n∑
i=1

n∑
j=1

cicjk(xi − xj) ≥ 0. (10)

A kernel is called strictly positive definite if
n∑
i=1

n∑
j=1

cicjK(xi, xj) > 0. (11)

Note that in some literature (e.g. in [15], see p. 65), the terms
positive semi-definite and positive definite are used instead
of positive definite and strictly positive definite, resp. (see
Sec. 3.1 in [16, p. 28] or Remark 2.6 in [20, p. 30]). Moreover,
indefinite kernels are also studied [21].

When K is symmetric positive definite, then the set
spanGK(X) of input-output functions of networks with units
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from the dictionary GK(X) induced by the kernel K generate
a reproducing kernel Hilbert space (RKHS) denoted HK(X).
It is the completion of the preHilbert space

span{Kx |x ∈ X}, (12)

where Kx(y) = K(x, y), by adding the limits of the Cauchy
sequences in the norm ‖ · ‖K . This norm is induced by the
inner product

〈Kx,Ky〉K = K(x, y). (13)

The convolution is an operation defined as

f ∗ g(x) =

∫
Rd
f(x− y)g(y) dy =

∫
Rd
f(y)g(x− y) dy (14)

[22, p. 170].
The d-dimensional Fourier transform is an isometry on

L2(Rd) defined on L1(Rd) ∩ L2(Rd) as

f̂(s) =
1

(2π)d/2

∫
Rd
e−ix·sf(x) dx (15)

and extended to L2(Rd) [22, p. 183].
Recall that the Fourier transform of a radial function is

also a radial function which can be expressed in terms of
the Hankel transform. The Hankel transform of order ν of
a function f : [0,∞)→ R is defined as

Hν{f(r)}(s) =

∫ ∞
0

f(r)Jν(sr)r dr (16)

where Jν : [0,∞) → R is the Bessel function of the first
kind of order ν ≥ − 1

2 [23]. Bessel functions are obtained
as solutions of certain differential equations and play an
important role in problems related to wave propagation.

III. TRANSLATION-INVARIANT KERNEL NETWORKS FOR
FUNCTION APPROXIMATION

When networks are used for function approximation, it is
desirable that sets of their input-output functions are large
enough so that to any function from a set of interest there
exists a sufficiently close input-output function of a network
from that class. Formally, a class of networks is said to have
the universal approximation property in a normed linear space
(X , ‖·‖X ) if it is dense in this space. In particular, for shallow
networks with single linear output and hidden units from
a dictionary G this means that clX spanG = X , where spanG
denotes the linear span of G and clX denotes the closure with
respect to the topology induced by the norm ‖ · ‖X . So for
every f ∈ X and every ε > 0 there exist a positive integer
n ∈ N+, g1, . . . , gn ∈ G and w1, . . . , wn ∈ R such that

‖f −
n∑
i=1

wigi‖X < ε. (17)

Function spaces where the universal approximation property
has been studied are spaces (C(X), ‖ · ‖∞) of continuous
functions on subsets X of Rd (typically compact) with the
supremum norm

‖f‖∞ = sup
x∈X
|f(x)| (18)

and spaces (Lp(Rd), ‖ · ‖Lp) of functions on Rd with finite∫
Rd |f(y)|pdy and the norm

‖f‖Lp =

(∫
Rd
|f(y)|p dy

)1/p

. (19)

A simple example of a positive definite kernel which is not
suitable for function approximation is any product kernel of
the form K(x, y) = k(x)k(y), where k : X → R is a function
of one variable. The set of input-output functions of networks
with units induced by a product kernel K contains only scalar
multiples of the function k

spanGK(X) = {c k(x) : X → R | c ∈ R} (20)

and thus it cannot be dense in L2(X).
Expressibility power of RBF networks with varying width

has long been known. The universal approximation property in
L2(Rd) of one-hidden-layer networks with units of the form

ϕ(‖x− a‖/b) (21)

was proven in [24], [25] under a rather mild condition 0 6=∫
R ϕ(t) dt < ∞ on the “shape” function ϕ. The proof in

