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Dependence of Computational Models on Input
Dimension: Tractability of Approximation

and Optimization Tasks
Paul C. Kainen, Věra Kůrková, and Marcello Sanguineti

Abstract—The role of input dimension is studied in approx-
imating, in various norms, target sets of -variable functions
using linear combinations of adjustable computational units.
Results from the literature, which emphasize the number of
terms in the linear combination, are reformulated, and in some
cases improved, with particular attention to dependence on . For
worst-case error, upper bounds are given in the factorized form
� � � �, where is nonincreasing (typically � � � �).

Target sets of functions are described for which the function
is a polynomial. Some important cases are highlighted where
decreases to zero as . For target functions, extent (e.g.,
the size of domains in where they are defined), scale (e.g., max-
imum norms of target functions), and smoothness (e.g., the order
of square-integrable partial derivatives) may depend on , and
the influence of such dimension-dependent parameters on model
complexity is considered. Results are applied to approximation
and solution of optimization problems by neural networks with
perceptron and Gaussian radial computational units.

Index Terms—Dictionary-based computational models, high-di-
mensional approximation and optimization, model complexity,
polynomial upper bounds.

I. INTRODUCTION

M ANY tasks in engineering, operations research, biology,
etc. require optimization of decision functions depen-

dent on a large number of variables. Such functions may rep-
resent, e.g., routing strategies for telecommunication networks,
stochastic decision problems, resource-allocation in computer
networks, releasing policies in management of water-reservoir
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networks, scheduling for queueing networks in manufacturing
systems, etc.

Experimental results have shown that optimization over deci-
sion functions built from relatively few computational units with
a simple structure may obtain surprisingly good performance in
high-dimensional optimization tasks (see, e.g., [1]–[9] and the
references therein). In these models, the decision functions take
on the form of linear combinations of input-output maps com-
puted by units belonging to some dictionary [10]–[12]. Exam-
ples of dictionaries are various parameterized sets of functions
such as those computable by perceptrons, radial or kernel units,
Hermite functions, trigonometric polynomials, and splines.

Sometimes approximation from a dictionary is called vari-
able-basis approximation [13], [5] in contrast to linear approx-
imation [14], where the -tuple is fixed (it is formed by the first

elements of a set with a fixed linear ordering) and only the
coefficients of linear combination are adjustable. The number
of units in the linear combination plays the role of model com-
plexity as it corresponds to the number of computational units
in the so-called “hidden layer” of neural networks [15]. Esti-
mates of model complexity needed to guarantee a desired accu-
racy in approximation of some family of functions can be de-
rived from upper bounds on rates of approximation. Such upper
bounds typically include several factors, one of which involves
the number of terms in the linear combinations, while another
involves the number of variables (i.e., the dimension of the
inputs of computational units).

Emphasis on model complexity is certainly reasonable
when the number of variables is fixed, but in modern re-
search, where technology allows ever-increasing amounts of
data to be collected, it is natural to also take into account the
role of . Further, if has a combinatorial aspect (e.g., as the
number of admissible paths in a communication network), then
it may grow very dramatically and so make the computational
requirements unfeasible: algorithms will require an exponential
growth in time and resources because of the combinatorial
explosion of possible substructures [16] as increases.

Also, dependence on dimension may be cryptic; i.e., esti-
mates involve parameters that are constant with respect to but
do depend on and the manner of dependence is not specified;
see, e.g., [17]–[25]. Most available upper bounds take the fac-
torized form

(1)

(see Section VII for a discussion of their tightness). In some
literature (see, e.g., [18]) the terms depending on are referred

0018-9448/$31.00 © 2012 IEEE



1204 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 2, FEBRUARY 2012

to as “constants” since these papers focus on the number of
computational units and assume a fixed value for the dimension

of the input space. Such estimates are formulated as bounds on
, so the dependence on is hidden in the so-called “big

” notation (e.g., [26]). However, it has been shown that such
“constants” can actually grow at an exponential rate in [27],
[28]. In fact, the families of functions for which the estimates
are valid may become negligibly small for large [29].

