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1 Introduction

A key property of systems performing intelligent computing, such as feature
extraction, pattern recognition, semantic web realization, and classification,
is learning ability. The goal of supervised learning is to adjust the parame-
ters of a computational model so that it approximates to a desired accuracy
a functional relationship between inputs and outputs by learning from a set
of examples, i.e., a sample z = {(xi, yi) ∈ Ω × <, i = 1, . . . , m} of m in-
put/output pairs of empirical data. It is desirable that a model trained on
a sample of empirical data also has a generalization capability, i.e., it is able
to satisfactorily process new data, which were not used for learning. To en-
dow a model with this capability, one needs some global knowledge of the
desired input/output functional relationship, such as smoothness or lack of
high-frequency oscillations.

In statistical learning theory [9,45], learning from empirical data is modelled
as minimization of a functional, called empirical error. For a sample z of data
and a loss function V : <2 → [0, +∞), the empirical error Ez,V is defined
as Ez,V (f) = 1

m

∑m
i=1 V (f(xi), yi), where f belongs to a function space, called

hypothesis space, over which such a minimization is performed.

Mathematical modeling of generalization requires some prior information on
the behavior of potential solutions. Such information is already expressed by
the choice of a hypothesis space, over which the empirical error is minimized.
It can be further specified by restricting minimization of the empirical er-
ror to a subset of the hypothesis space (containing only functions with some
desired behavior). Alternatively, one can add to the empirical error a term
penalizing undesired properties, or combine these two approaches. The first
method is an application to learning of Ivanov’s regularization, the second one
of Tikhonov’s, and the third one of Miller’s [6, pp. 68-78].

Tikhonov’s regularization [43,44], which was introduced into learning theory by
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Poggio and Girosi [20,35,36], leads to minimization over the whole hypothesis
space of the regularized empirical error functional, defined as the sum of two
functionals Ez,V + γΨ. The first one, the empirical error Ez,V , enforces close-
ness to the sample z of empirical data, whereas Ψ, called stabilizer, expresses
requirements on the global behavior of the desired input/output functional
relationship. The regularization parameter γ controls the trade-off between
fitting to empirical data and penalizing undesired behavior.

A large class of hypothesis spaces can be studied in the framework of the
theory of Hilbert spaces of a special type, called reproducing kernel Hilbert
spaces (RKHSs). Norms on such spaces often play the role of measures of
various types of oscillations of input/output mappings. RKHSs were formally
defined by Aronszajn [2], but their theory employs work by Schönberg [41], as
well as many classical results on kernels and positive definite functions. RKHSs
were introduced into applications closely related to learning by Parzen [33] and
Wahba [47], and into learning theory by Cortes and Vapnik [8] and Girosi [19].

The Representer Theorem [10, p. 42], [18,20,26,35,37,39] states that for Tikho-
nov’s regularization with a stabilizer defined as a strictly increasing function
of the norm on an RKHS, the problem of minimization of the regularized em-
pirical error over the whole space has a unique solution of the form of a linear
combination of the m-tuple of the kernel functions, which are parameterized
by the input data vector x = (x1, . . . , xm). In particular, for a stabilizer equal
to the square of the norm on an RKHS, the vector c of the coefficients of the
linear combination is obtained as the solution of the well-posed linear system
of equations (γmI +K[x])c = y, where I is the m×m identity matrix, K[x]
is the Gram matrix of the kernel K with respect to x, and y = (y1, . . . , ym) is
the output data vector.

A paradigmatic example of a kernel is the Gaussian kernel, for which the so-
lution given by the Representer Theorem has the form of an input/output
function of a Gaussian radial-basis-function network with m units centered
at the input data x1, . . . , xm [18]. The coefficients of the linear combination
play the role of output weights of such a network. On the basis of this inter-
pretation of the Representer Theorem, in [20, p. 219] it was argued that “the
regularization principles lead to approximation schemes that are equivalent to
networks with one layer of hidden units.”

The Representer Theorem was used to design a learning algorithm (see, e.g.,
[10, p. 42] and [37, pp. 538-539]) that requires one to solve the linear system of
equations (γmI +K[x])c = y. An advantage of this algorithm is that it gives
the best possible solution of the task of fitting a function to a given sample
of empirical data and satisfying a global property describable in terms of a
condition on smoothness that can be modelled in terms of a kernel.
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However, practical applications of this algorithm are limited by the rate of
convergence of iterative methods solving the system of equations and by the
size of the condition number of the matrix γmI + K[x]. For some methods,
the computational requirements for solving such a system grow polynomially
with the size m of the sample (e.g., for the Gaussian elimination and m large
enough, they grow as m3/3 [32, p. 175]). For some data and kernels, keep-
ing the condition number of γmI + K[x] small requires a large value of the
regularization parameter γ, which may cause poor fit to the empirical data.

The learning algorithm based on the Representer Theorem uses a computa-
tional model of complexity determined by the size m of the sample of data,
and does not allow any flexibility in choosing the inner parameters of the
computational units (as they are set equal to the input data).

In this paper, we investigate suboptimal solutions of the problems of minimiza-
tion of regularized empirical error functionals over hypothesis sets correspond-
ing to kernel models with limited complexity and flexible choice of parameters.
We derive upper bounds on the rates of convergence of sequences of subopti-
mal solutions achievable by minimization over hypothesis sets formed by linear
combinations of at most n kernel functions (either with arbitrary parameters
or with parameters drawn from the data set) to the optimal solution given by
the Representer Theorem. The upper bounds are of the form 1/

√
n multiplied

by a term that depends on the size m of the sample, the l2-norm of the vector
y = (y1, . . . , ym) of output data, the minimal and the maximal eigenvalues of
the Gram matrix K[x] of the kernel with respect to the input data, and the
regularization parameter γ.

We state conditions on the sample, the kernel and the regularization param-
eter, under which the term multiplying 1/

√
n is “small” and so suboptimal

solutions converge “quickly” to the optimal one. Under such conditions, kernel
methods with bounded model complexity provide good approximations to the
best possible solution of the learning task. As our estimates are not merely
asymptotic, they can be applied to any bound on model complexity. For the

Gaussian kernel we derive an upper bound of the form 3(1+γ)y2
max

γ2
√

n
, where ymax

is the maximum of the absolute values of output data.