[24], [25] is based on a classical result on approximation
of functions by sequences of their convolutions with scaled
kernels and thus it suggests that variability of widths might
be needed for density of RBF networks. RBF networks with
varying width parameters can compute much larger sets of
functions than RBF networks with fixed widths. So, it is not
surprising that variability of width plays an important role in
estimates of rates of approximation [26], [27]. However, RBF
units with varying widths ϕ(‖x− a‖/b) cannot be expressed
as symmetric kernels as the input vector has dimension d and
the parameter vector has dimension d+ 1. In RBF units with
fixed width ϕ(‖x− a‖) both input and parameter vector have
dimension d and thus they can be expressed as symmetric
kernels. Symmetry is an important feature because together
with positive definiteness induces the Hilbert space structure
of RKHSs. Properties of RKHS enable to prove that the SVM
algorithm minimizes the margin between two classes and to
characterize theoretically optimal solutions of minimization of
regularized empirical error functionals [5], [6], [7], [10].

Nevertheless, in the special case of the Gaussian kernel with
a fixed width, the universal approximation capability holds in
spaces of continuous functions on compact subsets of Rd. Its
proof given in [28] exploits special properties of the Gaussian
function (its derivatives are products of Hermite polynomials
with the Gaussian) and thus it cannot be extended to other
kernels.

A different approach based on properties of the Fourier
transform of kernels allows us to characterize general transla-
tion invariant-kernels which generate networks possessing the
universal approximation capability. The next theorem shows
that when kernels with fixed width satisfy certain conditions
on sets of frequencies for which their Fourier transforms are
equal to zero, then they form networks which are suitable for
function approximation.

Recall that the Fourier transform of an even function is real
and the Fourier transform of a radial function with respect
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to the Euclidean norm is also radial [29]. If k ∈ L1(Rd),
then k̂ is uniformly continuous and with increasing frequencies
converges to zero, i.e., lim‖s‖→∞ k̂(s) = 0. By λd we denote
the Lebesgue measure on Rd.

Theorem 3.1: Let d be a positive integer, k ∈ L1(Rd) ∩
L2(Rd) be even, K : Rd × Rd → R be the kernel induced
by k, i.e., K(x, y) = k(x − y), and X ⊆ Rd be Lebesgue
measurable. Then spanGK(X) is dense in (L2(X), ‖ · ‖L2)
if and only if λd({s ∈ Rd | k̂(s) = 0}) = 0.

Theorem 3.1 is a version of the Wiener Closure Theorem
proven in [30, Chapter I]. As Wiener’s proof is difficult to
follow, in the Appendix we give a more transparent alternative
argument. It is based on fundamental theorems from functional
analysis (Hahn-Banach and Riesz Representation Theorems)
and basic properties of convolution and Fourier transform
(Young Inequality, Plancherel Theorem).

Theorem 3.1 characterizes translation-invariant kernels
which can be used as units in shallow networks having the uni-
versal approximation property. It proves that kernel networks
can approximate with any accuracy all L2-functions if and
only if the Fourier transform of the kernel function k is almost
everywhere nonzero. In particular, it implies that networks
with kernels having Fourier transforms with discrete sets of
zeros are suitable for function approximation. On the other
hand, shallow networks with kernel units having band-limited
Fourier transforms (k̂(s) = 0 for all s such that ‖s‖ ≥ r
for some r > 0) are too small to express sufficiently large
sets of functions for the universal approximation capability.
Inspection of our proof of Theorem 3.1 given in the Appendix
shows that shallow networks with such kernel units cannot
approximate arbitrarily well functions with positive Fourier
transforms (e.g., the Gaussian function).

IV. POSITIVE DEFINITENESS AND/OR UNIVERSAL
APPROXIMATION PROPERTY

In this section, we compare properties of Fourier transforms
of positive definite functions with those characterizing the uni-
versal approximation property from Theorem 3.1. We illustrate
general results by examples of one-dimensional kernels. The
more complicated case of multivariable kernels requiring the
Hankel transform is deferred to the next section.

Using the expression

K(x, y) = k(x− y) =
1

(2π)d/2

∫
Rd
k̂(s)ei(x−y)·s ds (22)

of the inverse Fourier transform of a translated function, it is
easy to prove the following well-known proposition (see, e.g.,
[31]).

