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a b s t r a c t

The role of width of Gaussians in two types of computational models is investigated: Gaussian radial-
basis-functions (RBFs) where both widths and centers vary and Gaussian kernel networks which have
fixed widths but varying centers. The effect of width on functional equivalence, universal approxima-
tion property, and form of norms in reproducing kernel Hilbert spaces (RKHS) is explored. It is proven
that if two Gaussian RBF networks have the same input–output functions, then they must have the same
numbers of units with the same centers and widths. Further, it is shown that while sets of input–output
functions of Gaussian kernel networkswith twodifferentwidths are disjoint, each such set is large enough
to be a universal approximator. Embedding of RKHSs induced by ‘‘flatter’’ Gaussians into RKHSs induced
by ‘‘sharper’’ Gaussians is described and growth of the ratios of norms on these spaces with increasing
input dimension is estimated. Finally, large sets of argminima of error functionals in sets of input–output
functions of Gaussian RBFs are described.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Originally, artificial neural networks were built from biologi-
cally inspired computational units. These units, called perceptrons,
compute functions in the form of plane waves. As an alterna-
tive, computational units in the form of spherical or elliptic waves
were proposed mainly due to their good mathematical properties.
Broomhead and Lowe (1988) introduced radial-basis-functions
(RBFs) and Girosi and Poggio (1990) proposed more general ker-
nel units. In particular, support vector machines (SVMs) built from
units defined by symmetric positive semidefinite kernels became
very popular (Cortes & Vapnik, 1995). Heaviside perceptrons cut
input spaces into two halfspaces, with values of outputs equal to 0
on one half-space and 1 on the other, and so they are highly non-
local. RBFs are geometrically opposite; they assign values close to
0 outside of spherical areas around their centers. Thus RBFs are lo-
calized.

Among localized computational units, a prominent position is
occupied by units induced by the Gaussian function. Radial-basis-
function units with the Gaussian radial function are themost com-
mon type of RBFs and Gaussian kernels with fixed widths are
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typical symmetric positive definite kernels. Both these computa-
tional models, the one with Gaussian RBF units having variable
widths and the one with Gaussian units having fixed widths, have
their advantages. Arbitrarily small widths of Gaussian RBFs were
used in proofs of their universal approximation capability based
on classical results on convolutions with sequences of scaled ker-
nels (Park & Sandberg, 1991, 1993). Varying widths also play an
important role in learning algorithms (see, e.g., Benoudjit, Archam-
beau, Lendasse, Lee, & Verleysen, 2002; Kecman, 2001; Verleysen
& Hlaváčková, 1996; Wallace, Tsapatsoulis, & Kollias, 2005) and in
some estimates of rates of approximation by Gaussian RBFs (see,
e.g., Girosi, 1994; Girosi &Anzellotti, 1993; Kainen, Kůrková, & San-
guineti, 2009; Mhaskar, 2004). On the other hand, fixing the width
allows one to fix the geometrical structure of a Hilbert space and
apply the maximal margin classification algorithm (SVM) (Cortes
& Vapnik, 1995). It also enables characterization of theoretically
optimal solutions of learning tasks and modeling of generalization
(see, e.g., Cucker & Smale, 2002; Girosi, 1998; Girosi, Jones, & Pog-
gio, 1995; Kůrková, 2013; Poggio & Smale, 2003).

Some comparisons of capabilities of Gaussian networks with
fixed and varying widths were obtained by Schmitt (2002) for the
special case of input dimension equal to one. He proved that a
Gaussian kernel network with a fixed width computing the same
one-variable input–output function as a Gaussian RBF network
with varying widths must be at least a factor of 1.5 larger.

In this paper, we investigate the role of widths of Gaussian
functions in computational models which they generate. First, we
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show that if input–output functions of two Gaussian RBF networks
are equal, then the networks must have the same numbers of
units and the same output weights, centers, and widths (up to
a permutation of hidden units). This implies that possibilities of
compressions of parameter spaces of Gaussian RBF networks are
limited to equivalences induced by permutations. Our result holds
for any input dimension d and any open domain in Rd. Its proof
takes advantage of the analyticity of the Gaussian function and
properties of complex functions.

