
Neural Networks 91 (2017) 34–41
Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Probabilistic lower bounds for approximation by shallow perceptron
networks

Věra Kůrková a,∗, Marcello Sanguineti b

a Institute of Computer Science, Czech Academy of Sciences, Pod Vodárenskou věží, 2 - 18207 Prague, Czech Republic
b DIBRIS, University of Genova, Via Opera Pia, 13 - 16145 Genova, Italy

h i g h l i g h t s

• Lower bounds on errors in approximation by shallow signum perceptron networks.
• Probabilistic approach to derivation of lower bounds.
• Sets of input–output functions of shallow networks with growing numbers of perceptrons.

a r t i c l e i n f o

Article history:
Received 28 December 2016
Received in revised form 7 April 2017
Accepted 10 April 2017
Available online 19 April 2017

Keywords:
Shallow networks
Perceptrons
Model complexity
Lower bounds on approximation rates
Chernoff–Hoeffding bounds

a b s t r a c t

Limitations of approximation capabilities of shallow perceptron networks are investigated. Lower bounds
on approximation errors are derived for binary-valued functions on finite domains. It is proven that unless
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1. Introduction

One-hidden-layer networks have been the standard type of
feedforward network architecture until the recent renewal of in-
terest inmultilayer networks. Training of networkswithmore than
one hidden layers was inefficient until the advent of graphic pro-
cessing units allowing considerable acceleration of learning algo-
rithms. In particular, networkswith several layers of convolutional
and pooling units have become state-of-the-art in pattern recogni-
tion (see, e.g., the survey article by LeCunn, Bengio, & Hinton, 2015
and references therein). Networks with several hidden layers are
now called deep (see, e.g., Bengio, 2009; Chui & Mhaskar, 2016;
Hinton, Osindero, & Teh, 2006 and the references therein) to dis-
tinguish them from shallow nets, which have merely one hidden
layer.
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It is well-known that networks with one hidden layer of
computational units of many common types posses the universal
approximation property (see, e.g., Anastassiou, 2011; Costarelli,
2015; Costarelli & Vinti, 2016a, 2016b, 2016c; Gripenberg,
2003; Hahm & Hong, 2016; Pinkus, 1999; Sanguineti, 2008 and
references therein). But such topological density results do not
provide guidelines for network design as they assume potentially
unlimited numbers of network units. For practical applications it is
desirable that given tasks can be performed by sufficiently sparse
networks. Thus it is important to choose network architectures
and types of units which can compute the tasks with numbers of
parameters which are not too large.

Bengio and LeCun (2007) conjectured that ‘‘most functions that
can be represented compactly by deep architectures cannot be
represented by a compact shallow architecture’’. Bianchini and
Scarselli (2014) proposed a promising approach to investigation
of complexity of shallow and deep networks based on topological
characteristics of input–output functions. Mhaskar, Liao, and Pog-
gio (2016a, 2016b) suggested that deep networks are particularly
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suitable for computation of compositional functions and compared
VC-dimensions of shallow and deep networks.

However, Ba and Caruana (2014) showed in a recent empirical
study that in some cases, shallow networks can learn functions
previously learned by deep ones using the same numbers
of parameters as the latter. Thus a theoretical understanding
complementing empirical results is needed that clarifies which
tasks can be computed by deep networks with smaller model
complexity than by shallow ones.

An important step towards this goal is the exploration of
functions which cannot be computed or approximated by sparse
shallownetworks.Whereasmany upper bounds on approximation
errors by shallow networks are known (see, e.g., the survey article
by Kainen, Kůrková, and Sanguineti (2012) and references therein),
fewer lower bounds are available. Generally, proofs of lower
bounds are much more difficult than arguments deriving upper
bounds.

Worst-case errors exhibiting the curse of dimensionality in
approximation of functions from Sobolev spaces by shallow
networks with perceptrons with standard logistic sigmoid and
piecewise polynomial activation functions were derived by
Maiorov and Meir (2000). A concrete example of functions which
cannot be efficiently computed by sparse shallow networks was
presented by Bengio, Delalleau, and Le Roux (2006). They proved
that for classification of points in the d-dimensional Boolean cube
according to their parities by shallowGaussiannetworkswith fixed
centers (a model used in SVM) at least 2d−1 units is necessary.