Proposition 4.1: Let k ∈ L1(Rd) ∩ L2(Rd) be even and
k̂(s) ≥ 0 for all s ∈ Rd. Then k is positive definite and
therefore so is the kernel K(x, y) = k(x− y).

A complete characterization of complex-valued positive
definite continuous kernels in terms of Fourier transforms of

finite Borel measure was proven by Bochner (see, e.g., [32,
p. 220] or [16, p. 31]).

Theorem 4.2 (Bochner): Let k : Rd → C be continuous.
Then k is positive definite if and only if there exists a
nonnegative finite Borel measure µ such that k is its Fourier
transform, i.e.,

k(x) =
1

(2π)d/2

∫
Rd
e−ix·sµ(ds). (23)

Theorem 4.2 implies that when a Borel measure µ has
a density w.r.t. the Lebesgue measure λd then the condition
on the Fourier transform of an even function assumed in
Proposition 4.1 is both sufficient and necessary. The following
theorem from [16, Theorem 3.5, p. 33] characterizes strictly
positive definite continuous integrable functions.

Theorem 4.3: Let k ∈ L1(Rd) be continuous. Then k is
strictly positive definite if and only if k is bounded and its
Fourier transform is nonnegative and not identically equal to
zero.

For our purposes, we would need a result addressing positive
definite functions, not only the strict ones. Although in [15,
Theorem 6.11, p. 74] the result is proven for the strict variant,
an inspection of the converse part of its proof shows that
nonnegativity of k̂ is also necessary condition for (nonstrict)
positive definiteness of k. Thus an even, continuous, and
bounded function k ∈ L1(Rd)∩L2(Rd) whose Fourier trans-
form has some negative values, cannot be positive definite.
On the other hand, networks with units induced by such k can
posses the universal approximation property if the set of zeros
of its Fourier transform is negligible (has Lebesgue measure
zero).

A comparison of the two conditions on a kernel, the one
from Theorem 3.1 for the universal approximation and the one
from Theorem 4.3 on positive definiteness implies character-
ization of classes of kernels suitable for function approxima-
tion, but not for SVM and on those suitable for SVM, but not
for approximation. In the sequel, we illustrate these general
results by some examples.

We start with the paradigmatic example of the Gaussian
kernel. For a width b > 0, we denote

gb(x) = e−
x2

b2 . (24)

Its Fourier transform is real and it is well-known that

ĝb(s) =
b√
2
e−

b2s2

4 . (25)

Proposition 4.1 and Theorem 3.1 show the good properties of
the Gaussian kernel. It is suitable for both SVM and function
approximation as it is positive definite and networks with
Gaussian units with any fixed width are universal approxi-
mators in L2(Rd).
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Fig. 1. The Gaussian kernel for b = 1 and its Fourier transform.

Fig. 2. The Laplace kernel for b = 1 and its Fourier transform.

Another example of a translation-invariant kernel possessing
both properties assumed in Proposition 4.1 and those assumed
in Theorem 3.1 is the Laplace kernel. It is defined for b > 0 as

lb(x) = e−
|x|
b . (26)

Its Fourier transform is

l̂b(s) =

√
2

π

b

1 + b2s2
(27)

and thus it is everywhere positive.
For b > 0, the triangle and the rectangle kernel are defined

as

trib(x) = max{0, 1− |x|/b} = (1− |x|/b)+

rectb(x) =

{
1 for x ∈ [−b/2, b/2],
0 otherwise.

The Fourier transforms of the triangle and the rectangle
kernels are expressed in terms of the sinc function defined for
all x ∈ R, x 6= 0 as

sinc(x) =
sin(x)

x
and sinc(0) = 1. (28)

The Fourier transforms of trib and rectb have forms

t̂rib(s) =
b√
2π

sinc2
(
bs

2

)
,

r̂ectb(s) =
b√
2π

sinc

(
bs

2

)
.

The Fourier transform of the triangle kernel is nonnegative
with a discrete set of zeros which is equal to the set of
zeros of the sinc function. Therefore the triangle kernel is
positive definite and induces networks with the universal
approximation property.