Further, we show that although sets of input–output functions
of Gaussian kernel networkswith two differentwidths are disjoint,
each such set is large enough to be a universal approximator. In
proving the density of Gaussian kernel networks,weuse properties
of Fourier transform of the Gaussian as an alternative to arguments
of Mhaskar (1995), which are based on the form of derivatives
of the Gaussian, and of Steinwart and Christmann (2008, p. 155),
who use the Taylor series. Thus our results show that while no in-
put–output function of a Gaussian RBF network whose units have
at least two different widths can be exactly computed by a Gaus-
sian kernel network with fixed width, each such function can be
approximated with any required accuracy by Gaussian kernel net-
works having a given fixed width.

We also investigate how growth in the ratios of stabilizers in-
duced by Gaussian kernels with two different widths depends on
the input dimension. Finally, we describe multiple minima of em-
pirical error functionals over sets of input–output functions com-
putable by Gaussian RBFs. Some preliminary results appeared in
the regional conference proceedings (Kůrková, 2013).

The paper is organized as follows. In Section 2, notations and
basic concepts on one-hidden-layer RBF and kernel networks are
introduced. In Section 3, it is shown that for two different widths,
Gaussian kernel networks are not functionally equivalent. Sec-
tion 4 shows that Gaussian kernel networks with fixed width are
universal approximators. In Section 5, it is shown that the ratio of
stabilizers with two different widths grows exponentially with in-
creasing input dimension. Section 6 concludes the paper.

2. Dictionaries and kernels

The most widespread computational model used in neurocom-
puting is a one-hidden-layer network with one linear output unit.
Such networks compute linear combinations of functions com-
putable by a given type of computational units. The coefficients of
linear combinations are called output weights and sets of functions
computable by various types of units are called dictionaries. Net-
works with n units from a dictionary G compute functions from
the set

spann G :=


n

i=1

wigi | wi ∈ R, gi ∈ G


.

The set of input–output functions of networks with any number of
hidden units is denoted

spanG :=

∞
n=1

spann G =


n

i=1

wigi | wi ∈ R, gi ∈ G, n ∈ N+


,

where N+ denotes the set of positive integers.
Typically, dictionaries are given as parameterized families of

functions. Let K : X × Y → R be a function of two variables
representing an input vector x ∈ X ⊆ Rd and a parameter vector
y ∈ Y ⊆ Rs. We denote by

GK (X, Y ) := {K(., y) : X → R | y ∈ Y } ,

the dictionary of computational units computingK .WhenY is clear
from the context, we write shortly GK (X) (for symmetric kernels,
X = Y ).
In mathematics, various functions of two variables are called
kernels (from the German term ‘‘kern’’, introduced by Hilbert in the
context of theory of integral operators (Pietsch, 1987, p. 291)). In
neurocomputing and learning theory, the term kernel is often re-
served for a symmetric positive semidefinite function. This is a ker-
nel K : X × Y → R such that X = Y , K(x, y) = K(y, x) for all x,
y ∈ X and for any positive integer m, any x1, . . . , xm ∈ X , and any
a1, . . . , am ∈ R,
m
i=1

m
j=1

aiajK(xi, xj) ≥ 0.

For symmetric positive semidefinite kernels K , the sets spanGK (X)
of input–output functions of networks with units induced by the
kernel K are contained in Hilbert spaces defined by these kernels.
Such spaces are called reproducing kernel Hilbert spaces (RKHSs)
and denoted HK (X). These spaces are formed by functions from
spanGK (X) togetherwith limits of their Cauchy sequenceswith re-
spect to the norm ∥·∥K , so spanGK (X) ⊂ HK (X). Usually, elements
of GK (X) are denoted

Kx(·) := K(x, .).

The norm ∥ · ∥K is induced by the inner product ⟨·, ·⟩K , which is
defined on GK (X) = {Kx | x ∈ X} as

⟨Kx, Ky⟩K := K(x, y).

In this paper, we focus on dictionaries of three types defined
in terms of the Gaussian function. The first one, GFd(X) is induced
by the nonsymmetric function Fd : X × Y → R (where X ⊆ Rd,
Y = R+ × Rd, and R+ denotes the set of positive real numbers)
defined for every x ∈ X and (a, c) = (a, c1, . . . , cd) ∈ R+ × Rd as

Fd(x, (a, c)) := e−∥a(x−c)∥2 .

So

GFd(X) :=

Fd(., (a, c)) : X → R | a > 0, c ∈ Rd .