The paper is organized as follows. Section 2 introduces concepts concerning
minimization of functionals and Tikhonov’s regularization applied to learning
from data with RKHSs as hypothesis spaces. Section 3 states the Representer
Theorem and explores the condition numbers of the matrices used in algo-
rithms based on this theorem. Section 4 develops tools for investigating ap-
proximate optimization over hypothesis sets with bounded model complexity.
Section 5 describes continuity and convexity properties of regularized empir-
ical error functionals with various types of loss functions and estimates rates
of convergence of sequences of suboptimal solutions to the problem of learn-
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ing by kernel methods with increasing model complexity. Section 6 illustrates
the estimates on RKHSs defined by convolution kernels. Section 7 is a brief
discussion. An Appendix describes properties of RKSHs and illustrates them
by examples of kernels and types of oscillations measured by squares of norms
defined by such kernels.

2 Tikhonov’s regularization of the learning problem in reproducing
kernel Hilbert spaces

By a normed linear space (X, ‖.‖) we mean a real normed linear space. < de-
notes the set of real numbers.

Let M be a subset of X and Φ : X → < be a functional. Using standard
notation [15], we denote by

(M, Φ)

the problem of minimizing Φ over M ; M is called hypothesis set.

By argmin (M, Φ) = {g ∈ M : Φ(g) = infg∈M Φ(g)} is denoted the set of
minimum points of the problem (M, Φ) and for any ε > 0, argminε(M, Φ) =
{g ∈ M : Φ(g) < infg∈M Φ(g) + ε} is the set of ε-near minimum points
of (M, Φ). A minimum point of (M, Φ) is called a solution of the problem
(M, Φ). A sequence {gn} of elements of M is called Φ-minimizing over M if
limn→∞ Φ(gn) = infg∈M Φ(g).

Let Ω be a set and z = {(xi, yi) ∈ Ω × <, i = 1, . . . , m} an m-tuple of
input/output pairs of data, called a sample. A standard approach to learning
from empirical data [9,45] is based on minimization of the empirical error
functional (also called the empirical risk functional), defined for any f in the
hypothesis set as

EV (f) = Ez,V (f) =
1

m

m∑

i=1

V (f(xi), yi) ,

where V : <2 → [0,∞) satisfying for all y ∈ <, V (y, y) = 0 is called a loss
function. When the sample z is clear from the context, we write merely EV

instead of Ez,V .

The most common loss function is the square loss, defined as

V (f(x), y) = (f(x)− y)2.
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In this paper, we mostly focus on the empirical error defined using the square
loss, for which we merely write E . So we let

E(f) =
1

m

m∑

i=1

(f(xi)− yi)
2 .

Other common loss functions are the absolute value loss V (f(x), y) = |f(x)−y|
and Vapnik’s ε-insensitive loss V (f(x), y) = max(|f(x)− y| − ε, 0).

Tikhonov’s regularization replaces the problem

(M, EV )

with the problem

(M, EV + γΨ),

where Ψ is a functional called stabilizer and γ > 0 is a regularization parameter
[43,44].

An important class of stabilizers are squares of norms on reproducing kernel
Hilbert spaces (RKHSs). Such stabilizers often enable one to penalize high
oscillations of various types. For a set Ω and a symmetric positive semidefinite
function K : Ω×Ω → <, called kernel, we denote by (HK(Ω), ‖.‖K) the RKHS
defined by K (see Appendix). The squared norm ‖.‖2

K is used as a stabilizer
instead of ‖.‖K for technical reasons, as the square of the norm on any Hilbert
space is a uniformly convex functional (see Proposition 4.1 (iii)); this implies
uniqueness of the solution of the regularized problem (see, e.g., [14, p. 10], [10,
pp. 27, 42]) and convergence of minimizing sequences to this solution [31].

Using ‖.‖2
K as a stabilizer, the regularized empirical error functional with a

loss function V and a regularization parameter γ has the form

EV,γ,K(f) =
1

m

m∑

i=1

V (f(xi), yi) + γ ‖f‖2
K .

As in the case of the empirical error, when the square loss is employed in the
regularized empirical error we use the simplified notation

Eγ,K(f) =
1

m

m∑

i=1

(f(xi)− yi)
2 + γ‖f‖2

K .
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Thus we denote by

(HK(Ω), Eγ,K) .

the problem of minimizing over the RKHS HK(Ω) the regularized empirical
error with the square loss and the stabilizer ‖.‖2

K .

3 The Representer Theorem

Existence, uniqueness and an explicit formula describing the solution of the
problem (HK(Ω), Eγ,K) of minimizing over the whole RKHS the regularized
empirical error with the square loss and the stabilizer ‖.‖2

K are given by the
Representer Theorem. For a kernel K, a positive integer m, and a vector
x = (x1, . . . , xm) ∈ Ωm of input data, we denote by K[x] the m ×m matrix
defined as

K[x]ij = K(xi, xj),

which is called the Gram matrix of the kernel Kwith respect to the vector x.
We denote by I the m×m identity matrix.

Theorem 3.1 (Representer Theorem) Let Ω be a nonempty set, K : Ω×
Ω → < a kernel, m a positive integer, x = (x1, . . . , xm) ∈ Ωm, y = (y1, . . . , ym) ∈
<m, and γ > 0. Then the problem (HK(Ω), Eγ,K) has the unique solution

go =
m∑

i=1

ciKxi
, (1)

where c = (c1, . . . , cm) is the unique solution of the well-posed linear system

(γ m I +K[x])c = y. (2)

The Representer Theorem was originally proven in [23]. An elegant proof using
functional derivatives was given in [37, pp. 538-539], while for Mercer kernels
a more sophisticated argument based on the Mercer Theorem was provided in
[10, p. 42]. In [26] it was derived from the theory of inverse problems. Inspection
of proofs shows that for any differentiable loss function V , the solution is of the
form go =

∑m
i=1 ciKxi

. However, when V is not a polynomial of degree 2, the
equation to be solved to compute the coefficients c1, . . . , cm is nonlinear [19,
p. 1473]. A weaker form of the Representer Theorem, without a formula for
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computing the coefficients c1, . . . , cm, even holds for an arbitrary loss function
V and a stabilizer of the form ψ(‖ · ‖K) , where ψ : [0, +∞) → < is a strictly
increasing function [39].

The Representer Theorem was exploited to design algorithms for learning from
data (see, e.g., [10, p. 42] and [37, pp. 538-539]). However, its applications are
limited by the rates of convergence of iterative methods solving the linear
system of equations (2) and by the size of the condition number of the matrix
γmI +K[x].

We recall that the condition number of a nonsingular m ×m matrix A with
respect to a norm ‖.‖ on <m is defined as

cond(A) = ‖A‖ ‖A−1‖,

where ‖A‖ denotes the norm of A as a linear operator on (<m, ‖.‖). We denote
by λmax(A) and λmin(A) the maximal and minimal eigenvalues of the matrix
A, respectively.