In this paper, we investigate lower bounds on rates of ap-
proximation of functions with increasing numbers of perceptrons
in shallow networks, focusing on functions on finite domains
(such as pixels of photographs, scattered data or discretized high-
dimensional cubes). The set of real-valued functions on a finite do-
main can be identified with a finite-dimensional Euclidean space,
which is of high dimension when the domain has large cardinality.
Thus, the geometric properties of high-dimensional spaces influ-
ence the characterization of functions which cannot be well ap-
proximated by ‘‘reasonably small’’ shallow networks.

We exploit the Chernoff–Hoeffding Bound, which is a version
of the concentration of measure phenomenon (see, e.g., Ledoux,
2001) to show that when the set of input–output functions of
a general computational model is ‘‘relatively small’’ with respect
to the size of the domain (depends on the logarithm of its
size polynomially), then almost all uniformly randomly-chosen
functions have large approximation errors.

To apply this general result to perceptron networkswe estimate
how quickly numbers of binary-valued functions computable
by shallow signum perceptrons networks grow with increasing
numbers of units. Combining these estimates with probabilistic
methods, we derive lower bounds on errors in approximation of
both binary-valued and real-valued functions on finite domains
and prove that, unless the number of signum perceptrons units is
sufficiently large (larger than any polynomial of the logarithm of
the size of the domain), a good approximation cannot be achieved.
For large domains, the lower bounds hold for almost any uniformly
randomly-chosen function.

The paper is organized as follows. Section 2 contains definitions
and notations. In Section 3, some general lower bounds holding for
approximation of finite-domain functions are derived. Section 4
covers shallow networks of signum perceptrons, for which the
universal representation property is established. In Section 5,
there are derived estimates of the growth in the size of the set
of binary-valued functions computable by shallow networks of
signum perceptrons as the number of units increases. In Section 6,
these estimates are combined with probabilistic methods to
derive lower bounds on approximation errors of binary and real-
valued functions on finite domains by shallow signum perceptron
networks. Section 7 contains discussion and Section 8 a summary
and some conclusions.
2. Preliminaries

A one-hidden-layer (shallow) network with a single linear output
and n hidden units computes input–output functions from the set

spann G :=


n

i=1

wigi
wi ∈ R, gi ∈ G


,

where G, called dictionary, is a set of functions computable by a
given type of hidden units. The linear span of G is defined as

spanG :=


n

i=1

wigi
wi ∈ R, gi ∈ G, n ∈ N


.

For binary classification tasks, one-hidden-layer networks with
a single threshold output unit are used. Such networks compute
functions from sets

sgn spann G :=


sgn

n
i=1

wigi
wi ∈ R, gi ∈ G


,

where sgn denotes the signum function defined as

sgn(t) := −1 for t < 0 and sgn(t) := 1 for t ≥ 0.

Dictionaries formed by computational units are parameterized
families of functions of the form

Gφ(X, Y ) := {φ(·, y) : X → R | y ∈ Y } ,

where φ : X × Y → R is a function of two variables: an input
vector x ∈ X ⊆ Rd and a parameter vector y ∈ Y ⊆ Rs. When the
set of parameters is the whole Rs, we write shortly Gφ(X).

For a domain X ⊂ Rd, we denote by

F (X) := {f | f : X → R}

the set of all real-valued functions on X and by

B(X) := {f | f : X → {−1, 1}}

the set of all functions on X with values in {−1, 1}.
Perceptrons compute functions of the form of plane waves

σ(v · . + b) : X → R, where σ : R → R is an activation function.
We denote by ϑ the Heaviside activation function, defined as

ϑ(t) := 0 for t < 0 and ϑ(t) := 1 for t ≥ 0

and by sgn the signum activation function sgn : R → {−1, 1},
defined as

sgn(t) := −1 for t < 0 and sgn(t) := 1 for t ≥ 0.

We denote by Hd(X) the dictionary of functions on X ⊂ Rd

computable by Heaviside perceptrons (which is equal to the set of
characteristic functions of half-spaces of Rd), i.e.,

Hd(X) := {ϑ(v · . + b) : X → {0, 1} | v ∈ Rd, b ∈ R}

and by Pd(X) the dictionary of functions on X ⊂ Rd computable by
signum perceptrons, i.e.,

Pd(X) := {sgn(v · . + b) : X → {−1, 1} | v ∈ Rd, b ∈ R}.

In theoretical analysis of approximation capabilities of shallow
networks, it has to be taken into account that the approximation
error ∥f − spann G∥ in any norm ∥ · ∥ can be made arbitrarily large
by multiplying f by a scalar. Indeed, for every c > 0 one has

∥cf − spann G∥ = c∥f − spannG∥.