As remarked in [30], in general the dependence of approxima-
tion errors on the input dimension —i.e., the function —is
much harder to estimate than dependence on the number of
computational units. Not many such estimates are available. De-
riving them can help to determine when machine-learning tasks
are computationally feasible as the dimension of the input
space grows. More than 15 years ago Juditsky et al. [2] (see
especially Section 3 therein) warned that dictionary-based com-
putational models are not a panacea for high-dimensional opti-
mization and approximation tasks, but the word of caution con-
tained in their paper seems to have been forgotten.

This paper unifies a number of recent studies of dictionary-
based computational models from the standpoint of input di-
mension. It is shown that many “dimension-independent” com-
putations do, in fact, depend on the input dimension , though
the dependence may be hidden. We investigate previous upper
bounds on approximation from this perspective, pointing out
how they depend not only on the number of variables but
also on extent (i.e., the Lebesgue measure of domains in on
which the target functions are defined), scale (e.g., norms of the
target functions—that is, the radius of the ball to be approxi-
mated), and smoothness (e.g., the order of square-integrable par-
tial derivatives). Moreover, we derive some new estimates for
rates of approximation and optimization via dictionaries, with
explicitly-stated dependence on input dimension and these ad-
ditional parameters. In contrast to “big ” estimates, where un-
specified “constants” may increase exponentially with dimen-
sion, our explicit bounds sometimes involve numerical factors
that decrease exponentially with dimension. The volume of the
unit ball in -dimensions is one such example.

We utilize and extend the concept of “tractability” in ap-
proximation of multivariable functions by variable-basis com-
putational models expressed as linear combinations of all -tu-
ples of functions computable by units belonging to a dictionary.
Tractability was first introduced in studying information-based
complexity; see, e.g., [31], [30], [32]). It was also used in worst-
case analysis as given in [33] and [34]. We call the problem
of determining the error in approximating a family of functions
of -variables using computational units tractable (with re-
spect to ) iff in the factorized estimate (1) the function is
nonincreasing and the function is bounded above by a poly-
nomial in . Often, the function of model complexity take the
form , where is related to the smooth-
ness of the functions to be approximated, e.g., is the order up
to which partial derivatives are square integrable. In such cases,
input-output functions with

computational units can approximate the given class of func-
tions within . Hence, when is polynomial, the model com-
plexity needed to achieve a given accuracy grows at most poly-
nomially with input dimension. Note that estimates of approx-
imation errors in spaces with square-integrable partial deriva-
tives up to some order from linear approximating sets and
ridge functions were obtained in [35, Chapter VII] and [36],
resp. However, their estimates are asymptotic, not in the fac-
torized form separating and , and have multiplicative factors
which depend on in an unspecified way.

Polynomial growth for does not provide sufficient con-
trol of model complexity unless the degree of the polynomial
is quite small. For large dimension of the input space, even
quadratic approximation is not going to be sufficient. But there
are interesting situations, described below, where dependence
on is linear or better, and we highlight cases in which the func-
tion decreases to zero—even exponentially fast—with di-
mension. In this “hyper-tractable” case, a single computational
unit can approximate arbitrarily well provided the dimension is
large enough.

The conditions that we derive to guarantee tractable or hyper-
tractable approximation by various dictionaries define sets large
enough to include many smooth functions on ; for example,

-variable Gaussian functions on can be tractably approxi-
mated by perceptron neural networks.

A preliminary version of some results contained in this work
was presented in [37].

The paper is organized as follows. In Section II, the concept
of tractability with respect to the dimension of the worst-case
approximation from dictionaries is introduced. In Section III, re-
sults from nonlinear approximation are used to describe sets of
functions for which approximation is tractable. These results are
applied in Section IV to approximation by Gaussian radial basis
function networks and by perceptron networks in Section V. In
Section VI, the results from Section III are applied to minimiza-
tion of functionals over dictionaries. Section VII contains some
concluding remarks.

II. WORST-CASE TRACTABILITY IN APPROXIMATION

FROM A DICTIONARY

Let be two subsets of a normed linear space. The worst-
case approximation error in approximating elements of by
elements of is formalized by the concept of deviation of
from .