An example of a kernel which induces networks with the
universal approximation property, but is not positive definite
is the rectangle kernel. It is not continuous, but the set of

Fig. 3. The triangle kernel for b = 1 and its Fourier transform.

Fig. 4. The rectangle kernel for b = 1 and its Fourier transform.

frequencies for which its Fourier transform is zero is discrete
and thus its Lebesgue measure is zero. To show directly that it
is not positive definite we use the following simple example.
Let n = 3, x1 = 0, x2 = 1/2, x3 = −1/4, then the 3 × 3
matrix A with entries Aij = rect1(xi − xj) is not positive
definite as it has a negative eigenvalue, namely λ∗ = −0.4142.
Indeed, for the eigenvector v = (−

√
2/2, 1/2, 1/2)T , we have

λ∗ = vTAv and therefore for ci = vi, i, j = 1, 2, 3, one has∑3
i=1

∑3
j=1 ci cjrect1(xi − xj) < 0.

Fig. 5. The Epanechnikov kernel for b = 1 and its Fourier transform.

Another example of a kernel which is not positive definite,
but induces networks with the universal approximation prop-
erty is the cut parabolic (Epanechnikov) kernel. It is a special
case of the cut power kernel. Cut parabolic kernel is defined as

epib(x) =
3

4
(1− (x/b)2)+ (29)

For b = 1, its Fourier transform can be expressed as

êpi1(s) =

{
1 for s = 0,
3√
2π

sin(s)−s cos(s)
s3 otherwise,

(30)

and for b > 0,
êpib(s) = b êpi1(bs). (31)

So the Fourier transform has negative values, the kernel is
continuous and therefore by Theorem 4.3 it cannot be positive
definite. As the set of zeros of the Fourier transform is discrete,
by Theorem 3.1 the cut parabolic kernel induces networks
possessing the universal approximation property.
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Another interesting kernel is the squared sinc kernel -
sinc2. Its Fourier transform is a properly scaled and stretched
triangular pulse which is nonnegative and band limited (see
Fig. 3 for the Fourier transform pair). Thus sinc2 is positive
definite, but kernel networks induced by sinc2 are not universal
approximators. Note that sinc has similar properties as sinc2,
but as sinc 6∈ L1(R) Theorem 3.1 cannot be applied.

To construct a kernel which is neither positive definite nor
induces networks with the universal approximation property
we employ spherical Bessel functions. The spherical Bessel
kernel spB with the width b = 1 is defined as

spB(x)=j0(|x|)+5

2
j2(|x|)=

−3[(x2 − 5) sin(x) + 5x cos(x)]

2x3
(32)

where j0 and j2 are the spherical Bessel functions of the first
kind [33, p. 2779]. The Fourier transform of this kernel is

ŝpB(s) =

√
π

2

(
P0(s)− 5

2
P2(s)

)
=

√
π

2

3

4
(3−5s2) ·1[−1,1]

(33)
where Pn are the Legendre orthogonal polynomials and 1[−1,1]
is the indicator function of the interval [−1, 1]. This formula
follows from [34, Vol. I, p. 123 (8)] and the identity jn(x) =√
π/(2x)Jn+1/2(x).
The Fourier transform ŝpB of the spherical Bessel kernel

has negative values and is compactly supported (hence it is
band limited). Moreover, spB ∈ L2(R) as∫

R
(spB(x))2 dx =

∫
R

(ŝpB(s))2 ds =
9π

4
. (34)

However, spB 6∈ L1(R) and thus Theorem 3.1 cannot be
applied to find out whether the spherical Bessel kernel induces
networks with the universal approximation property.

Fig. 6. The squared spherical Bessel kernel and its Fourier transform.

Instead of the spherical Bessel kernel, consider its second
power spB2. Clearly, spB2 ∈ L1(R) by the above formula
(34). Further, the Fourier transform of the second power is
the second convolution power of the Fourier transform, i.e.,
ŝpB2 = ŝpB ∗ ŝpB, so ŝpB2 is compactly supported as well
as ŝpB (see Fig. 6 for the graphs of both spB2 and ŝpB2). As
ŝpB2 is continuous, one has ||ŝpB2||L2 < ∞ and therefore
spB2 ∈ L2(R).