Thus approximation errors have to be studied either in sets of
normalized functions or in sets of functions of a given fixed norm.

The dictionary Pd(X) is a subset of B(X). So for X finite, all
elements of Pd(X) have the same norm, equal to

√
card X . Thus

in investigation of errors in approximation by shallow networks
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with threshold units it is more convenient to consider signum
perceptrons than Heaviside ones. From the point of view of model
complexity, there is only a minor difference between dictionaries
of signum and Heaviside perceptrons, as

sgn(t) = 2ϑ(t) − 1 and ϑ(t) =
sgn(t) + 1

2
.

So any network having n signum perceptrons can be replaced with
a network having n + 1 Heaviside perceptrons and vice-versa.

3. Lower bounds for approximation of binary-valued functions

In this section, we derive some general tools to investigate
approximation of binary-valued functions on finite domains. The
tools depend merely on the sizes of approximating sets and thus
they can be applied to both shallow and deep networks for which
sizes of sets of input–output functions can be estimated.

Our first proposition shows that when functions to be
approximated are binary-valued, then lower bounds by networks
with single linear outputs can be obtained from lower bounds
holding for networks with single threshold outputs.

Proposition 3.1. Let X ⊂ Rd be finite, f ∈ B(X), and h ∈ F (X).
Then for p ∈ {1, 2}

∥f − h∥p ≥
1
2

∥f − sgn(h)∥p.

Proof. We show that for every x ∈ X one has |f (x) − h(x)| ≥

(1/2) |f (x)−sgn(h(x))|. Indeed if f (x) = sgn(h(x)), then the right-
hand side equals zero. If f (x) ≠ sgn(h(x)), then assuming without
loss of generality that f (x) = 1, we have h(x) < 0 and thus
|f (x) − h(x)| > 1. As in this case (1/2) |f (x) − sgn(h(x))| = 1,
the estimate holds. Thus for X = {x1, . . . , xm}, we have

∥f − h∥1 =

m
i=1

|f (xi) − h(xi)| ≥ (1/2)
m
i=1

|f (xi) − sgn(h)(xi)|

=
1
2
∥f − sgn(h)∥1

and

∥f − h∥2
2 =

m
i=1

|f (xi) − h(xi)|2 ≥ (1/4)
m
i=1

|f (xi) − sgn(h)(xi)|2

=
1
4
∥f − sgn(h)∥2

2. �

Sets of input–output functions of networks with a threshold
output unit are binary-valued, hence for finite domains they are
finite. For finite approximating sets on large domains, probabilistic
estimates based on laws of large numbers can be applied to obtain
lower bounds on approximation errors that hold for almost all
functions. To derive such estimateswe use the Chernoff–Hoeffding
Bound. It provides an upper bound on the probability that the
sum of bounded independent random variables deviates from its
expected value (see, e.g., Petrov, 1995, p. 78, 2.6.2 and Hoeffding,
1963, Theorem 2).

Theorem 3.2 (Chernoff–Hoeffding). Let m be a positive integer,
Y1, . . . , Ym independent random variables with values in [0, 1], Y :=m

i=1 Yi, and λ > 0. Then the following hold:

Pr (Y ≥ (1 + λ)E(Y )) ≤ e−
λ2
2+λ

E(Y )
;

Pr (Y ≤ (1 − λ)E(Y )) ≤ e−
λ2
2 E(Y ).
The following theorem based on the Chernoff–Hoeffding Bound
shows that as long as an approximating set is ‘‘relatively small’’
with respect to the size of the domain, almost any randomly chosen
binary-valued function cannot be well-approximated.

Theorem 3.3. Let X ⊂ Rd be finite with card X = m, S ⊂ B(X)
such that card S = k, and λ > 0. Then for every randomly uniformly
chosen f ∈ B(X) and p ∈ {1, 2},

Pr

∥f − S∥p ≥ (1 − λ)m


≥ 1 − k e−

mλ2
2 .

Proof. By definition, ∥f − S∥p = minh∈S∥f − h∥p. Fix some
h ∈ S. Without loss of generality we can assume that for all
i = 1, . . . ,m, h(xi) := 1. Otherwise, we apply a sign-flipping
operator Fh : B(X) → B(X) defined for every i = 1, . . . ,m as
Fh(f )(xi) := h(xi) f (xi). So Fh(h)(xi) = 1 for every i = 1, . . . ,m.
Moreover, for every f ∈ B(X) one has ∥f −h∥1 = ∥Fh(f )−Fh(h)∥1
and ∥f −h∥2 = ∥Fh(f )− Fh(h)∥2. Since Fh is a one-to-onemapping
on B(X), the uniform distribution is invariant under Fh, and thus
Pr(∥f − h∥p ≤ c) = Pr(∥Fh(f ) − Fh(h)∥p ≥ c) for p = 1, 2.