We call networks from the set spanGFd(X) Gaussian RBF networks
to distinguish them from Gaussian kernel networks which are in-
duced by dictionaries GKa

d
(X) defined for each fixed a > 0 corre-

sponding to width 1
a as

GKa
d
(X) :=


K a
d (., c) : X → R | c ∈ Rd ,

where K a
d : X × Rd

→ R satisfies for every x ∈ X and c ∈ Rd

K a
d (x, c) := e−∥a(x−c)∥2 .

So GKa
d
(X) consists of functions on X computable by units induced

by the d-variable Gaussian with a fixed width 1
a . Thus we can ex-

press the dictionary GFd(X) as the union of the dictionaries GKa
d
(X),

i.e.,

GFd(X) :=


a∈R+

GKa
d
(X).

We also consider the dictionary GLd(X) induced by anisotropic
elliptic Gaussian units with widths varying in each coordinate,
where the kernel Ld : X × Rd

+
× Rd

→ R is defined for each x =

(x1, . . . , xd) ∈ X , a = (a1, . . . , ad) ∈ Rd
+
, and c = (c1, . . . , cd) ∈

Rd as

Ld(x, (a, c)) := e−
d

i=1(ai(xi−ci))2 .

So

GLd(X) :=

Ld(., (a, c)) : X → R | a ∈ Rd

+
, c ∈ Rd .
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3. Functionally equivalent Gaussian RBFs

In this section,we show that for any twodifferentwidths, a ≠ b,
on every open subset X of Rd, the sets of input–output functions
computable by Gaussian kernel networks with fixed widths a and
b are disjoint.

The relationship of sets of input–output functions of Gaussian
kernel networks with different fixed widths can be formulated in
terms of a functional equivalence. Two neural networks are called
functionally equivalent if they compute the same input–output
function. This concept has been investigated for perceptron net-
works (Albertini & Sontag, 1993; Kůrková & Kainen, 1994, 1996;
Sussman, 1992), RBF and fuzzy inference systems (Jang & Sun,
1993; Kůrková & Neruda, 1994).

A simple example of a dictionary forwhich all one-hidden-layer
networks with units from this dictionary are functionally equiv-
alent is any dictionary induced by a product kernel, i.e., a kernel
P : X ×X → R of the form P(x, y) = p(x)p(y), where p : X → R is
any function on X ⊆ Rd. Obviously, any network from spanGP(X)
computes a multiple of the function p and thus each two of them
are functionally equivalent.

Another example of a dictionary inducing functionally equiva-
lent networks with different numbers of hidden units is the dictio-
nary Fβ(R) obtained by scalings and translations of the convolution
kernelKβ(x, y) = β(x−y), whereβ : R → R is the ‘‘trianglewave’’
defined byβ(x) = x+1 on [−1, 0],β(x) = 1−x on [0, 1],β(x) = 0
elsewhere. So Fβ(R) = {β(a(. − c)) : R → R | a ∈ R+, c ∈ R}. It
is easy to check that β(x) = β(2x) +

1
2β(2x +

1
2 ) +

1
2β(2x −

1
2 ).

Thus there exist two different networks computing the same in-
put–output function, namely the networkwith one unit computing
β(x) and the networkwith three units computingβ(2x)+ 1

2β(2x+
1
2 ) +

1
2β(2x −

1
2 ).

Functional equivalences of neural networks can be studied in
terms of linear dependences of dictionaries. A set of functions
F is linearly independent if for any finite subset of its elements
{f1, . . . , fm} and real numbers w1, . . . , wm,

m
i=1 wi fi = 0 implies

wi = 0 for all i = 1, . . . ,m (e.g., Friedman, 1982, p. 124). If a dic-
tionary is linearly independent, then twonetworks are functionally
equivalent onlywhen they have the same number of unitswith the
same parameters which can only differ by a permutation.

The following theorem shows that on any open subset X of Rd

the dictionary GLd(X) of elliptic Gaussian RBFs is linearly indepen-
dent. Thus also its subsetGFd(X) formed by spherical Gaussian RBFs
is linearly independent.

Theorem 3.1. For every positive integer d and every open subset X
of Rd, the dictionary GLd(X) is linearly independent.

We prove Theorem 3.1 in several steps. Using fast convergence
to zero of the values of the Gaussian, we first prove linear in-
dependence of the dictionary GF1(R) formed by one-dimensional
Gaussian RBFs on the whole real line R. To show that linear inde-
pendence also holds for the dictionaryGF1(X)when the domainX is
an arbitrary open subset X of R, we use the Identity Theorem from
theory of complex functions. Then we verify a simple lemma on
linear independence of products of functions. Finally applying this
lemma together with an expression of the d-dimensional Gaussian
as a product of d one-dimensional Gaussians, we prove the theo-
rem for an arbitrary dimension d.