By Theorem 4.3, spB2 is not positive definite. As ŝpB2 is
compactly supported on the interval [−2, 2], by Theorem 3.1,
shallow networks with the squared spherical Bessel kernel
units do not have the universal approximation property.

Table I presents several one-dimensional kernels including
examples of kernels from all four classes defined by the two

SVM yes SVM no

approximation yes
Gaussian
Laplace
triangle

rectangle
cut parabolic

approximation no sinc2 spherical Bessel2

TABLE I
ONE-DIMENSIONAL KERNELS AND THEIR PROPERTIES.

conditions on the Fourier transforms: the condition needed for
capability to approximate functions and the one needed for
application of SVM.

V. PROPERTIES OF MULTIVARIABLE RADIAL
TRANSLATION-INVARIANT KERNELS

In this section, we analyze properties of Fourier transforms
of multivariable translation-invariant kernels. First, let us con-
sider a simple case of product kernels and then a more compli-
cated case of general radial kernels, analysis of which requires
the Hankel transform.

The multiplicative form of functions of several variables
which can be expressed as products of one-variable functions

K(x, y) =

d∏
i=1

Ki(xi, yi) =

d∏
i=1

ki(xi − yi) (35)

induces separability of variables. Fourier transforms of such
multivariable functions can be expressed as products of the
Fourier transforms of one-variable functions. It follows from
the construction of the product Lebesgue measure that if for
a measurable S ⊂ R, λ(S) = 0 then also λd(Sd) = 0 and
if λ(S) > 0, then also λd(Sd) > 0. Hence, characterization
of multivariable product kernels inducing networks having the
universal approximation property can be reduced to analysis
of properties of one-dimensional kernels.

Similarly, suitability of kernels of the form (35) for SVM
can be reduced to the one-dimensional case. By the Schur
Product Theorem [35], products of positive definite matrices
are positive definite and hence products of positive definite
kernels are positive definite (see also [36, Proposition 3.22,
p. 75]).

Radial kernels are obtained by applying one-variable radial
functions to norms of multivariable arguments. For the Eu-
clidean norm || · ||2, they are rotationally invariant. The Gaus-
sian kernel, being both product and radial kernel, establishes
a link between these two classes.

The following theorem provides a representation of the
Fourier transform of a radial function with the Euclidean norm
in terms of the Hankel transform [29, Theorem 3.3].

Theorem 5.1: Let Φ ∈ L1(Rd) be continuous and Φ(x) =
ϕ(||x||2). Then its Fourier transform Φ̂ : Rd → R is also radial
and Φ̂(·) = ϕH (|| · ||2) where ϕH (s) =

= s−νHν (ϕ(r)rν) (s) = s−
d−2
2

∫ ∞
0

ϕ(r)r
d
2 J(d−2)/2(sr) dr,

(36)
ν = (d− 2)/2, and Jν is the Bessel function of the first kind
of order ν.
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By Theorem 5.1, the Fourier transform of a radial function
ϕ(‖x‖2) can be represented as a multiple of the Hankel
transform of the one-variable function ϕ(r) scaled by factor
rν , where ν depends on the number of variables d (ν =
− 1

2 , 0,
1
2 , 1, . . . for d = 1, 2, 3, 4 . . . ). See the definition (16)

of the Hankel transform Hν . It is defined in terms of the
Bessel functions of the first kind Jν [33, p. 198].

For more details on Hankel transform see, e.g., [23], [34].
Note that in some literature (e.g., [34]), an alternative defini-
tion of the Hankel transform

hν{f(x)}(y) =

∫ ∞
0

f(x)Jν(xy)(xy)1/2 dx (37)

is used. For Hν(ϕ(r)rν) defined in (16) the following relation
holds

Hν{ϕ(r)rν}(s) = s−1/2hν

{
xν+1/2ϕ(x)

}
(s). (38)

It follows directly from the definition (16) that

Hν{ϕ(r/b)rν}(s) = bν+2Hν{ϕ(r)rν}(bs) (39)

for a scaling factor b > 0.
For some one-variable kernels from Section IV, Table II

presents Hankel transforms of scaled versions of shape func-
tions ϕ obtained using formulas from [34, Vol. II] together
with the above equations.