Let p := 1. For i = 1, . . . ,m, let Yi ∈ {0, 1} be the
independent random variables defined as Yi := |f (xi) − h(xi)| and
Y :=

m
i=1 Yi = ∥f − h∥1, respectively. Then E(Y ) = m and so by

Theorem 3.2 we get

Pr

Y ≤ (1 − λ)m


≤ e−

m λ2
2 .

So for all h ∈ S

Pr

∥f − h∥1 ≤ (1 − λ)m


≤ e−

m λ2
2

and thus

Pr

∥f − S∥1 ≥ (1 − λ)m


≥ 1 − k e−

m λ2
2 .

Now, let p := 2. Similarly, setting Zi := (f (xi) − h(xi))2 for

i = 1, . . . ,m, and Z :=

m
i=1 Zi = ∥f − h∥2, we get E(Z) = m.

Thus by Theorem 3.2,

Pr (Z ≤ (1 − λ)m) ≤ e−
m λ2
2

and so

Pr

∥f − S∥2 ≥ (1 − λ)m


≥ 1 − k e−

m λ2
2 . �

In Theorem 3.3, the parameter λ determines the trade-off
between the size of the lower bound and the probability that it
holds. When applied to large domains X , for suitable values of λ
the theorem implies large lower bounds. For instance, for λ = 1/2
a high probability that any uniformly randomly chosen function
f ∈ B(X) cannot be approximated by functions from sets S
within error smaller than m/2 holds when card S is not too large
to outweigh e−m/16 so that 1 − card S e−m/16 remains close to 1.
This occurs, for example, when card S depends onm polynomially.
If, instead, card S = k = 2t for some t > 0, then the lower bound

1 − k e−
m λ2
4 ≥ 1 − 2t− m λ2

4 .

Thus for S such k = card S ≪ 2t , with t ≪
m λ2

4 we have 2t− m λ2
4

small. For instance, with λ =
1
2 , we get

Pr

∥f − S∥1 ≥

m
2


≥ 1 − k e−

m λ2
4 .

This bound is close to 1 when t ≪
m
16 , i.e., when card S ≪ 2

m
16 .
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4. Universal representation by signum perceptron networks

To apply general tools derived in the previous section to
signum perceptron networks, we need to estimate the sizes of the
sets sgn spannPd(X). In this section we give a simple geometric
argument showing that for the extreme case n = card X , all
functions on X can be exactly computed by shallow signum
perceptron networks and thus card sgn spannPd(X) = 2card X .

We call the capability of a class of networks to exactly compute
all functions on any finite domain the universal representation
property. The following theorem, extending a result by Ito (1992),
proves this property for networks with signum perceptrons.

Theorem 4.1. Let d and m be positive integers and X ⊂ Rd such that
card X = m. Then every function f : X → R belongs to the set
spanm Pd(X).

Proof. Let X := {x1, . . . , xm}. Ito (1992) proved that a sufficient
condition guaranteeing for a dictionary of the form Gϕ(X, Y ) that
every f : X → R is in spanm Gϕ(X) is the existence of yi, . . . , ym ∈

Y such that the matrix M(ϕ) defined for every i, j = 1, . . . ,m as
M(ϕ)i,j := ϕ(xi, yj) is non singular.

We verify this condition for ϕ : X × Rd+1
→ R defined as

ϕ(x, (v, b)) := sgn(v · +b). Choose x0 ∉ conv {x1, . . . , xm} such
that ∥xi − x0∥ ≠ ∥xj − x0∥ for i ≠ j. Without loss of generality
we can assume that ∥x1 − x0∥ ≤ ∥x2 − x0∥ ≤ · · · ≤ ∥xm − x0∥,
(otherwise we re-order the set X).

Let vi and bi be the normal vector and the bias, resp., of the
tangent hyperplane at the point xi to the ball centered at x0 with
radius ∥xi − x0∥. Denote by A them × m matrix defined as

Aij := sgn(vj · xi + bj)

(see Fig. 1). It follows from the definition that Aij = −1 for i < j
and Aij = 1 for i ≥ j. By adding to all columns of A its last column
(whose entries are all equal to 1), A can be transformed into a
triangular matrix B. So we have

A :=


1 1 · · 1 1

−1 1 · · 1 1
· · · · · ·

· · · · · ·

−1 −1 · · 1 1
−1 −1 · · −1 1



B :=


2 2 · · 2 2
0 2 · · 2 2
· · · · · ·

· · · · · ·

0 0 · · 2 2
0 0 · · 0 2

 .

