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a b s t r a c t

Neural networks provide a more flexible approximation of functions than
∧
traditional linear regression.

In the latter, one can only adjust the coefficients in linear combinations of fixed sets of functions,
such as orthogonal polynomials or Hermite functions, while for neural networks, one may also adjust
the parameters of the functions which are being combined. However, some useful properties of linear
approximators (such as uniqueness, homogeneity, and continuity of best approximation operators) are
not satisfied by neural networks.Moreover, optimization of parameters in neural networks becomesmore
difficult than in linear regression. Experimental results suggest that these drawbacks of neural networks
are offset by substantially lower model complexity, allowing accuracy of approximation even in high-
dimensional cases. We give some theoretical results comparing requirements on model complexity for
two types of approximators, the traditional linear ones and so called variable-basis types, which include
neural networks, radial, and kernel models. We compare upper bounds on worst-case errors in variable-
basis approximation with lower bounds on such errors for any linear approximator. Using methods from
nonlinear approximation and integral representations tailored to computational units, we describe some
cases where neural networks outperform any linear approximator.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction1

In traditional linear regression, coefficients of linear combina-2

tions of given functions are searched for so that a desired func-3

tional relationship between inputs and outputs is sufficiently well4

approximated. Typically, a linear approximating scheme is formed5

by a nested family of sets, where the n-th set is generated by the6

first n elements of a given set of functions with a fixed linear order-7

ing (e.g., a set of some orthogonal polynomials or Hermite func-8

tions of increasing degree).9

In contrast, the simplest architecture of a connectionisticmodel10

is a one-hidden-layer network with a single linear output, in which11

in addition to the coefficients of linear combinations (called12

output weights), also inner parameters of computational units are13

optimized so that the entities being combined can be varied. The14

parameterized family of functions computable by network units is15

sometimes called a dictionary (Gribonval & Vandergheynst, 2006),16

it may contain finite, countably or uncountably infinite number of17

functions and has no fixed ordering. During learning, potentially all18
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n-tuples of elements of the dictionary can be chosen together with 19

the coefficients of their linear combinations. This computational 20

model has been called a variable-basis approximation scheme 21

(Kainen, Kůrková, & Sanguineti, 2009; Kůrková & Sanguineti, 2001, 22

2002, 2008). It includes perceptron neural networks, radial and 23

kernel models, splines with free knots, trigonometric polynomials, 24

etc. 25

In both models, linear and variable-basis, the number n of units 26

can be interpreted as model complexity. Its growth with increasing 27

accuracy of approximation can be estimated from inspection of 28

bounds on rates of approximation. 29

Variable-basismodelswith units fromvarious dictionaries have 30

become a widespread tool for many classification, optimization, 31

regression, and pattern recognition tasks (see e.g., Giulini & 32

Sanguineti, 2000, 2009; Kecman, 2001; Kůrková & Sanguineti, 33

2005; Smith, 1999; Zoppoli, Sanguineti, & Parisini, 2002, and 34

the references therein). In many high-dimensional tasks they 35

obtained satisfactory good approximation with relatively small 36

model complexity. Thewidespread utility of variable-basis models 37

deserves
∧
theoretical treatment. 38

Clearly, approximation by a linear combination of n functions 39

from a given dictionary, where both coefficients of the linear 40

combination and the n-tuple of functions from the dictionary 41

are optimally chosen, guarantees better accuracy than linear 42

approximation using a fixed set of n elements from the same 43
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dictionary. However, this does not exclude the possibility that1