In Table III, the Fourier transforms of scaled multivariable
Gaussian, Laplace, cut power and circ kernels are compiled.
The expressions follow from Theorem 5.1 with ν = (d −
2)/2 = d/2−1 for d being the number of variables. Note that
bν+1 = bd/2 and b2(ν+1) = bd.

Combining the expressions for multivariable Fourier trans-
forms specified in Table III with Theorems 3.1 and 4.3, we
obtain the following results on suitability for classification
and/or function approximation by networks with multivariate
Gaussian, Laplace, cut power and circ kernel units.

Gaussian kernel. Since the multivariable Gaussian can be
expressed as the product of one-variable Gaussians, its Fourier
transform is the product of the respective one-dimensional
Fourier transforms. Hence the analysis of the one-variable case
from Section IV can be directly extended to the multivariable
one.

Fig. 7. The 2D Gaussian kernel and its Fourier transform.

Laplace kernel. The Hankel transform of the exponential func-
tion is an inverse multiquadric, which is a rational function.
As this function is everywhere positive, also its composition
with any norm is positive. Hence networks with multivariable
Laplace kernel units have the universal approximation prop-
erty. Moreover, Laplace kernel is an even, integrable function
with positive Fourier transform and so it is positive definite.

Thus similarly as the multivarible Gaussian kernel, also the
Laplace kernel is suitable for both function approximation and
SVM classification tasks in any dimension.

Fig. 8. The 2D Laplace kernel and its Fourier transform.

Cut power kernel. In contrast to Gaussian and Laplace ker-
nels, the cut power is compactly supported. Thus its Fourier
transform is analytic, which cannot be compactly supported
unless it is a constant equal to zero. The Hankel transform of
the cut power involves the Bessel function of the first kind
Jν , which is not positive, but the set of its zeros has Lebesgue
measure zero as it is countable. Thus networks with the cut
power kernel units are suitable for function approximation.
On the other hand, by Theorem 4.3 the cut power cannot be
positive definite, because on some subsets of Rd its Fourier
transform is negative. So networks with cut power units have
the universal approximation property, but they are not suitable
for the SVM algorithm.

Fig. 9. The 2D cut power and its Fourier transform for µ = 2.

Circ kernel. The circ kernel is based on the circ function which
is the characteristic function of the unit ball in Rd. In the
one-dimensional case, it corresponds to the rectangular pulse
1[−1,1]. Its Hankel transform equals to the Bessel function of
the first kind multiplied by the factor s−1. So its Fourier trans-
form has a nonempty set of zeros whose Lebesgue measure
is zero. As the circ function is not continuous, Theorem 4.3
cannot be applied. However, an analogous argument as the one
used in Section IV for the one-variable case, shows that also
the multivariable circ function is not positive definite.

Fig. 10. The 2D circ function and its Fourier transform.

Inspecting formulas in Table III for d = 1, we get the
same results as derived earlier for one-dimensional Fourier
transforms. For the Gaussian and Laplace kernels, a transition
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ϕb(r) = ϕ(r/b) Hν (ϕb(r)r
ν) (s) pages in [34, Vol. II]

Gaussian exp(−(r/b)2) b2(ν+1)sν

2ν+1 exp(− 1
4
(bs)2) p. 29 (10)

exponential exp(−r/b) 2ν+1Γ(ν+3/2)b2(ν+1)

π1/2(1+b2s2)ν+3/2 sν p. 29 (4)

cut power (a2 − (r/b)2)µ+
bν−µ+12µΓ(µ+1)aν+µ+1

sµ+1 Jν+µ+1(abs) p. 26 (33)

rect. pulse 1[0,1]

{
1 0 ≤ r/b ≤ 1
0 otherwise

bν+1s−1Jν+1(bs) p. 22 (6)

TABLE II
HANKEL TRANSFORMS OF SCALED ONE-VARIABLE FUNCTIONS ϕb(r) r

ν .