Since the determinant of a matrix is invariant under addition of a
column and a triangular matrix is non singular, A is non singular,
too. �

Theorem 4.1 guarantees universal representation by assuming
model complexity potentially equal to the size m of the domain.
Such a universality result does not provide practical guidelines
for applications to large domains. Thus sets of functions that can
be computed or well approximated by networks with reasonably
small numbers of hidden units should be investigated. In the next
section, we explore limitations of approximation capabilities of
signum perceptron networks with numbers of units considerably
smaller than sizes of domains of functions to be approximated.

5. Estimates of sizes of sets of functions computable by signum
perceptron networks

The sets of binary-valued functions on finite domains B(X) are
finite, whereas the approximating sets formed by input–output
Fig. 1. The construction used in the proof of Theorem 4.1.

functions of signumperceptrons spann Pd(X) are infinite. By Propo-
sition 3.1, lower bounds on the approximation error by spann Pd(X)
can be obtained from lower bounds on approximation by
sgn spann Pd(X)

:= sgn


n

i=1

wisgn(vi · . + bi)
wi, bi ∈ R, vi ∈ Rd


,

which are finite subsets of B(X).
To apply Theorem 3.3 to approximation by these sets, we need

to estimate their sizes. For positive integers d,m, and nwe denote
s(m, d, n)

:= max

card sgn spannPd(X) | X ⊂ Rd, card X = m


.

Two extreme cases are n = 1 and n = m. When n = m,
the maximal size s(m, d,m) of the set sgn spanm Pd(X) is equal
to 2m. Indeed by Theorem 4.1, all real-valued functions on X can
be computed by signum perceptron networks with m units. So in
particular, all binary-valued functions can be exactly represented
by these networks.

In the second extreme case when n = 1, the quantity s(m, d, 1)
is equal to the maximal size of the dictionary Pd(X) on any set X
of m points in Rd. An upper bound on size of the set formed by
functions computable by signum perceptrons onm point set in Rd

is well-known since thework of Schläfli (1901), who estimated the
number of linearly separated dichotomies of m points in Rd. The
upper bound, derived by induction on both d andm, states that for
every X ⊂ Rd such that card X = m one has (see, e.g., Cover, 1965)

card Pd(X) ≤ 2
d

l=1


m − 1

l


≤ 2

md

d!
. (1)

For n = 1, the set sgn span1Pd(X) = Pd(X) and so

s(m, d, 1) ≤ 2
md

d!
.

Thus the set sgn span1Pd(X) forms only a small fraction of the
set of all functions in the set B(X), whose cardinality is equal to
2m. With n increasing from 1 to m it eventually reaches the size
2m. Thus to understand limitations of approximation capabilities
of signum perceptron networks, we need to estimate how quickly
the numbers s(m, d, n) grow with n increasing. The next theorem
provides an upper bound on this grows.

Theorem 5.1. For all positive integers d,m, n,

s(m, d, n) ≤ 2
n(d+2)−1

l=0


nm − 1

l


≤ 2

(nm)n(d+2)−1

(n(d + 2) − 1)!
.
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Proof. Let X = {x1, . . . , xm}. To estimate card sgn spann Pd(X)
we denote for every x ∈ X and u = (u1, . . . , un) =

(w1, v1, b1, . . . , wn, vn, bn) ∈ Rn(d+2) by h(u, x) the value at
x of the function from sgn spann Pd(X) with parameters u =

(u1, . . . , un), i.e.,

h(u, x) := sgn


n

i=1

g(ui, x)



= sgn


n

i=1

wisgn(vi · x + bi)


: Rn(d+2)

→ {−1, 1}. (2)

We call twoparameter vectorsu := (w1, v1, b1, . . . , wn, vn, bn)
and ū := (w̄1, v̄1, b̄1, . . . , w̄n, v̄n, b̄n) from Rn(d+2) equivalent if
on the finite domain X the functions h(u, x) and h(ū, x) coincide,
i.e., for all x ∈ X , h(u, x) = h(ū, x). Thus the number s(m, d, n) of
elements of the set sgn spann Pd(X) is smaller than or equal to the
number of classes of this equivalence.