It is easy to check that for any norm ‖.‖ on <m and any m ×m nonsingular

matrix A, cond(A) ≥ |λmax(A)|
|λmin(A)| and for any symmetric nonsingular m × m

matrix A, cond2(A) = |λmax(A)|
|λmin(A)| , where cond2(A) denotes the condition number

of A with respect to the l2-norm on <m.

To simplify the notation, we write λmax instead of λmax(K[x]) and similarly
for λmin. As K[x] is positive semidefinite, all its eigenvalues are nonnegative
[32, p. 7]. As λ is an eigenvalue of K[x] if and only if γm + λ is an eigenvalue
of γmI +K[x], we have

cond2(γmI +K[x]) =
γ m + λmax

γ m + λmin

≤ λmax

λmin

= cond2(K[x]) (3)

and

cond2(γmI +K[x]) ≤ 1 +
λmax

γ m
. (4)

Equation (3) shows that when cond2(K[x]) is sufficiently small, good condi-
tioning of γmI+K[x] is guaranteed for any value of γ. However, for large values
of m the matrix K[x] might be ill-conditioned. For example, when the data
are uniformly distributed over an interval, then the probability that K[x] is
ill-conditioned increases with m (see [12, Theorem 2.2] and [13, Theorem 5.1]).
On the other hand, equation (4) shows that limγ→∞ cond2(γmI + K[x]) = 1
and thus the regularization parameter γ can always be chosen such that
cond2(γmI + K[x]) is close to 1. But good conditioning of γmI + K[x] is
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not the only requirement for γ, as its value must also allow a good fit to the
empirical data and thus it cannot be too large. Existence of a value of γ guar-
anteeing a good fit to data as well as good conditioning depends on the rate
of convergence of the condition number of γmI +K[x] to 1. The smaller λmax

m
,

the faster such convergence. The problem of choosing γ in order to minimize
the expected error was investigated in [11].

When a value of γ guaranteeing both a small condition number and a good fit
to the empirical data cannot be found, algorithms for learning from data that
differ from the one based on the Representer Theorem have to be applied. A
variety of learning algorithms have been developed in the field of neurocomput-
ing. Typically, such algorithms operate on networks of lower model complexity
than the algorithm based on the Representer Theorem. The number of com-
putational units in such networks is either set in advance or adjusted during
learning, but, typically, it is much smaller than the size m of the sample used
as a training set. Moreover, the values of the computational units’ parameters
(which are called centroids in the case of RBF networks) are not set equal to
the input vectors from the data sample, but are searched for during learning.

4 Minimization of functionals over hypothesis sets with bounded
model complexity

In this section, we derive tools for estimating rates of convergence of subopti-
mal solutions over computational models with n units (the case of interest is
n < m) to the optimal solution given by the Representer Theorem. Such sub-
optimal solutions can be studied in terms of optimization over nested families
of subsets of RKHSs formed by linear combinations of all n-tuples of kernel
functions chosen from the sets {Kx : x ∈ Ω} or {Kx1 , . . . , Kxm}.

For a subset G of a linear space, let spann G = {∑n
i=1 wigi : wi ∈ <, gi ∈ G}

denote the set of linear combinations of all n-tuples of elements of G. The opti-
mal solution to the problem (HK(Ω), Eγ,K) described by the Representer The-
orem is an element of spanm GK,x ⊆ spanm GK , where GK,x = {Kx1 , . . . , Kxm}
and GK = {Kx : x ∈ Ω}. The set spanmGK can be interpreted as the set
of all input/output functions of a computational model with one hidden layer
of m computational units computing functions from GK . In particular, for
the Gaussian kernel the solution has the form of an input/output function of
a Gaussian radial-basis-function (RBF) network with m computational units
[20].

To compare the optimal solution given by the Representer Theorem with sub-
optimal ones that can be obtained by minimization of Eγ,K over restricted hy-
pothesis sets (containing only linear combinations of all n-tuples of elements
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of the set GK or GK,x), we shall employ a version of the Maurey-Jones-Barron
Theorem [3,22,34], reformulated in [24] in terms of a norm called G-variation.

We recall that the Minkowski functional of a subset M of a linear space X,
denoted by pM , is defined for every f ∈ X as pM(f) = inf{λ ∈ <+ : f/λ ∈ M}.
If M is a subset of a normed linear space (X, ‖·‖), we denote by cl M its closure
with respect to the topology generated by ‖ · ‖, i.e., cl M = {f ∈ X : (∀ε >
0) (∃g ∈ M) ‖f − g‖ < ε)}.

G-variation norm, denoted by ‖.‖G, is defined for a subset G of a normed
linear space (X, ‖.‖) as the Minkowski functional of the closure of the convex
hull of the set G ∪ −G. So for every f ∈ X we have

‖f‖G = inf {c > 0 : f/c ∈ cl conv (G ∪ −G)} .

For properties of G-variation, see [24,25,27,28,30].

Maurey-Jones-Barron’s theorem stated in terms of G-variation [24,25] gives
for a Hilbert space (X, ‖.‖), its bounded subset G with sG = supg∈G ‖g‖, and
every f ∈ X, the following upper bound on the rate of approximation of f by

spannG: ‖f − spannG‖ ≤
√

(sG ‖f‖G)2−‖f‖2
n

.

Taking advantage of this upper bound, we shall estimate rates of convergence
of suboptimal solutions over spannG to the optimal solution of the problem
(X, Φ) of minimization of a continuous functional Φ over a normed linear space
X.

A functional Φ : X → < is continuous at f ∈ X if for any ε > 0, there
exists η > 0 such that ‖f − g‖ < η implies |Φ(f) − Φ(g)| < ε. A modulus of
continuity of Φ at f is a function ω : [0, +∞) → [0, +∞) defined as ω(a) =
sup{|Φ(f)− Φ(g)| : ‖f − g‖ ≤ a}.

Φ is convex on a convex set M ⊆ X if for all h, g ∈ M and all λ ∈ [0, 1], we
have Φ(λh + (1 − λ)g) ≤ λΦ(h) + (1 − λ)Φ(g) and it is uniformly convex if
there exists a non-negative function δ : <+ → <+ such that δ(0) = 0, δ(t) > 0
for all t > 0, and for all h, g ∈ M and all λ ∈ [0, 1], Φ(λh + (1 − λ)g) ≤
λΦ(h) + (1 − λ)Φ(g) − λ(1 − λ)δ(‖h − g‖). Any such function δ is called a
modulus of convexity of Φ [31] 4 .