Theorem 3.2. The dictionary

GF1(R) =


e−a2(.−c)2

: R → R | a ∈ R+, c ∈ R


is linearly independent.
Proof. We show that no nontrivial linear combination of ele-
ments of GF1(R) is the zero-function. Let m be a positive integer,
w1, . . . , wm be nonzero real numbers, and {(aj, cj) ∈ R+ × R | j =

1, . . . ,m} be a set of distinct pairs of widths and centers. Arguing
by contradiction, assume that for all x ∈ R

m
j=1

wj e
−a2j (x−cj)2 = 0. (1)

Without loss of generality one can further suppose that

(a) 1 = a1 = · · · = ak < ak+1 ≤ · · · ≤ am, and
(b) c1 > cj for all j = 2, . . . , k.

Indeed, first reorder all the terms in Eq. (1) so that the initial
k Gaussian functions have the same minimal width aj = a1 for
j = 2, . . . , k. Second, change the scale so that a1 = 1. As the pairs
(1, c1), . . . , (1, ck) are distinct, so are c1, . . . , ck. Third, reorder the
first k terms so that c1 > cj for j = 2, . . . , k.

Multiplying Eq. (1) by e(x−c1)2 one finds that for all x ∈ R,

w1 +

k
j=2

w̄je−2x(c1−cj) +

m
j=k+1

w̄je
x2(1−a2j )+2x(a2j cj−c1) = 0,

where w̄j = wje
(c21−c2j ) for j = 2, . . . , k, and w̄j = wje

(c21−a2j c
2
j ) for

j = k + 1, . . . ,m. By (a) and (b), both the exponential sums go
to zero asymptotically as x → ∞. Hence, w1 = 0 violating the
assumption that w1 ≠ 0. �

The proof of the next extension of the statement of Theorem 3.2
to any open subset X of R uses some properties of complex func-
tions. A function f on R or C is real analytic, complex analytic,
resp., if it is locally representable by a power series. Recall that a
subsetU ofC is connected if and only if each pair of its points can be
joined by a piecewise-linear path (i.e., a finite number of straight-
line segments joined end to end) which lies entirely in U . An open
set that is connected is called a domain. An arc A in the complex
plane C is a set A = {(x(t), y(t)) | x : [0, 1] → R continuous, y :

[0, 1] → R continuous}. We use a basic result from complex anal-
ysis (Churchill, Brown, & Verhey, 1974, p. 284) stating that a com-
plex analytic function is uniquely determined by its values in a do-
main or along an arc.

Theorem 3.3. Let D ⊆ C be a domain and f : D → C be analytic
such that f (z) = 0 for all z in some domain B ⊆ D or some arc A ⊆ D,
then f (z) = 0 for all z ∈ D.

Theorem 3.4. For every nonempty open subset X ⊂ R, the
dictionary

GF1(X) =


e−a2∥.−c∥2

: X → R | a ∈ R+, c ∈ R


is linearly independent.

Proof. Assume that for all x ∈ X ,
m

j=1 wje
−a2j ∥x−cj∥2 = 0, wherem

is a positive integer, w1, . . . , wm are real numbers, and {(aj, cj) ∈

R+ × Rd
| j = 1, . . . ,m} a set of distinct pairs. Consider the func-

tion f : C → R defined as f (z) =
m

j=1 wje
−a2j ∥z−cj∥2 . As f is a lin-

ear combination of Gaussians, it is complex analytic. Assume that
f (z) = 0 for all z ∈ X . As X is a nonempty open subset of R, it must
contain an open interval, which contains an arc A in C. By Theo-
rem 3.3, f must be equal to zero on the whole of C and hence also
on its subset R. Thus by Theorem 3.2, wi = 0 for all i = 1, . . . ,m
and so the dictionary GF1(X) is linearly independent. �

To extend the statement of Theorem 3.4 to any dimension d and
elliptic Gaussian RBF, we use the following lemma.
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Lemma 3.1. Let d be a positive integer, X, Y ⊆ Rd, {fi : X → R | i =

1, . . . ,m} and {gj : Y → R | j = 1, . . . , n} be two families of linearly
independent functions. Then {hi,j : X × Y → R | i = 1, . . . ,m; j =

1, . . . , n} defined for all (x, y) ∈ X × Y as hi,j(x, y) = fi(x)gj(y) is
linearly independent on X × Y .