Sets of equivalent vectors in the parameter space Rn(d+2) are
separated by hyperplanes. For each x ∈ X , the function (2) changes
its sign in those points u ∈ Rn(d+2) forwhich for some i = 1, . . . ,m
one has wi = 0 or vi · x + bi = 0. The set of these points has the
form of the union of n(1 + m) hyperplanes. To define them, let

αi := (αi1, . . . , αin),

where αik ∈ R × Rd
× R and αik = (0, 0, 0) if i ≠ k and

αii = (1, 0, 0) and

βij := (βij1, . . . , βijkn),

whereβijk ∈ R×Rd
×R andβijk = (0, xj, 1). Then, the hyperplanes

are defined by the n(1+m) equations u ·αi = 0 and u ·βij = 0, i =

1, . . . , n and j = 1, . . . ,m.
Thus the number of equivalence classes is bounded from above

by the number of regions into which Rn(d+2) can be divided by
n(m+1) hyperplanes. However, asw sgn(v ·x+b) = −w sgn(−v ·

x − b), the division of Rn(d+2) by hyperplanes described by the
equations u·αi = 0 can be excluded. So, the number of equivalence
classes is bounded from above by the number of regions intowhich
Rn(d+2) is divided by nm hyperplanes.

It is known (see, e.g., Anthony, 2001, p. 36) that the number of
regions c(D,N) intowhichRD can be partitioned byN hyperplanes
going through the origin is bounded from above by

c(D,N) ≤ 2
D−1
l=0


N − 1

l


. (3)

Thus letting D = n(d + 2) and N = nm, from (3) we get

s(m, d, n) ≤ 2
n(d+2)−1

l=0


nm − 1

l


.

The partial sum of binomials satisfies (see Rojas, 1996, p. 43 and
Winder, 1962)
M
l=0


N − 1

l


≤

NM

M!
.

So, forM = n(d + 2) − 1 and N = nm we get the statement. �

Applying Theorem 5.1 to the extreme cases n = 1 and n = m,
we get the following corollary.

Corollary 5.2. For every X ⊂ Rd such that card X = m, the following
hold:

(i) s(m, d, 1) ≤ 2
md+1

(d + 1)!
; (4)

(ii) s(m, d,m) ≤ 2
m2(m(d+2)−1)

(m(d + 2) − 1)!
. (5)
Proof. By Theorem 5.1, we have s(m, d, 1) ≤ 2
d+1

l=0


m−1

l


≤

2 md+1

(d+1)! and s(m, d,m) ≤ 2
m(d+2)−1

l=0


m2

−1
l


≤ 2m2(m(d+2)−1)

(m(d+2)−1)! . �

To compare the bounds from Corollary 5.2(i) with the classical
estimate (1) by Schläfli, we note that

md+1

(d + 1)!
=

m
d + 1

md

d!
.

So:

• form = d + 1, the bounds (1) and (4) are equal;
• form < d + 1, the estimate (4) is better than the estimate (1);
• for growing m > d + 1, the upper bound (4) becomes

increasingly worse than the bound (1).

Simplifying the upper bound from Theorem 5.1 we get the
following corollary.

Corollary 5.3. For all positive integers d,m, n and d̄ = d + 2,

s(m, d, n) ≤ n
nd̄
2 mnd̄.

Proof. The estimate from Theorem 5.1 combined with the
inequalities n ≤ nd̄ − 1 and n

n
2 ≤ n! (indeed, one has n

n
2 ≤ n! ≤ n+1

2

n
) gives

s(m, d, n) ≤ 2
(nm)nd̄−1

(nd̄ − 1)!
≤ 2

(nm)nd̄−1

(nd̄ − 1)

nd̄−1
2

≤ 2
(nm)nd̄−1

n
nd̄−1

2

= 2 n
nd̄−1

2 mnd̄−1

≤ n
nd̄
2 mnd̄. �

By Theorem 4.1, for all m, d, n one has s(m, d, n) ≤ 2m.
So the upper bound from Theorem 5.1 is useful only when it
is smaller than 2m. By Corollary 5.3, this holds for n satisfying
2

nd̄
2 log n 2nd̄ logm

≤ 2m, i.e., for such n that

n
2

log2 n + n log2 m ≤
m
d̄

. (6)

As we assume that n ≤ m, the condition (6) holds for

n ≤
2
3

m
d̄ log2 m

. (7)

Hence, our upper estimates of the sizes of sets of functions
sgn spann Pd(X) are useful for networks with numbers of units n
smaller than 2

3
m

d̄ log2 m
.