Next proposition states some elementary properties of uniformly convex func-

4 The terminology is not unified: some authors use the term “strictly uniformly
convex” instead of “uniformly convex”, while they reserve the term “uniformly
convex” for the case where δ : <+ → <+ merely satisfies δ(0) = 0 and δ(t0) > 0 for
some t0 > 0 (see, e.g., [46] and [14, p. 10]).

10



tionals and moduli of convexity.

Proposition 4.1 Let (X, ‖.‖) be a normed linear space, M ⊆ X convex, and
Φ a uniformly convex functional on M with a modulus of convexity δ. Then
the following hold:
(i) if Ψ is convex on M and γ > 0, then Ψ + γΦ is uniformly convex on M
with a modulus of convexity γ δ;
(ii) if go ∈ argmin(M, Φ), then for every g ∈ M , δ(‖g−go‖) ≤ Φ(g)−Φ(go);
(iii) if (X, ‖.‖) is a Hilbert space, then the functional ‖.‖2 : X → < is uni-
formly convex with a modulus of convexity δ(t) = t2.

Proof. (i) follows directly from the definitions.

(ii) By the definition of uniformly convex functional, for every λ ∈ [0, 1] we
have λ(1 − λ)δ(‖g − go‖) ≤ λΦ(g) + (1 − λ)Φ(go) − Φ(λg + (1 − λ)go). As
Φ(go) ≤ Φ(λg+(1−λ)go), we get λ(1−λ)δ(‖g−go‖) ≤ λΦ(g)+(1−λ)Φ(go)−
Φ(go) = λ (Φ(g)− Φ(go)). Hence (1− λ)δ(‖g − go‖) ≤ Φ(g)−Φ(go) for every
λ ∈ [0, 1]. So we obtain δ(‖g − go‖) ≤ Φ(g)− Φ(go).

(iii) For every h, g ∈ X and every λ ∈ [0, 1], we have ‖λh + (1 − λ)g‖2 ≤
λ‖h‖2 + (1 − λ)‖g‖2 − λ(1 − λ)‖h − g‖2 and thus δ(t) = t2 is a modulus of
convexity of ‖.‖2. 2

Next theorem gives upper bounds on rates of convergence of suboptimal solu-
tions over spannG to the optimal solution of the problem (X, Φ) of minimiza-
tion of a continuous functional Φ over a Hilbert space X. The estimates are
formulated in terms of moduli of continuity and convexity of the functional to
be minimized.

Theorem 4.2 Let (X, ‖.‖) be a Hilbert space, G its bounded subset, sG =
supg∈G ‖g‖, Φ : X → (−∞, +∞] a functional, go ∈ argmin (X, Φ), Φ contin-
uous at go with a modulus of continuity α, {εn} a sequence of positive real
numbers, gn ∈ argminεn

(spann G, Φ), and a = (sG‖go‖G)2 − ‖go‖2. Then, for
every positive integer n the following estimates hold:
(i) infg∈spann G Φ(g)− Φ(go) ≤ α

(√
a
n

)
;

(ii) if ‖go‖G < ∞ and limn→∞ εn = 0, then {gn} is a Φ-minimizing sequence

and Φ(gn)− Φ(go) ≤ α
(√

a
n

)
+ εn;

(iii) if Φ is uniformly convex with a modulus of convexity δ, then

δ(‖gn − go‖) ≤ α
(√

a
n

)
+ εn.

Proof. (i) For every positive integer n and every ε > 0, choose an ε-near best
approximation f ε

n of go in spannG. So ‖go − f ε
n‖ < ‖go − spann G‖ + ε. As

f ε
n ∈ spannG, we have infg∈spann G Φ(g) − Φ(go) ≤ Φ(f ε

n) − Φ(go). Estimating
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the right-hand side of this inequality in terms of the modulus of continuity α of
Φ at go, we obtain infg∈spann G Φ(g)−Φ(go) ≤ α(‖f ε

n−go‖) ≤ α(‖go−spannG‖+
ε). By the upper bound from Maurey-Jones-Barron’s theorem reformulated in
terms of G-variation we get

inf
g∈spann G

Φ(g)− Φ(go) ≤ α
(√

a

n
+ ε

)
. (5)

Infimizing (5) over ε we obtain (i).

(ii) By the definition of εn-near minimum point, we have
Φ(gn)− Φ(go) ≤ infg∈spann G Φ(g)− Φ(go) + εn. So, by item (i) we get

Φ(gn)− Φ(go) ≤ α
(√

a

n

)
+ εn. (6)

If ‖go‖G is finite and limn→∞ εn = 0, then the right-hand side of (6) converges
to zero and so {gn} is Φ-minimizing.

(iii) By item (i), the definition of εn-near minimum point, and Proposition 4.1
(iii), we have δ(‖gn− go‖) ≤ Φ(gn)−Φ(go) < infg∈spann G Φ(g)−Φ(go) + εn ≤
α

(√
a
n

)
+ εn. 2

Theorem 4.2 can be also obtained as a corollary of [29, Theorem 4.2], which
applies to other types of regularization, too, such as Ivanov’s one. However,
the direct argument used here is much simpler than the proof of [29, Theorem
4.2].

5 Suboptimal solutions over kernel models with bounded complex-
ity

In this section, we derive estimates of rates of convergence of suboptimal solu-
tions of the problems (spannGK , Eγ,K) to the optimal solution go given by the
Representer Theorem for the problem (HK(Ω), Eγ,K). In contrast to the opti-
mal solution go, which is a linear combination of the representers Kx1 , . . . , Kxm

determined by the sample x = (x1, . . . , xm) of input data, suboptimal solu-
tions are formed by linear combinations of arbitrary n-tuples of elements of
GK = {Kx : x ∈ Ω}. In applications, a proper n-tuple together with co-
efficients of the linear combination can be adjusted by a suitable nonlinear
programming algorithm (see, e.g., [1,7,21]).

To employ Theorem 4.2 to estimate rates of approximate minimization of
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regularized empirical error functionals with kernel stabilizers, we need upper
bounds on the moduli of continuity and convexity of these functionals. The
next proposition describes convexity and continuity properties of regularized
empirical error functionals with various loss functions.