Proof. Assume that
m

i=1
n

j=1 wijhij(x, y) =
m

i=1
n

j=1 wijfi(x)
gj(y) = 0 for all (x, y) ∈ X × Y . Thus

m
i=1

n
j=1 wijgj(y)


fi(x) =

0 for all x ∈ X and all y ∈ Y . As {fi | i = 1, . . . ,m} is
linearly independent on X , for all y ∈ Y , and all i = 1, . . . ,m,n

j=1 wijgj(y) = 0. So by linear independence of the set {gj | j =

1, . . . , n} on Y , we get wij = 0 for all i and all j. �

Proof of Theorem 3.1. As X is an open subset of Rd, it contains an
open cube

d
i=1 Xi. Linear independence on

d
i=1 Xi implies linear

independence on X , so it is sufficient to prove it on
d

i=1 Xi.
We proceed by induction. For d = 1, the dictionary GL1(X1) is

equal to the dictionaryGF1(X1) and thus the statement follows from
Theorem 3.4. Assume that the statement holds for d − 1. An ellip-
tic d-dimensional Gaussian unit computes a tensor product of one-
dimensional scaled Gaussians. For all x = (x1, . . . , xd) ∈

d
i=1 Xi,

a = (a1, . . . , ad) ∈ Rd
+
, and c = (c1, . . . , cd) ∈ Rd, we have Ld(x,

(a, c)) = e−
d

i=1 a2i (xi−ci)2 =
d

i=1 e
−a2i (xi−ci)2 =

d
i=1 K

ai
1 (xi, ci).

Thus Ld(x, (a, c)) = Ld−1(x̄, (ā, c̄)) L1(xd, (ad, cd)), where x̄ = (x1,
. . . , xd−1), ā = (a1, . . . , ad−1), and c̄ = (c1, . . . , cd−1). By hypoth-
esis, GLd−1(

d−1
i=1 Xi) is linearly independent and by Theorem 3.4,

GF1(Xd) is also linearly independent. So the statement follows from
Lemma 3.1. �

Theorem 3.1 shows that two Gaussian RBF networks on any
open subset of Rd can compute the same input–output function
only when they have the same numbers of hidden units, which
have up to a permutation the same centers, widths, and output
weights. It also shows that two Gaussian kernels with different
widths determine disjoint sets of input–output functions.

Theorem 3.1 implies that the only reduction of parameter
spaces of Gaussian RBF networks based on their functional equiv-
alences is that induced by permutations of hidden units. Search in
such reduced parameter spaces might be implementable for ge-
netic algorithms which operate with strings of vectors of parame-
ters.

4. Universal approximation of Gaussian kernel networks

In this section, we show that although Gaussian kernel units
with fixedwidths have fewer free parameters than Gaussian radial
units with varying widths, fixed-width Gaussian kernel networks
still generate classes of input–output functions large enough to be
universal approximators. Recall that a class of one-hidden-layer
networkswith units fromadictionaryG is said to have the universal
approximation property in a normed linear space (X, ∥.∥X) if it is
dense in this space, i.e., clX spanG = X, where clX denotes the
closure with respect to the topology induced by the norm ∥ · ∥X

(see, e.g., Kůrková, 2002; Pinkus, 1999). A subset A of a normed
linear space (X, ∥ · ∥X) is dense if for all f ∈ X and all ε > 0,
there exists g ∈ A such that ∥f − g∥X < ε.

Function spaces where the universal approximation has been
of interest are spaces (C(X), ∥.∥sup) of continuous functions on
subsets X of Rd (typically compact) with the supremum norm and
the space (L2(Rd), ∥.∥L2) of square integrable functions on Rd

with the norm ∥f ∥L2 =


Rd f (y)2dy
1/2.

Note that the capability to approximate arbitrarily well all real-
valued functions is much stronger than the capability of classifica-
tion, which merely needs approximation up to a certain accuracy
of functions with finite domains.
For RBF networks with radial functions satisfying rather mild
conditions (which hold for theGaussian), the universal approxima-
tion propertywas proven by Park and Sandberg (1991). Their proof
exploits varyingwidths—it is based on a classical result on approxi-
mation of functions by sequences of their convolutions with scaled
kernels. This proofmight suggest that variability ofwidths is essen-
tial for the universal approximation. However using special prop-
erties of Hermite functions (which are derivatives of the Gaussian
function), Mhaskar (1995) proved the universal approximation ca-
pability of Gaussian kernel networks in spaces of continuous func-
tions on compact subsets of Rd.