ϕb(||x||2) ϕ̂b(s)

Gaussian exp(−||x||22/b2) (b2/2)d/2 exp(− b
2

4
||s||22)

Laplace exp(−||x||2/b) 2d/2Γ(d/2+1/2)bd

π1/2(1+b2||x||22)(d+1)/2

cut power (a2 − ||x||22/b2)µ+
2µΓ(µ+1) ad/2+µ bd/2−µ

||s||d/2+µ2

Jd/2+µ(ab||s||2)

circ
{

1 0 ≤ ||x||2/b ≤ 1
0 otherwise

(b/||s||2)d/2Jd/2(b||s||2)

TABLE III
SCALED MULTIVARIABLE RADIAL FUNCTIONS AND THEIR FOURIER TRANSFORMS.

from the multidimensional case to the one-dimensional one
is straightforward. For the cut power, however, it might look
a bit unclear how to get the version of the transform for the
Epanechnikov kernel (µ = 1, a = 1, b = 1 and multiplication
by 3/4) presented in Section IV. The key lies in the fact that
the Bessel function of the first kind J3/2 admits the closed
expression J3/2(|s|) = (2/π)1/2|s|−3/2(sin(|s|)−|s| cos(|s|)).

Similarly, from the last row of Table III we get

r̂ectb(s) = ĉircb/2(s) =

√
b

2|s|
J1/2

(
b|s|
2

)
. (40)

Using the well-known identities for Bessel functions (see [33,
p. 2779])

j0(x) =
√
π/(2x)J1/2(x), j0(x) = sinc(x) (41)

and the fact that sinc is even, we obtain√
b

2|s|
J1/2

(
b|s|
s

)
=

b√
2π

j0

(
b|s|
2

)
=

b√
2π

sinc

(
bs

2

)
.

(42)

Other kernels. Table I in Section IV presents seven one-
dimensional kernels and properties of their Fourier transforms.
Multidimensional versions of four of these kernels are in-
vestigated in this section using the Hankel transforms of the
associated shape functions. For the multivariate counterparts
of the remaining three kernels (triangular, sinc2 and spB2)

simple closed forms of the corresponding Hankel transforms
of these kernels for general ν are not known to the authors
of this article. However, some insights can be gained using
numerical computations.

VI. CONCLUSION

We presented a unifying framework for exploration of ca-
pabilities of shallow networks with translation-invariant kernel
units. Fourier transforms of even integrable functions (in
particular of integrable translation-invariant kernels) are real,
uniformly continuous, and converging with increasing frequen-
cies to zero. Their sets of zeros have various forms: they can
be equal to zero above certain frequencies (band limited), have
discrete sets of zeros, or be everywhere positive, or be negative
on some subset (see Fig. 11 for some paradigmatic examples).

Key properties of the Fourier transforms influencing suit-
ability of kernels for function approximation and/or classifica-
tion are their nonnegativity and size of their sets of zeros. For
SVM and RKHSs, Fourier transforms must be nonnegative, but
they can have large sets of zeros, they can even be compactly
supported. On contrary, an existence of nonnegligible sets of
frequencies, for which the values of the Fourier transforms are
zero, limits approximation capabilities of kernel networks. For
the universal approximation property, the Fourier transform of
a kernel can be negative, but it cannot be zero on any set of
frequencies of positive Lebesgue measure.
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(a) FT of Laplace kernel (b) FT of Epanechnikov kernel (c) FT of squared sinc kernel (d) FT of squared spherical Bessel kernel

Fig. 11. Four types of Fourier transforms of even continuous integrable functions.

We derived an alternative proof of the classical Wiener
Closure Theorem with basic tools from functional analysis. For
analysis of Fourier transforms of multivariate radial kernels,
we employed the Hankel transform, which does not have
an analytic expression but can be represented in terms of
Bessel functions. Their properties have been studied in applied
science in connection with wave propagation and thus their
sets of zeros are known.

We illustrated our results by concrete examples of several
well-known kernels. We presented examples of kernels suit-
able for both function approximation and SVM (Gaussian,
Laplace, and triangle), kernels merely suitable for function
approximation (rectangle and cut power), a kernel merely suit-
able for SVM and regularization (squared sinc), and a kernel
which is neither suitable for function approximation nor for
classification by SVM (squared spherical Bessel kernel).