Proposition 5.1 Let Ω be a nonempty set, K : Ω × Ω a kernel, sK =

supx∈Ω

√
K(x, x), γ > 0, m a positive integer, x = (x1, . . . , xm) ∈ Ωm,

y = (y1, . . . , ym) ∈ <m, ymin = min{|yi| : i = 1, . . . ,m}, and V : <2 → <
a loss function. Then the following hold:
(i) if for every i = 1, . . . , m the functions V (·, yi) : < → < are convex, then
EV,γ,K is uniformly convex on HK(Ω) with a modulus of convexity δ(t) = γt2;
(ii) if V is either the square or the absolute value loss function, then at every
f ∈ HK(Ω) the functional EV,γ,K is continuous with a modulus of continuity
bounded from above by the quadratic function β(t) = b2t

2 + b1t, where for the
square loss b2 = s2

K + γ and b1 = 2(‖f‖K (s2
K + γ) + ymin sK), while for the

absolute value loss, b2 = γ and b1 = sK + 2γ‖f‖K;
(iii) if V is the square loss function, then there exists a unique minimum point
go of the problem (HK(Ω), EV,γ,K) and for every f ∈ HK(Ω)

‖f − go‖2
K ≤ EV,γ,K(f)− EV,γ,K(go)

γ
.

Proof. (i) It is easy to show that for such loss functions the empirical error
functional EV = 1/m

∑m
i=1 V (f(xi), yi) is convex, and so the statement follows

from Proposition 4.1 (i) and (iii).

(ii) For the square loss, by inequality (A.1) we obtain |EV,γ,K(f)−EV,γ,K(g)| =∣∣∣ 1
m

∑m
i=1((f(xi)− yi)

2− (g(xi)− yi)
2) + γ (‖f‖2

K −‖g‖2
K)

∣∣∣ ≤
∣∣∣ 1
m

∑m
i=1( f(xi)−

g(xi) ) ( f(xi)+g(xi)−2yi )
∣∣∣+γ| ‖f‖K−‖g‖K |(‖f‖K +‖g‖K) ≤ supx∈Ω |f(x)−

g(x)| (supx∈Ω |f(x) + g(x)|+ 2ymin) + γ ‖f − g‖K (‖f‖K + ‖g‖K).

Let t > 0 and f, g be such that ‖f − g‖K ≤ t. Then |EV,γ,K(f)− EV,γ,K(g)| ≤
t sK (|sK‖f+g‖K+2ymin)+t γ (‖f‖K+‖g‖K) ≤ t sK (2‖f‖K sK+t sK+2ymin)+
γt (2‖f‖K+t) ≤ t2 (s2

K+γ)+2t(‖f‖K s2
K+ymin sK+γ‖f‖K). Thus, ‖f−g‖K < t

implies |EV,γ,K(f) − EV,γ,K(g)| ≤ β(t) = b2t
2 + b1t, where b2 = s2

K + γ and
b1 = 2(‖f‖K (s2

K + γ) + ymin sK).

Similarly, for the absolute value loss we have |EV,γ,K(f)− EV,γ,K(g)| =∣∣∣ 1
m

∑m
i=1(|f(xi)− yi| − |g(xi)− yi|) + γ (‖f‖2

K − ‖g‖2
K)

∣∣∣ ≤ supx∈Ω |f(x)−g(x)|+
γ | ‖f‖K − ‖g‖K |(‖f‖K + ‖g‖K) ≤ sK ‖f − g‖K + γ ‖f − g‖K (‖f‖K + ‖g‖K).
If ‖f − g‖K ≤ t, then |EV,γ,K(f) − EV,γ,K(g)| ≤ sK t + t γ (‖f‖K + ‖g‖K) ≤
sK t+ t γ (t+2 ‖f‖K). Hence |EV,γ,K(f)−EV,γ,K(g)| ≤ β(t) = b2t

2 + b1t, where
b2 = γ and b1 = sK + 2γ‖f‖K .

13



(iii) The existence of a unique minimum point go follows from the Representer
Theorem. By Proposition 4.1 (i), (ii), and (iii), for every f ∈ HK(Ω) we have
γ‖f − go‖2

K ≤ |EV,γ,K(f)− EV,γ,K(go)|. 2

The assumptions of Proposition 5.1 (i) are satisfied by both the square loss
and the absolute value loss. So these two loss functions determine uniformly
convex functionals EV,γ,K with quadratic moduli of convexity. Their moduli of
continuity at any f ∈ HK(Ω) are bounded from above by the quadratic func-
tion β(t) = b2t

2+b1t , where for both losses b2 depends on γ and for the square
loss, also on sK , while b1 depends on γ, sK , ‖f‖K and for the square loss, also
on ymin. The larger the regularization parameter γ, the larger the coefficients
of the quadratic function bounding the moduli of continuity. Generally, the
modulus of continuity of EV,γ,K depends on the moduli of continuity of the
functions V (·, yi), i = 1, . . . , m.

To simplify the formulas, in the following we assume that ymin = min{|yi| :
i = 1, . . . ,m} = 0. Note that although the next theorem holds for any positive
integer n, it is useful only for n < m since by the Representer Theorem, the
minimum point of Eγ,K over spanmGK is equal to the minimum point over the
whole space HK(Ω).

Theorem 5.2 Let Ω be a nonempty set, K : Ω × Ω → < a kernel, sK =

supx∈Ω

√
K(x, x), m a positive integer, x = (x1, . . . , xm) ∈ Ωm, y = (y1, . . . , ym) ∈

<m, min{|yi| : i = 1, . . . , m} = 0, go =
∑m

i=1 ci Kxi
the unique solution of

(HK(Ω), Eγ,K), {εn} a sequence of positive real numbers such that limn→∞ εn =
0, and {gn} a sequence of εn-near minimum points of (spann GK , EK). Let
a = (sK ‖go‖GK

)2−‖go‖2
K, u = (s2

K + γ)a, and v = 2(s2
K + γ)‖go‖K

√
a. Then,

for every positive integer n the following estimates hold:
(i) infg∈spann GK

Eγ,K(g)− Eγ,K(go) ≤ u
n

+ v√
n
;

(ii) Eγ,K(gn)− EK(go) ≤ u
n

+ v√
n

+ εn;

(iii) ‖gn − go‖2
K ≤ 1

γ

(
u
n

+ v√
n

+ εn

)
;

(iv) supx∈Ω |gn(x)− go(x)|2 ≤ s2
K

γ

(
u
n

+ v√
n

+ εn

)
.