Definition 1: Let be a normed linear space;
nonempty. The deviation of the target set from the approx-

imating set in is defined as

Clearly, if and only if is contained in the -clo-
sure of . Moreover, deviation is monotonic

and homogeneous
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where

For a subset of a linear space, let

denote the set of all -fold linear combinations of its elements.
The sets and are sometimes called a dictionary [12]
and a variable-basis approximation scheme [13], [5] (or approx-
imation from a dictionary), respectively. We use these sets as our
approximating set; i.e.,

The set of targets is a subset of a space of -vari-
able functions, usually the ball in some appropriate space or its
intersection with another suitable space. By homogeneity, if the
scale of the data (i.e., the radius of this ball) changes (as it may
when the dimension changes), then the same scale term will ap-
pear in the deviation because the sets are not changed
by scalar multiplication.

With appropriate choices of , the sets provide
dictionary-based models used in applications and , the model
complexity, is the number of computational units. For ex-
ample, consider an input set , a real-valued function

of two vector variables, and let

where for all .
For suitable choices of computational unit , the sets

consist of functions computable by one-hidden layer neural net-
works, radial basis functions, kernel models, splines with free
nodes, trigonometric polynomials with free frequencies, Her-
mite functions, etc. [29], [38]. For example, if and

, then functions in are called
perceptron networks. If is positive and even, and

, then functions in are
called radial basis function (RBF) networks.

Let be any infinite subset of , the set of positive inte-
gers. We focus on upper bounds on rates of approximation from
dictionaries (see, e.g., [17]–[20], [24], [39]) of functions in
by taking on the factorized form

(2)

where is a function of the number of variables
of the functions in and .

Definition 2: The problem of approximating by elements
of is called tractable with respect to in the worst
case or simply tractable iff in upper bound (2) for every

one has for some and is a nonin-
creasing nonnegative function of the model complexity . The

problem is called hyper-tractable iff it is tractable and, in addi-
tion, .

We also study rates of approximation of sets of -variable
functions of the form for various scaling factors . In
particular, for the unit ball we investigate scaled sets

. If approximation of by is
hyper-tractable, then the scaled problem of approximating
by is tractable, unless grows faster than . If

goes to zero at an exponential rate, then the scaled problem
is hyper-tractable if is at most polynomial in .

III. SETS OF TRACTABLE FUNCTIONS

In this section, we describe some sets of -variable functions
that in various function spaces can be tractably approximated by
linear combinations of functions from general dictionaries. The
sets can be described as balls in certain norms, tailored to such
dictionaries. Their tractability depends on the speed of growth
of their radii with the dimension .

For any nonempty bounded subset of a normed linear
space , the closure of its symmetric convex hull

uniquely determines a norm for which it
forms the unit ball. Such a norm is the Minkowski functional
[40, p. 131] of the set .

Definition 3: Let be a nonempty bounded subset
of a normed linear space , and

. The -variation of is defined
as

Note that -variation can be infinite. It is a norm on the subspace
of formed by functions with finite -variation. The concept
of -variation was introduced in [17] for families of character-
istic functions and extended in [41] to arbitrary bounded sets of
functions. Clearly, . Also for ,
where are normed linear spaces with some constant
such that for all (i.e., with contin-
uously embedded in ) and with nonempty and bounded in

, for every one has [41].
Such variational norms play a crucial role in upper bounds

on rates of approximation and optimization by sets of the form
[29], [42]. Before stating these bounds, we present an

estimate of variational norm for parameterized sets of the
form . The following theorem
from [43] (see also [44]) gives an upper bound on -variation
for functions which can be represented as

For a measurable set , a measure on , and
, we denote by the space of

(equivalence classes of) real-valued functions on that have
integrable th power with respect to the measure, endowed with
the standard norm. (See [39] for a sup-norm example.)

Theorem 1: Let a Borel measure
on a -finite measure on , and a
mapping such that is a bounded
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subset of for some . If
is such that for some and for -almost every

, . Then letting
,

The next theorem [3] reformulates estimates from [45], [24],
[18], and [20] and, together with its corollary below, is used
repeatedly in the sequel.