a better rate might be achieved using the first n elements in2

another ordering of the same dictionary or the first n elements3

from another dictionary and ordering.4

Thus one may wonder whether for some sets of functions of5

interest, approximation by variable-basis schemes with widely-6

used computational units (such as perceptrons, radial, and kernel7

units) provides faster rates than those achievable by any linear8

approximator (in particular, those induced by various ordered sets9

of polynomials). This question is especially interesting because10

using variable-basis approximation, one loses useful properties11

of linear approximators (such as uniqueness, homogeneity, and12

continuity of best approximation operators (Kainen, Kůrková,13

& Vogt, 2000a, 2000b, 2001)) and optimization of parameters14

becomes more difficult. So one hopes that there is a compensatory15

decrease in the requirements on model complexity.16

Inspection of the proofs of estimates of rates of variable-basis17

approximation (Barron, 1993; Jones, 1992; Kůrková & Sanguineti,18

2008) does not answer this question. For each function to be ap-19

proximated, these proofs construct a special linear approximator.20

Indeed, in each step of such a construction, first a newunit is added21

to the previously chosen ones and then coefficients of a linear com-22

bination of all these units are recalculated. Such a proof technique23

can be interpreted as a construction of a linearly ordered sequence24

of units from the dictionary followed by an estimate of a rate of ap-25

proximation by the first n elements from the dictionary with the26

constructed linear ordering. It should be emphasized that the lin-27

ear ordering depends on the concrete function to be approximated28

and does not work for other functions. Moreover, algorithms based29

on such constructionsmay be inefficient; they depend on a specific30

representation of the approximated function as a convex combina-31

tion of elements from the dictionary (Kůrková & Sanguineti, 2008).32

Barron (1993) initiated a new approach to comparisons of33

model complexity of linear and variable-basis computational34

models. He proposed
∧
comparing the worst-case errors achievable35

by the best linear approximators (mathematically formalized by36

the concept of Kolmogorov’s n-width (Kolmogorov, 1936)) with37

upper bounds on such errors in approximation by perceptron38

networks. Barron’s estimates were extended by Kůrková and39

Sanguineti (2002) to sets of functions defined in terms of40

certain norms induced by computational units from more general41

dictionaries.42

In this paper, we extend comparisons of worst-case errors43

to other dictionaries. For this goal, we develop new methods to44

estimate lower bounds onKolmogorov’swidth based on properties45

of integral transforms induced by computational units. To obtain46

upper bounds on the worst-case errors in the variable-basis47

models with n computational units, we combine the upper bounds48

of the form cn−1/2 by Barron (1993), Jones (1992) and Pisier49

(1981) with estimates that we recently obtained using integral50

transforms induced by computational units (Kainen & Kůrková,51

2009; Kůrková, 2009, submitted for publication).52

Two methods are used to derive lower bounds on theoretically53

optimal worst-case errors in approximation from linear subspaces.54

The first method provides lower bounds in terms of orthogonal55

subsets of large cardinality (so it utilizes geometrical properties)56

while the second method gives lower bounds in terms of s-57

numbers of integral operators induced by computational units.58

We describe sets of functions for which upper bounds on worst-59

case errors in variable-basis approximation are smaller than lower60

bounds on worst-case errors for any linear approximator. Such61

sets depend on the type of computational units and the volumes62

of the d-dimensional domains where the functions are defined.63

Some preliminary results appeared in a conference’s proceedings64

(Gnecco, Kůrková, & Sanguineti, 2010).65

Note that the requirement that worst-case errors in variable- 66

basis approximation are smaller than lower bounds on worst- 67

case errors by any linear approximator is rather strong. Even when 68

this does not hold, approximation from some dictionary may be 69

preferable to a theoretically better linear approximator, because 70

finding such a linear approximator may be infeasible. 71

The paper is organized as follows. In Section 2, basic concepts 72

of linear and variable-basis approximation and worst-case errors 73

are introduced. In Section 3, upper bounds on variable-basis 74

approximation are given in terms of certain norms induced by 75

computational units. Section 4 is devoted to estimates of lower 76

bounds on worst-case errors in linear approximation (n-widths). 77

Section 5 compares lower bounds on n-widths of balls in norms 78

induced by computational units with upper bounds on worst- 79

case errors in variable-basis approximation. In Section 6, several 80

examples illustrate our results. Section 7 is a brief discussion. 81

2. Linear and variable-basis approximation 82

A wide class of computational models (e.g., one-hidden-layer 83

perceptron and radial and kernel networks) can be formally 84