Applying these estimates to 2-dimensional domains containing
m = 2s points, we get from (7) the condition n ≤

2s+1

12 s . For domains
in the form of the d-dimensional Boolean cubes, m = 2d and (7)
implies that the estimates are useful only when n ≤

2d+1

3d (d+2) .

6. Estimates of approximation errors by shallow signum
perceptron networks

In this section, we combine general tools for derivation of
‘‘most-cases’’ lower bounds on errors in approximation of binary-
valued functions on finite domains with estimates of sizes of sets
of functions computable by shallow signum perceptron networks
with threshold units which are summarized in Table 1.

By combining Theorem 3.3 with the upper bound on s(m, d, n)
from Theorem 5.1, we get the following estimate.
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Table 1
Estimates of s(m, d, n) := card sgn spann Pd(X), where d̄ := d + 2.

1 ≤ n ≤ m s(m, d, n) ≤ 2 (nm)nd̄−1

(nd̄−1)!
Theorem 5.1

s(m, d, n) ≤ n
nd̄
2 mnd̄ Corollary 5.3

n = 1 s(m, d, 1) ≤
md

d! Eq. (1)

s(m, d, 1) ≤ 2 md+1

(d+1)! Corollary 5.2(i)

n = m s(m, d,m) = 2m Theorem 4.1

s(m, d,m) ≤ 2 m2(md̄−1)

(md̄−1)!
Corollary 5.2 (ii)

Theorem 6.1. Let X ⊂ Rd such that card X = m, λ > 0, p ∈ {1, 2},
and n be a positive integer, then

Pr

∥f − S∥p ≥ (1 − λ)m


≥ 1 − 2

(nm)nd̄−1

(nd̄ − 1)!
e−

m λ2
4

Proof. Theorem 3.3 with S = Pd(X) and k = s(m, d, n) provides

Pr

∥f − S∥p ≥ (1 − λ)m


≥ 1 − s(m, d, n) e−

m λ2
4 .

So by Theorem 5.1 we get

Pr

∥f − S∥p ≥ (1 − λ)m


≥ 1 − 2

(nm)nd̄−1

(nd̄ − 1)!
e−

m λ2
4 . �

Similarly, by Theorem 6.1 and the simplified upper bound on
s(m, d, n) stated in Corollary 5.3 we get the following probabilistic
lower bound.

Corollary 6.2. For every X ⊂ Rd such that card X = m, p ∈ {1, 2}
and every positive integer n,

Pr

∥f − S∥p ≥ (1 − λ)m


≥ 1 − e

−
1
2


m λ2

2 −3 n d̄ lnm

.

Proof. By Theorem 6.1 and Corollary 5.3, we have

Pr

∥f − S∥p ≥ (1 − λ)m


≥ 1 − n

nd̄
2 mnd̄ e−

m λ2
4

≥ 1 − m
3
2 nd̄e−

m λ2
4

= 1 − e
3
2 n d̄ lnm−m λ2

4 ≥ 1 − e
−

1
2


m λ2

2 −3 n d̄ lnm

. �

The exponent −
1
2


m λ2

2 − 3 n d̄ lnm


in the lower bound from

Corollary 6.2 is positive when m λ2

2 ≥ 3 n d̄ lnm. Thus we get the
following condition:

n ≤
m

lnm
λ2

6 d̄
. (8)

For m and n satisfying the condition (8), Corollary 6.2
implies that almost any randomly-chosen function cannot be
approximated by signum perceptron network with n units within
error smaller than (1 − λ)m. For instance, when n depends
polynomially on ln m, e.g., when n = (ln m)r for some positive
integer r , then we get from (8) (ln m)r ≤

m
ln m

λ2

6 d̄
, i.e.,

m
(ln m)r+1

≥
6 d̄
λ2

, (9)

which holds for sufficiently large values of m. When number
of units is smaller than m

lnm
λ2

6 d̄
then for almost any uniformly

randomly chosen function on any set X with card X = m,
Fig. 2. The upper bound on n expressed by Eq. (8), for d = 2 and different values
of λ.

Fig. 3. The upper bound on n expressed by Eq. (8), for d = 10 and different values
of λ.

a shallow network with signum perceptrons cannot achieve an
approximation error smaller than (1 − λ)m.

Figs. 2–5 illustrate the growth of the quantity m
lnm

λ2

6 d̄
in the

upper bound (8) as a function ofm, for different values of d and λ.