A related notion to the concept of universal approximation
property of a class of networks is the ‘‘universal kernel’’ defined
in Steinwart and Christmann (2008, p. 152) for the case of contin-
uous kernels on compact metric spaces. Such a kernel K is called
universal if the RKHS HK (X) induced by K is dense in the space
(C(X), ∥ · ∥sup) of continuous functions with the supremum norm.
As spanGK (X) is dense in (HK (X), ∥ · ∥K ) and ∥ · ∥sup ≤ ∥ ·

∥K supx∈X K(x, x), it follows that, for bounded kernels (in particu-
lar for continuous kernels on compact sets), the density of HK (X)
in (C(X), ∥ · ∥sup) is equivalent to the density of spanGK (X).

Obviously, not all positive semidefinite kernels are universal.
For example, the product kernel K(x, y) = xy is not universal. The
above mentioned result of Mhaskar (1995) shows that a Gaussian
kernel with any fixed width is universal. The universality of an ar-
bitrary fixed-width Gaussian kernel was also established in Stein-
wart and Christmann (2008, p. 155) using the Stone–Weierstrass
theorem and a Taylor series.

Here, we prove the universal approximation property of
Gaussian kernel networks with any fixed width in L2(Rd). Our ar-
gument is based on properties of the Fourier transformof theGaus-
sian and on the Hahn–Banach theorem.

Recall that the d-dimensional Fourier transform is an isometry on
L2(Rd) defined on L2(Rd) ∩ L1(Rd) as

f̂ (s) =
1

(2π)d/2


Rd

eix·sf (x) dx

and extended to L2(Rd) (Rudin, 1991, p. 183).

Theorem 4.1. Let d ∈ N+, a > 0. Then both of the following hold:
(i) for X ⊆ Rd Lebesgue measurable, spanGKa

d
(X) is dense in

(L2(X), ∥ · ∥L2);
(ii) for X ⊂ Rd compact, spanGKa

d
(X) is dense in (C(X), ∥ · ∥sup).

Proof. First assume that X = Rd. Suppose clL2spanGKa
d
(Rd) ≠

L2(Rd). Then by the Hahn–Banach Theorem (Rudin, 1991, p. 60)
there is a linear functional l on L2(Rd) such that for all f ∈

clL2spanGKa
d
(Rd), l(f ) = 0 and for some f0 ∈ L2(Rd) \

clL2spanGKa
d
(Rd), l(f0) = 1. By the Riesz Representation Theo-

rem (Friedman, 1982), there exists h ∈ L2(Rd), such that for all
g ∈ L2(Rd),

l(g) =


Rd

g(y)h(y)dy.

Thus for all f ∈ clL2spanGKa
d
(Rd),


Rd f (y)h(y)dy = 0. Defining

ka(x) := e−a2∥x∥2 , we get for all x ∈ Rd,


Rd h(y)ka(x − y)dy =

(h∗ka)(x) = 0. Thus by Plancherel’s Theorem (Rudin, 1991, p. 188),
∥h ∗ ka∥L2 = 0. As h ∗ ka =

1
(2π)d/2

ĥ k̂a (Rudin, 1991, p. 183),

we have ∥ĥ k̂a∥L2 = 0. As e−a2∥·∥2 = (
√
2a)−de−(1/a2)∥.∥2 (Rudin,

1991, p. 186), we obtain ∥ĥ∥L2 = 0. So again by Plancherel’s The-
orem, ∥h∥L2 = 0. Hence we get

1 = l(f0) =


Rd

f0(y) h(y)dy ≤ ∥f0∥L2 ∥h∥L2 = 0,

which is a contradiction.
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Now let X ⊂ Rd be an arbitrary Lebesgue measurable set. We
obtain (i) by extending functions from L2(X) to L2(Rd), setting
their values equal to zero outside of X , and restricting their approx-
imations from spanGK (Rd) toX . ForX compact,C(X) ⊂ L2(X) and
the statement (ii) follows directly from (i). �

5. Minimization of error functionals over Gaussian networks

In this section, we investigateminimization of error functionals
over Gaussian radial and kernel networks and dependence of
stabilizers defined by norms on RKHSs on widths of Gaussian
kernels. The spaces HKa

d
(X), induced by Gaussian kernels with

fixed positive width a, are formed by functions from spanGKa
d
(X)

together with limits of their Cauchy sequences in the norm ∥ · ∥Ka
d
.