Theorem 2: Let be a Banach space, a bounded
nonempty subset, and . Then for
every positive integer

(i) for a Hilbert space,

(ii) for , and
a measure on :

where , and .
Theorem 2 implies upper bounds on the worst-case errors for
balls in -variation. The bounds are of the factorized form

with or .
The next corollary follows from Theorem 2 and the definition

of deviation.

Corollary 1: Let be a positive integer, a Banach
space of -variable functions, and some bounded nonempty
subset with . Then for every positive
integer

(i) for a Hilbert space:

(ii) for with
and a measure on :

where , and .
So in the Hilbert space case, approximation of the ball of radius

in variational norm for the class is tractable provided that
is polynomial.

It was shown in [21] that the upper bound (ii) from Theorem 2
does not hold for general bounded subsets of or -spaces.
However, for special cases of certain sets with finite VC-di-
mension, one can derive upper bounds in this form. Recall that
the VC-dimension of a subset of the set of characteristic func-
tions of a set is defined as follows. The characteristic or in-
dicator function of is defined for as
if , otherwise . Let be any family of charac-
teristic functions of subsets of the
family of the corresponding subsets of , and a subset of .
The set is said to be shattered by if is the
whole power set of . The VC-dimension of is the largest car-
dinality of any subset that is shattered by . The coVC-dimen-
sion of is the VC-dimension of the set ,

where the evaluation is defined for every
as .

Let ; by we denote the space
of all Lebesgue-measurable functions with finite
supremum on , with

The following theorem is a reformulation of the estimates from
[23, Th. 3] in terms of -variation.

Theorem 3: Let and be a subset of the set of
characteristic functions on such that the co-VC-dimension
is finite. Then in for every positive integer

(3)

As a corollary of Theorem 3, we have the following upper
bound on deviation in the supremum norm of balls in -varia-
tion for sets of characteristic functions with finite VC-dimen-
sion.

Corollary 2: Let and be a subset of the sets of
characteristic functions on such that the co-VC-dimension

of is finite. Then in for every

In the upper bounds from Corollaries 1 and 2, we have
and , resp. These

estimates imply tractability for the scaled problem (estimating
deviation from for the ball of radius ) when
and , resp., grow polynomially with increasing.
While and are determined by the choice of ,
one may be able to specify in such a way that is a
polynomial.

Table I summarizes the estimates provided by Corollaries 1
and 2.

IV. TRACTABILITY OF APPROXIMATION BY

GAUSSIAN RBF NETWORKS

In this section, we apply the estimates from the previous
Section III to Gaussian radial-basis-function (RBF) networks.
Let denote the -dimensional Gaussian function
of width and center in :

When , we write merely instead of . Note that
larger values of correspond to sharper peaks, so “width” is
parametrized oppositely to what one might expect. For ,
let
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TABLE I
ESTIMATES PROVIDED BY COROLLARIES 1 AND 2 FOR VARIATIONAL NORMS

denote the set of -variable Gaussian RBFs with width
and all possible centers, where denotes the translation oper-
ator defined for any as

By translation invariance of Lebesgue measure, translation has
no effect on norm in . We use

to denote the set of Gaussians with varying widths. Since
(e.g., [46, p. 174]), a simple calculation

shows that for any and ,

The next corollary gives an upper bound on deviation of balls
in -variation with respect to the ambient space .
For , similar bounds hold in using Corollary
1(ii).

Corollary 3: Let be a positive integer, , and .
Then for every positive integer ,

Proof: Use Corollary 1(i) to approximate by Gaussians
with fixed widths.

In the upper bound from Corollary 3, .
Thus for , the estimate implies tractability for
growing with polynomially, while for , it implies
tractability even when increases exponentially fast. Hence,
the width of Gaussians has a strong impact on the size of radii

of balls in -variation for which is a polynomial.
The narrower the Gaussians, the larger the balls for which
Corollary 3 implies tractability.

