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The title of this article by Gorban et al. refers to Wigner’s famous lecture, “The unreasonable effectiveness of math-
ematics in the natural sciences” [1], delivered 60 years ago in 1959. In the lecture, Wigner emphasized the crucial role 
of mathematics in developing consistent theories in physics. Similarly, Gorban et al. focus on the role of mathematics 
in understanding nature, namely the functioning and structure of brains. They utilize mathematics of high-dimensional 
spaces to explain “how can high-dimensional brain organize reliable and fast learning in high-dimensional world of 
data by simple tools?”.

A number of neurobiological studies have observed the energy efficiency of the brain which seems to exhibit
both sparse activity (only a small fraction of neurons have a high rate of firing at any time) and sparse connectivity 
(each neuron is connected to only a limited number of other neurons) [2]. Gorban et al. suggest that sparse coding 
of information in the brain can be explained using high-dimensional geometry. They approach the investigation of 
biological neural networks by exploring a much simpler case of artificial ones.

In recent years, neurocomputing achieved impressive successes [3]. In particular, randomized models and algo-
rithms for neural networks have turned out to be quite efficient for performing high-dimensional tasks. Theoretical 
analysis complements the experimental evidence of almost deterministic behavior of stochastic algorithms on large 
networks and/or large data sets. With increase in data dimension and network size, outputs tend to be sharply concen-
trated around precalculated values. This behavior can be explained by the geometry of high-dimensional spaces, which 
have many counter-intuitive properties - difficult to visualize for us who live in three-dimensional space. Mathematics 
alone guides us in these higher dimensions, where senses cannot reach.

Using classical calculus (integration in spherical polar coordinates), one can compute the relative area of the 
d-dimensional sphere, which is occupied by the polar cap. More precisely, let Sd−1 denote the unit sphere (the set of 
vectors of length 1) in the d-dimensional Euclidean space and C(g, ε) = {f ∈ Sd−1 | 〈u, v〉 ≥ ε} the polar cap cen-
tered at a fixed vector g, which contains all vectors f which have the angular distance from g at most α = arccos ε (the 
inner product 〈f, g〉 is at least ε), see Fig. 1. For a fixed angle α, with increasing dimension d the normalized surface 

area μ of such cap decreases exponentially fast to zero as μ(C(g, ε)) ≤ e− dε2
2 (see, e.g., [4]). It is quite surprising to 
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Fig. 1. Polar cap.

realize that most of the area of a high-dimensional sphere is concentrated around the equator (metaphorically in the 
“tropic” region).

The exponential decrease of sizes of polar caps is the very essence of two properties of high-dimensional spaces 
called the curse of dimensionality [5,6] and the blessing of dimensionality [7,8]. As noted by Gorban et al., they are 

two sides of the same coin. The upper bound e− dε2
2 on the relative measure of polar caps implies that one can pack 

exponentially many disjoint caps in the d-dimensional sphere. For small ε corresponding to the angle α = arccos ε

close to 90 degrees, this packing number gives the lower bound e
dε2

2 on the quasiorthogonal dimension dimε d . It is 
defined by replacing the condition on strict orthogonality with merely quasiorthogonality (scalar product of each pair 
of distinct vectors is smaller than ε) [9]. While there are only d exactly orthogonal unit vectors in the d-dimensional 
space, the number of ε-orthogonal vectors grows with d exponentially. Even for moderate dimensions of data d , the 
number of such highly uncorrelated vectors could be unmanageably large.

On the other hand, geometry of high-dimensional spheres implies concentration of values of functions of many 

variables and possibilities of reduction of dimensionality of data. The upper bound e− dε2
2 on the size of a polar cap 

can be rephrased as follows: inner products of a fixed vector with uniformly randomly chosen vectors concentrate 
around zero. A generalization obtained by replacing the inner product with a sufficiently smooth (Lipschitz) function 
on the sphere gives the Lèvy Lemma [10]. It states that almost all values of a Lipschitz function on a high-dimensional 
sphere are close to their median. This property of high-dimensional spheres is called the concentration of measure 
phenomenon. Similar property was also discovered in probability theory, where it has been studied in terms of bounds 
on large deviations of sums of random variables by Hoeffding [11], Chernoff [12], and Azuma [13]. It implies that 
randomized techniques work almost deterministically [14]. Concentration of measure is also the essence of the proof 
of the Johnson-Lindenstrauss Flattening Lemma. It guarantees a possibility of dimension reduction of d-dimensional 
data by a random projection to a lower dimension bounded from below by 8

ε
logd such that the projection is a near-

isometry (preserves distances within a multiplicative factor 1 ± ε) (see, e.g., [15]).
It should be emphasized that the Lèvy Lemma assumes uniform probability distribution. Also in learning theory, 

typically it is assumed that data are independent and identically distributed [16,17]. Under these assumptions, Gorban 
et al. derived stochastic separation theorems for classification [18,19]. But independence of random variables is a 
strong assumption. The hypothesis that a probability distribution can be expressed as a product probability is called the 
“naive Bayes assumption” [20]. Often in real tasks, neither uniform probability nor independence of data is satisfied. 
Nevertheless, some versions of the concentration of measure phenomenon hold even for more general distributions 
and in dependent settings. Recently, we derived stochastic theorems on network complexity and sparsity holding also 
for non-uniform probability distributions [21].

Mathematical theory supports and inspires experimental research in neurocomputing. Theory provides some in-
sights to why artificial neural networks can perform high-dimensional tasks efficiently. However, care should be 
exercised in attempting to extrapolate from artificial neural networks to biological ones. Artificial networks only out-
perform humans in tasks where they can employ their own strength: in comparison with humans, machines have 
enormously larger memories and are blindingly fast at calculating. Thus a computer can play (with itself) more games 
of Chess or even Go (which is significantly harder) in a couple of days than a person could in a lifetime [22]. Thus it 
is not so surprising that the AlphaGo Zero program achieved victory over the best world Go player. Automatic game 
playing is a complex, yet artificial man-made task within a limited ambient space with formally defined rules and so 
has been a natural target for AI. I can imagine that in the future, robots might be capable to learn games like golf -
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although it is questionable why someone would invest money into building such robots. Typically, robots are used for 
tasks which are dangerous or boring for man and neither one is the case of the golf.

Biological neural networks are much more sophisticated than artificial ones. Lessons learned from artificial neural 
networks are useful but may not be sufficient for understanding brain. Can human brain ever fully understand itself or 
are there inherent limitations to our knowledge?
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