By Theorems 4.1 and 3.1, for all a > 0, the sets of input–output
functions spanGKa

d
(Rd) are dense subspaces of L2(Rd), but for

different widths a ≠ b, they are disjoint.
The next theorem shows that RKHSs induced by Gaussian ker-

nelsK a
d are nested. It gives the sameupper bound

∥f ∥Kad
∥f ∥

Kbd

≤
 a
b

d/2 on
the ratio between the norms on RKHSs induced by the Gaussians
with widths 1

a and 1
b , which was derived in Steinwart and Christ-

mann (2008, p. 143) by an argument using a semigroup of con-
volution integral operators. We give an alternative proof based on
characterization of norms on RKHSs induced by convolution ker-
nels in terms of Fourier transforms first observed in Girosi (1998)
and rigorously proven in Loustau (2008).

Theorem 5.1. Let d be a positive integer and a, b > 0 such that
b ≤ a. Then

(i) HKb
d
(Rd) ⊆ HKa

d
(Rd);

(ii) the inclusion Jb,a : (HKb
d
(Rd), ∥ · ∥Kb

d
) → (HKa

d
(Rd), ∥ · ∥Ka

d
) is

continuous;
(iii) for all f ∈ HKb

d
(Rd), ∥f ∥Ka

d
≤

 a
b

d/2
∥f ∥Kb

d
.

Proof. By Loustau (2008), for a convolution kernel K(x, y) = k(x−
y) such that k̂ > 0,

∥f ∥2
K =

1
(2π)d/2


Rd

f̂ (s)2

k̂(s)
ds.

For all a > 0, e−a2∥·∥2 = (
√
2a)−de−(1/a2)∥·∥2 and thus

∥f ∥2
Ka
d

=
1

(2π)d/2


Rd

f̂ (s)2

(
√
2a)−de−(1/a2)∥·∥2

−1
ds

=
(
√
2a)d

(2π)d/2


Rd

f̂ (s)2

e−(1/a2)∥·∥2

−1
ds.

As b ≤ a implies

e−(1/a2)∥·∥2

−1
≤


e−(1/b2)∥·∥2

−1
, we have

∥f ∥2
Kad

∥f ∥2
Kbd

≤
 a
b

d and so
∥f ∥Kad
∥f ∥

Kbd

≤
 a
b

d/2. �

Theorem 5.1 shows that Hilbert spaces induced by ‘‘flatter’’
Gaussians are embedded in spaces inducedby ‘‘sharper’’ Gaussians.
For 0 < b < a, the whole space HKb

d
(Rd) and hence also its sub-

set spanGKb
d
(Rd) is contained in the space HKa

d
(Rd). However by

Theorem 3.2, when a ≠ b, the sets of input–output functions of
Gaussian kernel networks with widths a and b are disjoint, i.e.,

spanGKa
d
(Rd)


spanGKa

d
(Rd) = ∅.

So the set spanGKb
d
(Rd) is contained in the subset of the space

HKa
d
(Rd) formed by limits of Cauchy sequences from spanGKa

d
(Rd).
An empirical error functional Ez is determined by some training
sample, z = {(ui, vi) ∈ Rd

× R | i = 1, . . . ,m} of input–output
pairs of data, by setting

Ez(f ) :=
1
m

m
i=1

(f (ui) − vi)
2.

Girosi and Poggio (1990); Poggio and Girosi (1990) initiated math-
ematical modeling of generalization in terms of Tikhonov regu-
larization which adds to the empirical error a functional called
the ‘‘stabilizer’’ penalizing undesired properties of solutions. Girosi
et al. (1995) considered as stabilizers suitably weighted Fourier
transforms; later Girosi (1998) realized that such stabilizers are
squares of norms on spaces induced by kernels. We denote

Ez,α,K := Ez + α∥ · ∥
2
K ,

the regularized empirical error with the stabilizer ∥ · ∥
2
K induced by

a symmetric positive semidefinite kernel K and the parameter α
controlling the trade-off.