Unlike , the set of all Gaussians (with varying
widths) is not bounded in . Thus, variation with respect
to this set is not defined. Nevertheless, Corollary 3 provides
a description of sets that can be tractably approximated using

these dictionaries. For a subset of , let denote the set
of its normalized elements, i.e.,

As , Corollary 3 implies that balls in
-variation with suitable radii can be tractably approximated

by Gaussian radial-basis networks of varying widths and cen-
ters.

To describe subsets of balls in -variation, we combine
Theorem 1 with a representation of functions from Sobolev
spaces as integrals of Gaussians. We need some machinery. For

, the Bessel potential of order on is the unique
function with Fourier transform

where we parameterize the Fourier transform as

For and , let

be the Bessel potential space which is formed by convolutions
of functions from with . For , it is known
that is non-negative, radial, exponentially decreasing at
infinity, analytic except at the origin, and belongs to [47,
p. 296]. There is a norm defined by

Since, for our parameterization, the Fourier transform of a
convolution of two functions is times the product of
the transforms, we have . Thus, is
uniquely determined by and so the Bessel potential norm is
well-defined.

For and integer , the Sobolev space
is the set of functions having th order partial

derivatives in for all , with norm given by
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where denotes a multi-index (i.e., a vector of non-negative
integers), the corresponding partial derivative operator, and

.
It is well-known (e.g., [48, pp. 134–136]) that for every

positive integer and all , the Sobolev space
as a linear space is identical to the Bessel potential

space , and their norms are equivalent in the sense
that each is bounded by a multiple of the other; i.e., they induce
the same topology. As we did not find in the literature an
explicit estimate of the coefficients of equivalence of these two
norms, in [39] we derived the upper bound

For the reader’s convenience, we derive a well-known inte-
gral formula (e.g., [48, p. 132]) using our parameterization of
the Fourier transform [see (6)]. Let ; for ,
let . Then we have

(4)

Indeed, for any , let
and set . Then

.
The Fourier transform of the Gaussian function is a scaled
Gaussian multiplied by a scalar; for our parameterization, for
every

(5)

By (4) and (5) with , linearity and continuity of inverse
Fourier transform, one obtains

(6)

where

(7)

and

The next theorem is the rigorous form of an idea in [49].
Theorem 4: Let . Then every

can be represented as

where is as in (7) and is the unique function in
such that .

Proof: By definition of Bessel potential space, every
can be represented as

. By (6), we are done.

By the equivalence mentioned above, the same representa-
tion holds for for . Using
this representation of sufficiently smooth functions as integrals

of normalized Gaussians, the next Corollary provides a descrip-
tion of sets of functions which can be tractably approximated by
Gaussian RBF networks.

Corollary 4: Let and be positive integers. Then

where ;

where , and
.

Proof: (i) Let . By The-
orems 4 and 1, we have

For and as in (7), we have the following (see [34])

Thus

Then the statement follows by Corollary 1(i) since
and .

(ii) Let denote (normalizing w.r.t.
instead of ). Then we have

(8)

where

and

For ,
so (ii) follows by Corollary 1(ii).

For every , the upper bound from Corollary 4(i) on
the worst-case error in approximation by Gaussian-basis-func-
tion networks is of the factorized form , where

and

Let and put . Then
, which goes to zero exponentially fast with
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TABLE II
ESTIMATES PROVIDED BY COROLLARIES 3 AND 4 FOR GAUSSIAN RBF NETWORKS

increasing . So for and , the approx-
imation problem (2) is hyper-tractable for

, and .
We now replace the Bessel potential by a general kernel. Let

and be a kernel. In the following,
we state a general estimate for families of functions defined by
convolution of a bounded kernel with an absolutely integrable
function. Let . For ,

If is bounded on and , the integrals
are finite for each . Let

where denotes VC-dimension. (See after Theorem 1.)
For such a bounded kernel, in [49] tools from statistical

learning theory were utilized to show that there exists
such that

(9)

For , the result was applied in [49] to Bessel and
Gaussian kernels. However, the bound (9) and its improve-
ments from [50], [51] are not in the factorized form .
The following theorem [52, Ths. 4.5, 5.2] extends and improves
the estimate (9) to a factorized form.

Theorem 5: Let bounded
and the dimension of . Then there exists

such that for all positive integers

(10)

The bound from Theorem 5 guarantees tractability when
grows at most polynomially with the number of vari-

ables.
Table II summarizes the estimates of this section.