Proof. (i) Combining Theorem 4.2 (i) with Proposition 5.1 (ii), we get

infg∈spann GK
Eγ,K(g)−Eγ,K(go) ≤ β

(√
a
n

)
, where β(t) = (s2

K+γ) (t2+2 ‖go‖K t),

which gives for infg∈spann GK
Eγ,K(g)− Eγ,K(go) the upper bound

(s2
K + γ)

(
a
n

+ 2‖go‖K

√
a
n

)
= u

n
+ v√

n
.

Similarly, item (ii) follows from Theorem 4.2 (ii) and Proposition 5.1 (ii), item
(iii) follows from (ii) and Proposition 5.1 (iii), and item (iv) from (iii) and
inequality (A.1). 2
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Thus when u and v are not too large, it is possible to choose n small enough so
that a computational model with n units is implementable and a suboptimal
solution over such a model approximates well the optimal solution given by
the Representer Theorem.

Only two terms in the above formulas defining u and v cannot be derived
directly from the data sample z, the kernel K and the regularization parameter
γ: the values of the two norms of the optimal solution go, i.e., its GK-variation
and its norm ‖.‖K . The next proposition estimates these two values in terms
of the size m of the sample, the regularization parameter γ, the l2-norm of the
output vector y, and the maximal and minimal eigenvalues, λmax and λmin, of
the Gram matrix K[x] of the kernel K with respect to the input data vector
x. The l1- and l2-norm on <m are denoted by ‖ · ‖1 and ‖ · ‖2, respectively.

The estimates in the rest of the paper (Proposition 5.3, Theorem 5.4, and
Corollaries 6.1 and 6.2) involve an upper bound on ‖go‖GK

, which is also an
upper bound on ‖go‖GK,x

. Thus, all these estimates can be applied also to ap-
proximate solutions over hypothesis sets formed by functions from spannGK,x.
Such solutions are obtained when n representers are chosen from the set GK,x,
as, e.g., in [42], where approximation techniques were proposed that reduce
the Gram matrix K[x] to a sparse matrix of lower rank.

Proposition 5.3 Let Ω be a nonempty set, K : Ω × Ω → < a kernel, sK =

supx∈Ω

√
K(x, x), γ > 0, m a positive integer, x = (x1, . . . , xm) ∈ Ωm, y =

(y1, . . . , ym) ∈ <m, go =
∑m

i=1 ci Kxi
the unique solution of (HK(Ω), Eγ,K).

Then the following estimates hold:
(i) ‖go‖GK

≤
√

m‖y‖2
γm+λmin

;

(ii) ‖go‖K ≤
√

λmax‖y‖2
γm+λmin

;

(iii) s2
K ‖go‖2

GK
− ‖go‖2

K ≤ (s2
K m−λmin) ‖y‖22
(γm+λmin)2

.

Proof. (i) From the Representer Theorem, the definition of GK-variation, and
the Cauchy-Schwartz inequality it follows that

‖go‖GK
≤

m∑

i=1

|ci| = ‖c‖1 ≤
√

m ‖c‖2, (7)

where c = (γ m I + K[x])−1y. By the definition of the norm of an operator,
‖c‖2 ≤ ‖(γ m I + K[x])−1‖2 ‖y‖2. As (γmI +K[x])−1 is symmetric and pos-
itive definite, its l2-norm is equal to its maximal eigenvalue, i.e., 1

γm+λmin
. So

we have

‖c‖2 ≤ ‖y‖2

γm + λmin

(8)
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and thus ‖go‖GK
≤

√
m‖y‖2

γm+λmin
.

(ii) By the Representer Theorem, ‖go‖2
K =

〈∑m
i=1 ci Kxi

,
∑m

j=1 cjKxj

〉
K

=
∑m

i,j=1 ci cjK(xi, xj) = cT K[x]c, where cT denotes the transpose of the vector
c. As λmin‖c‖2

2 ≤ cT K[x]c ≤ λmax‖c‖2
2 [32, p. 21], we have

λmin‖c‖2
2 ≤ ‖go‖2

K ≤ λmax‖c‖2
2 . (9)

Thus by (8), ‖go‖K ≤
√

λmax‖y‖2
γ m+λmin

.

(iii) By (7), (8), and (9), we obtain

s2
K‖go‖2

GK
−‖go‖2

K ≤ s2
Km‖c‖2

2−λmin‖c‖2
2 ≤

(
s2

Km− λmin

)
‖c‖2

2 ≤
(s2

K m− λmin)‖y‖2
2

(γm + λmin)2
.

2

As both λmin and λmax are nonnegative, we can further simplify as follows the
upper bounds from Proposition 5.3:

(i) ‖go‖GK
≤ ‖y‖2

γ
√

m
, (10)

(ii) ‖go‖K ≤
√

λmax‖y‖2

γm
, (11)

(iii) s2
K ‖go‖2

GK
− ‖go‖2

K ≤ s2
K‖y‖2

2

γ2m
. (12)

Combining Proposition 5.3 with Theorem 5.2 and inequalities (10)-(12), we
shall derive upper bounds on rates of convergence of approximate solutions of
the problems (spann GK , Eγ,K) to the solution of the problem (HK(Ω), Eγ,K)
in terms of sK , m, γ, ‖y‖2, λmin, and λmax.

Theorem 5.4 Let Ω be a nonempty set, K : Ω × Ω → < a kernel, sK =

supx∈Ω

√
K(x, x), γ > 0, m a positive integer, x = (x1, . . . , xm) ∈ Ωm, y =

(y1, . . . , ym) ∈ <m, min{|yi| : i = 1, . . . , m} = 0, go =
∑m

i=1 ci Kxi
the unique

solution of (HK(Ω), Eγ,K), {εn} a sequence of positive real numbers, and {gn}
a sequence of εn-near minimum points of (spann GK , Eγ,K). Let

ū =
(
s2

K + γ
) (s2

K m− λmin) ‖y‖2
2

(γm + λmin)2
≤

(
s2

K + γ
) s2

K ‖y‖2
2

γ2m
and
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v̄ = 2
(
s2

K + γ
) √

λmax‖y‖2

(γ m + λmin)2

√
(s2

K m− λmin) ‖y‖2 ≤ 2
(
s2

K + γ
) √λmaxsK‖y‖2

2

γ2m3/2
.

Then, for every positive integer n the following estimates hold:
(i) infg∈spann GK

Eγ,K(g)− Eγ,K(go) ≤ ū
n

+ v̄√
n
;

(ii) Eγ,K(gn)− EK(go) ≤ ū
n

+ v̄√
n

+ εn;

(iii) ‖gn − go‖2
K ≤ 1

γ

(
ū
n

+ v̄√
n

+ εn

)
;

(iv) supx∈Ω |gn(x)− go(x)|2 ≤ s2
K

γ

(
ū
n

+ v̄√
n

+ εn

)
.