It might seem that it is always advantageous to use kernels
that possess both properties (positive definitness and universal
approximation property of induced networks) in all dimen-
sions (such as Gaussian and Laplace). However, the price
paid for universality is computational complexity connected
with unbounded supports of such kernels. In applications of
neural computing, we have recently witnessed a shift towards
using compactly supported functions as their derivatives equals
zero outside their supports, which greatly simplifies learning
by gradient-based methods. Another advantage of compactly
supported kernels is that their supports can be localized. The
message of our theoretical results for practical applications is
that while use of compactly supported kernels brings lower
computational cost, their approximation/classification capabil-
ities might be limited. For example, the compactly supported
Epanechnikov kernel is not suitable for SVM tasks. Our paper
provides theoretical guidelines for choice of kernels in terms
of their Fourier transforms.

APPENDIX A
PROOF OF THEOREM 3.1

First, suppose that λd(S) = λd({s ∈ Rd | k̂(s) = 0}) 6= 0.
As Lebesgue measure is inner regular, there exists a compact
set SK ⊆ S such that λd(SK) > 0. Let f ∈ L1(Rd)∩L2(Rd)
be such that f̂(s) > 0 for all s ∈ S (e.g., f can be the Gaussian
function) and let ε > 0 be such that ε <

∫
SK
f̂(s)2 ds. Assume

that f ∈ clL2 spanGK(X). Denoting Ky(x) = k(x− y), we
have

‖f −
n∑
j=1

wjKyj‖2L2
< ε, (43)

for some n ∈ N+, wj ∈ R, yj ∈ Rd. Setting uj(s) = wje
iyj ·s,

we get by the isometry of the Fourier transform (Plancherel
Theorem [22, p. 188])

‖f −
n∑
j=1

wjKyj‖2L2
= ‖f̂ −

n∑
j=1

wjK̂yj ‖2L2

= ‖f̂ −
n∑
j=1

uj k̂‖2L2
. (44)

Hence ‖f̂ −
∑n
j=1 uj k̂‖2L2

=

=

∫
Rd\SK

f̂(s)−
n∑
j=1

uj(s)k̂(s)

2 ds+

∫
SK

f̂(s)2ds > ε,

(45)
which contradicts (43).

We prove sufficiency of the condition λd(S) = 0 using
a standard method of proving density of sets of functions
based on the Hahn-Banach Theorem (see, e.g., [22, p. 60]).
We can assume that X = Rd (otherwise we embed L2(X)
into L2(Rd) by setting all functions equal to zero outside
of X). Assuming that clL2spanGK(Rd) is a proper subset
of L2(Rd), we would get a bounded linear functional L on
L2(Rd) that vanishes for f ∈ clL2spanGK(Rd), but for some
f0 ∈ L2(Rd)\clL2spanGK(Rd), L(f0) = 1. As by the Riesz
Representation Theorem [37, p. 206], all linear functionals on
Hilbert spaces are expressible as inner products, L(f) = 〈f, h〉
for some h ∈ L2(Rd). Then for even k, we have

〈h,Ky〉 =

∫
Rd
h(x)k(x− y) dx

=

∫
Rd
h(x)k(y − x) dx = h ∗ k(y) = 0. (46)

Using properties of the Fourier transform and the Young
Inequality [22, p. 183, p. 188], we get h ∗ k ∈ L2(Rd) and
‖ĥ ∗ k‖L2 = 0. As

ĥ ∗ k =
1

(2π)d/2
ĥ k̂, (47)

we have ‖ĥ k̂‖L2 = 0 and so∫
Rd

(ĥ(s) k̂(s))2ds = 0. (48)

By the assumption that λd(S) = 0, we get∫
Rd
ĥ(s)2k̂(s)2ds =

∫
Rd\S

ĥ(s)2k̂(s)2ds = 0. (49)
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As for all s ∈ Rd \ S, k̂(s)2 > 0, we have ‖ĥ‖2L2 = 0 and so
‖h‖L2 = 0. Finally, using the Cauchy-Schwartz inequality we
get a contradiction

1 = L(f0) =

∫
Rd
f0(x)h(x) dx ≤ ‖f0‖L2 ‖h‖L2 = 0. (50)

2
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