V. TRACTABILITY OF APPROXIMATION

BY PERCEPTRON NETWORKS

In this section, we investigate tractability of worst-case er-
rors in approximation by linear combinations of perceptrons.
Perceptrons with an activation function compute
functions from to given by

where is a weight vector and is a bias. Typically, is a
sigmoid, i.e., a measurable function such that

and ; usually, it is also assumed that is
nondecreasing. The Heaviside function , defined as

for and for , is a sigmoid.
Let denote the sphere in .

For a sigmoid let

When , we simply write . Since for
, one has

so is the set of characteristic functions of closed half-spaces
of . One also calls -variation variation with respect to half-
spaces [17].

For any family of functions on and , let

where is the restriction of to . We also use the phrase
“variation with respect to half-spaces” for the restrictions of .
For simplicity, we sometimes write instead of .

Remark 1: When has finite Lebesgue measure, for
any continuous nondecreasing sigmoid variation with respect
to half-spaces is equal to -variation in [53], i.e.,

Hence, investigating tractability of balls in variation with re-
spect to half-spaces has implications for approximation by per-
ceptron networks with arbitrary continuous nondecreasing sig-
moids. For simplicity, in Corollaries 5 and 6, Theorem 7, and
Table III, we state the estimates only for the dictionary , but
when has finite Lebesgue measure, the bounds hold
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TABLE III
ESTIMATES PROVIDED BY COROLLARIES 5 AND 6 AND THEOREM 7 FOR PERCEPTRON NETWORKS. WHEN � � HAS FINITE LEBESGUE

MEASURE, THE BOUNDS HOLD ALSO FOR THE DICTIONARY � WITH ANY CONTINUOUS NONDECREASING SIGMOID �

also for the dictionary with any continuous nondecreasing
sigmoid .

The next corollary estimates deviation of balls in variation
with respect to half-spaces.

Corollary 5: Let be a positive integer, . Then for
every positive integer

(ii) if has finite Lebesgue measure, then

Proof: The coVC-dimension of the set of characteristic
functions of half-spaces of is equal to [23, p. 162]. Thus,
the statement follows by Corollaries 2 and 1.

Corollary 5 implies that approximation of functions from balls
of radii in variation with respect to half-spaces is tractable in

when grows polynomially. In ,
this approximation is tractable when times grows
polynomially with . If for all is the unit ball
in , then this approximation is hyper-tractable unless is
exponentially growing.

It is shown in [39] that functions with continuous th order
partials that either are compactly supported or, together with
their derivatives, have sufficiently rapid decay at infinity, can
be expressed as networks with infinitely many Heaviside per-
ceptrons and so, by Theorem 1, their variation with respect to
half-spaces is bounded above by the -norm of the output
weight function.

A real-valued function on odd, is of weakly-controlled
decay [39] if is -times continuously differentiable and for all
multi-indices with and

,

and

We denote by the set of functions of weakly controlled
decay on . This set includes the Schwartz class of smooth
functions rapidly decreasing at infinity as well as the class of

-times continuously differentiable functions with compact sup-
port. In particular, it includes the Gaussian function. Also, if

, then if . The maximum
over all with is called the Sobolev seminorm of and
is denoted .

The following theorem from [54] gives an integral representa-
tion of smooth functions as networks with infinitely many Heav-
iside perceptrons. The output weight function can be inter-
preted as a flow of the order through the hyperplane

scaled by , which goes to zero
exponentially fast with increasing. By is denoted the di-
rectional derivative of the order in the direction .

Theorem 6: Let be odd, of weakly-
controlled decay. Then for every

where and

.
The representation of Theorem 6 was first derived in [55] (see
Th. 3.1, Prop. 2.2, and an equation in [55, p. 387]) using the
Radon transform (see, e.g., [56, p. 251]) for all functions from
the Schwartz class. In [53], the same formula was derived for
all compactly supported functions from with odd, via
an integral formula for the Dirac delta function. In [54], the
representation was extended to functions of weakly-controlled
decay. Representation of as a network with infinitely many
perceptrons also holds for even, but the output weight func-
tion is more complicated (see [55] for the case when is in
the Schwartz class and [54] for the case of satisfying certain
milder conditions on smoothness and behavior at infinity).