Thus, to obtain a good approximation of the solution of (HK(Ω), Eγ,K) given
by the Representer Theorem by a suboptimal solution computable by a model
with at most n < m computational units, both ū

n
and v̄√

n
have to be sufficiently

small for some n, for which models with n computational units computing
functions from GK are implementable.

6 Estimates for convolution kernels

In this section, we illustrate the estimates given in Theorem 5.4 by examples
of RHSH with Ω = <d and convolution kernels. Let K(u, v) = ψ(‖u− v‖) be
a convolution kernel, where ψ : < → [0, 1] is monotonically decreasing and
satisfies ψ(0) = 1 (this includes the Gaussian kernel). The following corollary
estimates rates of convergence of suboptimal solutions for input/output pairs
of data (x1, y1), . . . , (xm, ym) for which the input data are sufficiently separated
so that there exists t ∈ [0, 1] such that for all distinct i, j ∈ {1, . . . ,m},
ψ(‖xi − xj‖) ≤ t.

Corollary 6.1 Let K : <d×<d → < be a kernel such that K(s, t) = ψ(‖s−t‖)
with ψ : < → [0, 1] monotonically decreasing, satisfying ψ(0) = 1, and such
that for all distinct i, j ∈ {1, . . . , m}, ψ(‖xi − xj‖) ≤ t for some t > 0. Let
γ > 0, m be a positive integer, x = (x1, . . . , xm) ∈ <dm, y = (y1, . . . , ym) ∈
<m, min{|yi| : i = 1, . . . , m} = 0, go =

∑m
i=1 ci Kxi

the unique solution of
(HK(<d), EK), {εn} a sequence of positive real numbers, and {gn} a sequence
of εn-near minimum points of (spann GK , Eγ,K). Let

û = (1 + γ)
‖y‖2

2

γ2m
and

v̂ = 2 (1 + γ)

√
1 + (m− 1)t‖y‖2

2

γ2m3/2
.

17



Then, for every positive integer n the following estimates hold:
(i) infg∈spann GK

Eγ,K(g)− Eγ,K(go) ≤ û
n

+ v̂√
n
;

(ii) Eγ,K(gn)− EK(go) ≤ û
n

+ v̂√
n

+ εn;

(iii) ‖gn − go‖2
K ≤ 1

γ

(
û
n

+ v̂√
n

+ εn

)
;

(iv) supx∈Ω |gn(x)− go(x)|2 ≤ 1
γ

(
û
n

+ v̂√
n

+ εn

)
.

Proof. As sK = 1 and λmax ≤ ‖K[x]‖1 = maxj=1,...,m
∑m

i=1 |K[x]i,j| [32, pp. 6,
21-23], we have λmax ≤ 1 + (m− 1)t. Hence the estimates (i)-(iv) follow from
Theorem 5.4 with ū = û and v̄ ≤ v̂.

2

Bounding from above the right-hand-side of the estimates from Corollary 6.1
in terms of the maximum of the absolute values of output data, we obtain the
following corollary.

Corollary 6.2 Let K : <d×<d → < be a kernel such that K(s, t) = ψ(‖s−t‖)
with ψ : < → [0, 1] monotonically decreasing, satisfying ψ(0) = 1, and such
that for all distinct i, j ∈ {1, . . . , m}, ψ(‖xi − xj‖) ≤ t for some t > 0. Let
γ > 0, m be a positive integer, x = (x1, . . . , xm) ∈ <dm, y = (y1, . . . , ym) ∈
<m, min{|yi| : i = 1, . . . , m} = 0, ymax = max{|yi| : i = 1, . . . , m}, go =∑m

i=1 ci Kxi
the unique solution of (HK(<d), EK), {εn; n = 1, . . . ,m} positive

real numbers, {gn : n = 1, . . . , m} εn-near minimum points of (spann GK , Eγ,K),

and b = 3(1+γ)y2
max

γ2 .

Then, for every positive integer n ≤ m the following estimates hold:
(i) infg∈spann GK

Eγ,K(g)− Eγ,K(go) ≤ b√
n
;

(ii) Eγ,K(gn)− EK(go) ≤ b√
n

+ εn;

(iii) ‖gn − go‖2
K ≤ 1

γ

(
b√
n

+ εn

)
;

(iv) supx∈Ω |gn(x)− go(x)|2 ≤ 1
γ

(
b√
n

+ εn

)
.

Proof. As ‖y‖2
2 ≤ my2

max, we have û
n

+ v̂√
n
≤ (1+γ)y2

max

γ2

(
1
n

+
2
√

1+(m−1)t√
mn

)
,

which for t ∈ [0, 1] and n ≤ m is bounded from above by (1+γ)y2
max

γ2

(
1
n

+ 2√
n

)
≤

3(1+γ)y2
max

γ2
√

n
. Hence the estimates (i)-(iv) follow from Corollary 6.1. 2

So, when γ is not too small and ymax is not too large, Corollary 6.2 guarantees
a good approximation of the optimal solution by suboptimal ones.

In particular for the Gaussian kernel, the minimum of the regularized empirical
error functional over the set of functions computable by Gaussian radial-basis
function networks with n computational units approximates the global mini-
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mum over the whole RKHS within b√
n
, where b = 3(1+γ)y2

max

γ2 . For example, for

γ = 0.5 we have 1+γ
γ2 = 6 and so b = 18y2

max.

7 Discussion

We have compared two approaches to learning from data with generalization
capability, both modeling learning as a minimization of the empirical error
functional with the square loss function regularized by the square of a norm
on an RKHS, but differing in the hypothesis sets over which minimization
is performed. The first approach, which is based on the Representer Theo-
rem, considers minimization of the regularized empirical error over the whole
RKHS, whereas the second one over its subset formed by functions computable
by linear combinations of n computational units defined by the kernel.

We have derived upper bounds on the errors of approximation of the optimal
solution by the suboptimal ones obtainable with n increasing. We have shown
that when the absolute values of output data are not too large and the reg-
ularization parameter is not too small, suboptimal solutions approximate the
optimal one within an accuracy c√

n
with c moderate. In such cases, algorithms

operating on models with n computational units can approximate the optimal
solution quite well. Hence, when the solution of the system of linear equa-
tions described in the Representer Theorem is not computationally feasible or
when the system is ill-conditioned, models with bounded complexity provide
a useful and quite accurate alternative to the learning algorithms based on the
Representer Theorem. For convolution kernels on <d × <d the upper bounds
from Corollaries 6.1 and 6.2 do not depend on the number d of variables, so
the approximation of the optimal solution by such models does not exhibit
the curse of dimensionality [4].