7. Discussion

Recently, various approaches to comparisons of capabilities of
shallow and deep networks were proposed. A study based on
topological concepts was developed by Bianchini and Scarselli
(2014). They proved that topological characteristics (Betti’s
numbers) of input–output functions of certain deep networks
grow exponentially with the number of hidden units, whereas
for shallow networks with the same types of units they grow
merely polynomially. Mhaskar et al. (2016a, 2016b) compared
VC-dimensions of shallow and deep nets. They proved that deep
networks can approximate a set of compositional functions with
the same accuracy as shallow nets, but with exponentially lower
VC-dimensions.

Earlier, a topological approach to derive lower bounds exhibit-
ing the ‘‘curse of dimensionality’’, i.e., an exponential dependence
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Fig. 4. The upper bound on n expressed by Eq. (8), for d = 100 and different values
of λ.

Fig. 5. The upper bound on n expressed by Eq. (8), for d = 1000 and different
values of λ.

on the number of parameters (Bellman, 1957) was proposed by
DeVore, Howard, and Micchelli (1989). They extended a well-
known argument from linear approximation theory (Pinkus, 1985)
to computational models that have continuous selections of best
approximators. This property is typical for linear approximation,
but shallow networks of many common types, due to their nonlin-
ear and non-convex natures, do not allow continuous selections of
best or even near best approximations, as it was proven by Kainen,
Kůrková, and Vogt (1999, 2000, 2001). Actually, the nonlinearity
and non-convexity of sets of input–output functions of neural net-
works are essential properties to make them better tools for high-
dimensional tasks than classical linear approximators. Classes of
functions for which classical linear approximators suffer from the
curse of dimensionality, whereas some shallow networks do not
exhibit this drawback, were described by Gnecco (2012, 2016)
and Kůrková and Sanguineti (2002) (see also Gnecco, Kůrková, &
Sanguineti, 2011a, 2011b; Kainen, Kůrková, & Sanguineti, 2009;
Kainen et al., 2012; Klusowski & Barron, 2016; Kůrková & San-
guineti, 2001 and the references therein).

Bengio et al. (2006) suggested that a cause of large model
complexities of shallow networks may be the ‘‘amount of
variations’’ of functions to be computed. In Kůrková and Sanguineti
(2016) we formalized the concept of highly-varying functions in
terms of variational norms tailored to computational units and we
derived probabilistic lower bounds on these norms. The arguments
presented in Kůrková and Sanguineti (2016) were complemented
in Kůrková (2017, in press) by concrete constructions of functions
with large variations on square domains of sizes n × n. These
functions cannot be computed by shallow signum perceptron
networks having both the number of units and sizes of all output
weights smaller than n

log2 n , but some of these functions can be
computed by two-hidden-layer networks with merely n units.
Large variations guarantee large l1-norms of the vectors of output
weights, hence there must be either a large number of units or
a large maximum output weight. Both are not desirable. It was
remarked by Gorban, Tyukin, Prokhorov, and Sofeikov (2016, p.
144) that ‘‘we have to pay for such a significant reduction of
the number of elements by ill-conditioning of the approximation
problem’’.

8. Conclusions

Motivated by recent empirical studies comparing the model
complexities of shallow and deep networks, we derived lower
bounds on rates of approximation of functions by shallow
signum perceptron networks, combining the probabilistic Cher-
noff–Hoeffding Bound with estimates of the sizes of sets of func-
tions exactly computable by shallow networks.

The lower bounds are large for networks with numbers of
units ‘‘considerably smaller’’ than the size m of the domain (more
precisely, depending polynomially on ln m). Our bounds hold for
almost any uniformly randomly chosen function.

Our results are negative in the sense that they prove that one
cannot do too much if the number of units does not exceed a
polynomial in the logarithm of the size of the domain. However
it should be remarked that, while Bengio (2009) and Bengio et al.
(2006) proved deterministic statements for a specific function
(namely, parity), we derived probabilistic estimates holding for
almost any function. In contrast toworst-case results such as those
in Maiorov and Meir (2000), ours apply to the average case.

Some of our results are quite general, depending only on the
sizes of the approximating sets, so they have nothing to do with
deep vs. shallow architecture. Hence, we expect that the bounds
are not tight. Consequences of these general estimates hold for
shallow signum perceptron networks, because the corresponding
families of input–output functions are relatively small. The
problem of whether or not it is possible to construct larger sets by
arranging the same number of computational units in more layers
is still open.
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