Let denote the intersection of with the ball
of radius in the Sobolev seminorm . Then
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Theorem 7: Let be odd, with ,
and . Then for every positive
integer

Proof: Let . If has finite Lebesgue measure,
then

Indeed, the first inequality is our remark after the definition of
-variation and the second is a similar formality. Combining the

integral representation of Theorem 6 and the consequent bound
on variational norm given by Theorem 1 gives the first inequality
below; the second inequality is [39, Cor. 4.3]:

As , the theorem follows by
Corollary 1(i).

By the remark preceding Corollary 5.1, using [53], one can
replace by , for any continuous nondecreasing sigmoid
in the conclusion of Theorem 7. The next corollary estimates the
worst-case -errors in approximation by perceptron networks
of the set

of -variable Gaussians with widths equal to 1 and varying cen-
ters.

Corollary 6: Let be odd, with .
Then for every positive integer

Proof: Let be any normed linear space of real-valued
functions (or equivalence classes of functions) on . It is easy
to see that for every bounded closed under translation,
every , and every , one has .
This remark with and gives

But [39, Cor. 6.2]. As
, by Corollary 1(i)

we are done.
In the upper bound from Corollary 6, we have

. This implies that approximation of -vari-
able Gaussians on a domain by perceptron networks is
tractable when the Lebesgue measure grows polynomi-
ally with , while if the domains are unit balls in , then
the approximation is hyper-tractable.

Table III contains the estimates derived in this section. Note
that which appears in rows 3 and 4 is exponentially de-
creasing since, by Stirling’s approximation for the Gamma func-
tion:

Hence, if is at most polynomial, then the approx-
imation problem is hyper-tractable. The estimates in rows
2–5 take a convenient form when all the domains have
unit volume (i.e., ). For -dimensional cubes, to
this end the sides must be 1, but for -dimensional balls in
the Euclidean norm, the radii have to be proportional to .
Indeed, the volume of a radius -ball in dimensions is

, e.g., [57, p. 304]; to get unit volume, by
Stirling’s formula, one needs a radius of

where . In this way, one can see
that our methods allow tractable approximation when the
are balls of radii (and so ).

VI. WORST-CASE TRACTABILITY FOR OPTIMIZATION

The techniques developed in the previous sections can also
be applied to optimization.

Let be a nonempty subset of a normed linear space
of -variable functions and let be a proper

functional. We consider the optimization problem of minimizing
on :

(11)

This entails an infinite-programming problem [58], [59], also
called functional optimization problem [8], [9], as the admis-
sible solutions are elements of an infinite-dimensional space
[60].

When a solution to the problem (11) cannot be found in
closed form, an approximate solution can be obtained by iter-
ative methods, which entail the construction of a minimizing
sequence converging to an element of the admissible set .
The classical Ritz method [61] constructs a minimizing se-
quence considering for every positive integer the subproblems

, where is an -dimensional subspace of
and so .

For an input set and a computational unit
, let

and suppose that has , where
for any contained in a linear space , is the in-
tersection of all linear subspaces of which contain ; i.e.,
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. The extended Ritz method, formal-
ized in [9] and investigated in [1], [62], [63], [3], [64], considers
approximate minimization over , i.e.,

(12)

With suitable choices of the computational unit , the optimiza-
tion problem (12) formalizes the use of computational models
such as radial basis function and perceptron networks for the
solution of tasks in which a function that is optimal, in a sense
specified by a cost functional, has to be found among a set
of candidate admissible functions. Such functions may repre-
sent routing strategies in telecommunication networks, move-
ment strategies for decision makers in a partially unknown envi-
ronment, exploration strategies in graphs with stochastic costs,
input/output mappings of a device that learns from examples;
see, e.g., [1]–[3], [6]–[9] and references therein).