Minimization over a set of parameters of a chosen model is a nonlinear pro-
gramming problem [35, p. 1489], which can be solved by iterative methods such
as gradient descent [7, pp. 103-106, 173-174] (possibly with additive stochastic
terms to avoid local minima, due to the nonconvexity of Eγ,K as a function of
the parameters), genetic algorithms [21], and simulated annealing [1].
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A Appendix

A Reproducing Kernel Hilbert Space (RKHS) is a Hilbert space X formed by
functions defined on a nonempty set Ω such that for every u ∈ Ω the evaluation
functional Fu, defined for any f ∈ X as Fu(f) = f(u), is bounded [2,5,10].

RKHSs can be characterized in terms of kernels, which are symmetric positive
semidefinite functions K : Ω×Ω → <, i.e., functions satisfying for all positive
integers m, all (w1, . . . , wm) ∈ <m, and all (u1, . . . , um) ∈ Ωm,

m∑

i,j=1

wi wj K(ui, uj) ≥ 0.

By the Riesz Representation Theorem [17, p. 200], for every u ∈ Ω there exists
a unique element Ku ∈ X, called the representer of u, such that Fu(f) =
〈f,Ku〉 for all f ∈ X (this property is called the reproducing property). It
is easy to check that the function K : Ω × Ω defined for all u, v ∈ Ω as
K(u, v) = 〈u, v〉 is a kernel.

On the other hand, every kernel K : Ω× Ω → < generates an RKHS HK(Ω)
that is the completion of the linear span of the set {Ku : u ∈ Ω}, with the
inner product defined as 〈Ku, Kv〉K = K(u, v) and the induced norm ‖ · ‖K

(see, e.g., [2] and [5, p. 81]).

By the reproducing property and the Cauchy-Schwartz inequality, for every

f ∈ HK(Ω) and every u ∈ Ω we have |f(u)| = |〈f, Ku〉K | ≤ ‖f‖K

√
K(u, u) ≤

sK ‖f‖K , where sK = supu∈Ω

√
K(u, u). Thus for every kernel K, we have

sup
u∈Ω

|f(u)| ≤ sK‖f‖K . (A.1)

A paradigmatic example of a kernel on <d is the Gaussian kernel K : <d ×
<d → <, defined as K(u, v) = exp(−‖u − v‖2). Other examples of kernels
are K(u, v) = exp(−‖u − v‖), K(u, v) = 〈u, v〉p (homogeneous polynomial of
degree p), where 〈·, ·〉 is any inner product on <d, K(u, v) = (1 + 〈u, v〉)p

(inhomogeneous polynomial of degree p), and K(u, v) = (a2 + ‖u − v‖2)−α,
with α > 0 [10, p. 38].

The role of ‖.‖2
K as a stabilizer can be illustrated by two examples of classes of

kernels. The first one is formed by Mercer kernels, i.e., continuous, symmetric,
and positive definite functions K : Ω×Ω → <, where Ω ⊂ <d is compact. For a
Mercer kernel K, ‖f‖2

K can be expressed using eigenvectors and eigenvalues of
the compact linear operator LK : L2(Ω) → C(Ω) defined for every f ∈ L2(Ω)
as LK(f)(x) =

∫
Ω K(x, u) f(u) du , where L2(Ω) and C(Ω) denote the spaces
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of square integrable and of continuous functions on Ω, respectively. By the
Mercer Theorem [10, p. 34]

‖f‖2
K =

∞∑

i=1

c2
i

λi

,

where the λi’s are the eigenvalues of LK and the ci’s are the coefficients of the
representation f =

∑∞
i=1 ciφi, where {φi} is the orthonormal basis of HK(Ω)

formed by the eigenvectors of LK .

Note that the sequence {λi} is either finite or convergent to zero (for K smooth
enough, the convergence to zero is rather fast [16, p. 1119]). Thus, the stabilizer
‖.‖2

K penalizes functions for which the sequences of coefficients {ci} do not
converge to zero sufficiently quickly. So the functional ‖.‖2

K plays the role of
a high-frequency filter.

The second class of kernels illustrating the role of ‖.‖2
K as a stabilizer consists

of convolution kernels, i.e., kernels defined on <d × <d such that K(x, y) =
k(x− y), for which the Fourier transform k̃ of k is positive. For such kernels,
the value of the stabilizer at any f ∈ HK(Ω) can be expressed as

‖f‖2
K =

1

(2 π)d/2

∫

<d

f̃(ω)
2

k̃(ω)
dω (A.2)

(see, e.g, [19] and [40, p. 97]). So the function 1/k̃ plays a role analogous to
that of the sequence {1/λi} in the case of a Mercer kernel. For example, the
Gaussian kernel is a convolution kernel with a positive Fourier transform.

Another example of a convolution kernel with a positive Fourier transform is
K(u, v) = k(u − v), where k(t) = exp(−a ‖t‖), k̃(ω) = 2d/2 a π−1/2Γ(d/2 +
1) (a2 + ‖ω‖2)−(d+1)/2 [40, p. 107] and Γ denotes the gamma function, defined
for s > 0 as Γ(s) =

∫∞
0 exp(−r) rs−1 d r . In this case, the rate of decay of

k̃(ω) is of the order of ‖ω‖−(d+1) . In particular, for d = 1 and a = 1 one
gets K(u, v) = k(u − v) = exp(−|u − v|). Since Γ(1) = 1, Γ(1/2) =

√
π,

and Γ(s + 1) = s Γ(s), we have k̃(ω) = (
√

2π(1 + ω2))−1 . Thus ‖f‖2
K =

1/2π
∫
< f̃(ω)2 (

√
2π(1+ω2)) dω = 1/

√
2π

∫
< f̃(ω)2 dω+1/

√
2π

∫
< ω2 f̃(ω)2 dω .

As f̃ ′ = ω f̃(ω) and
∫
< f(t)2 dt = 1/2π

∫
< f̃(ω)2 dω , by Parseval’s formula [38,

p. 172] we have ‖f‖2
K =

√
2π (‖f‖2

L2
+ ‖f ′‖2

L2
), where ‖.‖L2 denotes the L2-

norm. So, as pointed out in [19], in this case the norm on the RKHS is equal
to the Sobolev norm.

For more details on kernels and their role in learning theory, see, e.g., [40].
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