Theorem 5.1 shows that ‘‘sharpening’’ of the Gaussian kernel
increases the penalty represented by the stabilizer ∥.∥2

Ka
d
at most

by ad.
An argminimum of a functional is a function for which the

functional attains its minimum. The next theorem characterizes
argminima of Ez and Ez,α,K (see, e.g., Cucker & Smale, 2002;
Kůrková, 2013; Poggio & Smale, 2003). Let K[u] denote the ma-
trix K[u]i,j := K(ui, uj), Km[u] =

1
m K[u], and K[u]+ denote the

Moore–Penrose pseudoinverse of the matrix K[u].

Theorem 5.2. Let X ⊆ Rd, K : X × X → R a symmetric positive
semidefinite kernel, m a positive integer, and z = {(ui, vi) ∈ Rd

×

R | i = 1, . . . ,m}. Then

(i) there exists an argminimum f + of Ez over HK (X)which satisfies

f +
=

m
i=1

ciKui , where c = (c1, . . . , cm) = K[u]+v,

and for all f o ∈ argmin(HK (X), Ez), ∥f +
∥K ≤ ∥f o∥K ;

(ii) for all α > 0, there exists a unique argminimum f α of Ez,α,K over
HK (X) which satisfies for v = (v1, . . . , vm)

f α
=

m
i=1

cα
i Kui , where cα

= (cα
1 , . . . , cα

m)

= (Km[u] + α Im)−1 v;

(iii) limα→0 ∥f α
− f +

∥K = 0.

Note that both argminima, f + and f α , are computable by
networks with m kernel units from GK (X). The argminima differ
merely in coefficients of linear combinations (output weights) of
kernel unitswith parameters corresponding to the datau1, . . . , um.
Thus in the case of theoretically optimal solutions, generalization
is achieved merely by modification of output weights which is
influenced by the choice of a stabilizer.

The following theorem shows that in the space of continuous
functions C(X) on a compact X ⊂ Rd, for any training sample z
and any width of the Gaussian, the empirical error functional Ez
has an argminimum over C(X) formed by a linear combination of
Gaussians of this width.

Theorem 5.3. Let X be a compact subset of Rd, m be a positive
integer, and z = {(ui, vi) ∈ Rd

× R | i = 1, . . . ,m}. Then the set of
argminima of Ez in C(X) contains the convex hull conv {f +

a |a > 0},
where f +

a =
m

i=1 c
a
i K

a
d (., ui) with ca = (ca1, . . . , c

a
m) = Ka

d [u]
+v

and v = (v1, . . . , vm).
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Proof. By Theorem 4.1(ii) for any a > 0, spanGKa
d
(X) is dense in

(C(X), ∥ · ∥sup). It is easy to show that Ez is continuous on C(X),
an argminimum of a continuous functional over a dense subset is
an argminimum over the whole space, and a convex combination
of argminima is an argminimum. The statement then follows from
Theorem 5.2. �

Thus for any training sample z, the empirical error Ez over
the set of span Fd(X) of input–output functions of Gaussian RBF
networks has a large convex set of argminima containing linear
combinations of Gaussians of all widths. This result suggests why
problems with multiple minima are encountered during learning.
Some approaches to this problem were suggested in Bianchini,
Frasconi, and Gori (1995); Gori and Tesi (1992).

6. Conclusion

We have compared capabilities of two popular computational
models: Gaussian radial-basis function networks with varying
widths and Gaussian kernel networks with fixed widths. Using
methods from functional analysis we investigated the effect of
width on functional equivalence, universal approximation prop-
erty and norms in Hilbert spaces induced by Gaussian kernels. We
proved that if two Gaussian RBF networks compute the same in-
put–output functions, then they must have the same numbers of
units with the same parameters (output weights, widths and cen-
ters); hence, the possibility of compressing parameter spaces is
limited to the equivalences induced by permutations.We also gave
a proof of the universal approximation property of Gaussian kernel
networks based on properties of the Fourier transform. Our results
show that input–output functions of Gaussian RBF networks with
units having at least two different widths cannot be exactly rep-
resented as input–output functions of Gaussian kernel networks
with one fixed width. We proved that networks with any fixed
width can approximate arbitrarily well all L2-functions on Rd and
so in particular any linear combination of Gaussians with varying
widths. Rates of such approximation might be studied using inte-
gral representations in terms of convolutions with Gaussians stud-
ied in Girosi and Anzellotti (1993), Kainen et al. (2009) and Kainen,
Kůrková, and Vogt (2007).We also investigated the role of width in
Hilbert spaces induced by Gaussian kernels and proved that spaces
induced by flatter Gaussians are embedded in spaces induced by
narrower Gaussians.
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