When investigating the tractability of optimization over
, to simplify the notations we may suppose that the

problems (11) and (12) have solutions and , respectively.
If the infima in (11) and (12) are not achieved, then the results
can be restated, at the expense of more cumbersome notations,
in terms of -near minimum points.

In order to approximate (11) by (12), one needs to estimate

Definition 4: The approximation of the problem (11) by the
problem (12) is called tractable with respect to in the worst
case or simply tractable iff there exist such that

hold with for every and every
, where are nonincreasing and nonnegative.

For standard terminology (e.g., modulus of convexity), see
[65] or [66]. Recall that the problem (11) is Tikhonov well-posed
if it has a unique minimum to which every minimizing sequence
converges [66, p. 1]. The modulus of Tikhonov well-posedness
of the problem (11) at a minimum point is the function

with
for all .

The next theorem investigates tractability of the approximate
solution of problem (11) with equal to the ball of radius
in , i.e.,

(13)

by the problems obtained from (12) with such a choice of ,
i.e.,

(14)

Analogously with our suppositions for (11) and (12), without
loss of generality we may assume that the infima in (13) and (14)
are achieved at and , resp. (otherwise, -near minimum
points have to be considered).

Theorem 8: Let be a normed linear space,
, and let

be a proper functional, uniformly convex on with modulus of
convexity . Let be the modulus of Tikhonov well-posedness
for the problem (13) at a minimum point continuous at
with a modulus of continuity , and the minimum point
of the problem (14). If there exist such that for all

and , then for
every positive integer the following hold:

(i)
(ii) .
Proof: (i) As the Minkowski functional of the ball
is equal to , by [3, Th. 4.2] (i) with we get

(ii) By [3, Th. 4.2] (ii)–(iii) we have

Thus, the problem of minimization of functionals by ap-
proximation schemes is tractable provided that the
moduli of continuity, convexity, and well-posedness satisfy
suitable constraints.

For example, Theorem 8 can be applied to the optimization
problem associated with a sample

of empirical data, modeled as minimization over per-
ceptron networks or Gaussian RBF networks, of the empirical
error functional [67]–[69]

Hence, tractability can be investigated using Theorem 8 and em-
pirical error.

VII. REMARKS

Several authors [17], [13], [70], [25] derived tight improve-
ments of the factor for various dictionaries .
In the case of orthonormal dictionaries, tight bounds were es-
tablished in [13], [28]. In [13] it was shown that for a general
dictionary, the factor cannot be substantially im-
proved; in particular, for such dictionaries improvement is at
best to .

For perceptron networks with certain sigmoidal functions, the
impossibility of improving the factor in the estimate of
Theorem 2 (i) over was proven in [17] via a prob-
abilistic argument and in [25] via estimates of covering num-
bers. The term cannot be expressed in a factorized
form, as the dependencies on and cannot be separated, but
for every integer and every positive integer one has

, so to investigate tractability the extra term
in the exponent can be neglected. In [70], the tightness result
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derived in [25] was extended to every dictionary with (i) cer-
tain properties of its covering numbers and (ii) a sufficient “ca-
pacity” of its symmetric convex hull .

In some cases (see Section III), the function in the
factorized estimate contains the -variation norm. Examples of
functions with variation with respect to Heaviside perceptrons
growing exponentially with the number of variables were
given in [28]. However, such exponential lower bounds on
variation with respect to half-spaces are only lower bounds to
an upper bound on rates of approximation. Finding whether
these exponentially large upper bounds are tight seems to be
a difficult task related to some open problems in the theory of
complexity of Boolean circuits [28].

Finally, we address the significance of our results. In several
cases, given sequences of target spaces, we found that approx-
imation is hyper-tractable. That is, even with , one can
well approximate once is sufficiently large. To be approx-
imable by a single member (a single hidden-unit) means
that the distance from to is small. The easiest way
for this to happen is if is near zero. But interesting functions
such as the Gaussian can’t be approximated with only one unit,
so one sees that, in high-dimensional situations, ambient func-
tion-space norms are likely to be astronomically big. Only func-
tions very near zero can be in the unit-ball. But what is not to
be expected is that a reasonable function such as the unit-width
Gaussian has growing at less than a linear rate [39].
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