described as devices computing input–output functions from sets 85

of the form 86

spannG :=


n−

i=1

wigi | wi ∈ R, gi ∈ G


, 87

where the set of functions G is called a dictionary (Gribonval 88

& Vandergheynst, 2006). The approximation by the family 89

{spannG} is referred to as variable-basis approximation (Kůrková & 90

Sanguineti, 2001, 2002, 2008) or approximation from a dictionary 91

(Gribonval & Vandergheynst, 2006). Typically, dictionaries are 92

parameterized sets of functions of the form. 93

Gφ = Gφ(Y ) := {φ(·, y) | y ∈ Y }, 94

whereφ : Ω×Y → R is a function of twovector variables,Ω ⊆ Rd
95

represents the set of inputs, and Y ⊆ Rq the set of parameters. 96

For suitable choices of φ, spannGφ models the sets of in- 97

put–output functions of one-hidden-layer neural networks, radial- 98

basis-function networks, kernel models, splines with free nodes, 99

trigonometric polynomials with variable frequencies and phases, 100

etc., where the number n of computational units can be interpreted 101

as the model complexity. For example, if q = d + 1 and 102

φ(·, (v, b)) := ψ(⟨v, ·⟩ + b), 103

then the dictionary Gφ is formed by functions computable by 104

perceptrons with an activation unit ψ : R → R. If q = d + 1, ψ is 105

positive and even, and 106

φ(·, (v, b)) := ψ(b‖ · −v‖), 107

then Gφ is formed by functions computable by a radial unit ψ : 108

R → R+. 109

In contrast to variable-basis approximation, traditional linear 110

models use as approximating families a nested set of the form 111

span{g1, . . . , gn} =


n−

i=1

wigi | wi ∈ R


112

formed by linear combinations of the first n elements from some 113

set G = {gi | i ∈ N+} with a fixed linear ordering (typically, some 114

ordered set of polynomials). 115

By (X, ‖ · ‖X) we denote a normed linear space and we write 116

merely X when there is no ambiguity. In this paper, we shall deal 117

with the Lebesgue spacesL2
µΩ
(Ω) andL1

µΩ
(Ω) endowedwith the 118

respective usual norms andΩ ⊆ Rd. 119
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The error in approximation of a function f ∈ X by functions1

from a set A is measured by the distance2

‖f − A‖X = inf
g∈A

‖f − g‖X.3

Approximation capabilities of whole sets of functions can be4

studied in terms of worst-case errors, formalized by the concept of5

deviation. For two subsets A andM of X, the deviation ofM from A6

is defined as7

δ(M, A) = δ(M, A; X) = δ(M, A; (X, ‖ · ‖X))8

:= sup
f∈M

inf
g∈A

‖f − g‖X. (1)9

We use the shorter notations when the ambient space and/or its10

norm are clear from the context. When the supremum in (1) is11

achieved, the deviation is theworst-case error in approximation of12

functions fromM by functions from A.13

Sometimes, the set M of functions to be approximated can be14

described in terms of a constraint that defines a norm ‖ · ‖ on X or15

on its subspace. For instance, the setM may be the ball
∧

16

Br(‖ · ‖) := {f ∈ X | ‖f ‖ ≤ r}17

of radius r in the norm ‖ · ‖, centered in the origin.18

To describe a theoretical lower bound on worst-case errors in19

approximation by optimal linear subspaces, Kolmogorov (1936)20

introduced the concept of n-width (later called Kolmogorov n-21

width). Let Sn denote the family of all n-dimensional linear subspaces22

of X. The Kolmogorov n-width of a subset M of a normed linear23

space (X, ‖ · ‖X) is defined as the infimum of the deviations of M24

from all n-dimensional linear subspaces of X, i.e.,25

dn(M) = dn(M; X) = dn(M; (X, ‖ · ‖X))26

:= inf
Xn∈Sn

δ(M,Xn; (X, ‖ · ‖X))27

= inf
Xn∈Sn

sup
f∈M

inf
g∈Xn

‖f − g‖X.28

We use the shorter notations when there is no ambiguity. If29

for some subspace the infimum is achieved, then the subspace30

is called optimal. If the n-width of a set is small, then such a31

set can be viewed as ‘‘almost’’ n-dimensional, in the sense that32

it is contained in a small neighborhood of some n-dimensional33

subspace. It follows from the definition that the n-width does not34

increasewhen a set is extended to its closure or its convex hull, i.e.,35

dn(M) = dn(clXM) and dn(M) = dn(convM), (2)36

where conv denotes the convex hull and clX the closure in the37

topology induced by the norm ‖ · ‖X.38

For a dictionary G ⊂ X, let SG
n be the set of all at most n-39

dimensional subspaces of X generated by n-tuples of elements of G.40

Clearly, for every subsetM of X41

δ(M, spannG) ≤ inf
Xn∈SG

n

δ(M,Xn). (3)42

In other words, the worst-case error in linear approximation by43

an optimal n-dimensional subspace generated by elements of G44

cannot be smaller than the worst-case error in variable-basis45

approximation by spannG. However, the inequality (3) does not46

exclude the possibility that among other linear approximators47

than those generated by elements of G, there exists one that48

approximates the setM better than spannG, i.e., such that49

dn(M) < δ(M, spannG).50

Description of cases when either the opposite inequality51

δ(M, spannG) < dn(M) (4)52

holds for n greater than some n0 or when for every f ∈ M there53

exists some n0 such that for every n ≥ n0 one has54

‖f − spannG‖X < dn(M) (5)55

is of a great interest. For such sets M , worst-case errors in 56

approximation by spannG are smaller than worst-case errors in 57

approximation from any linear n-dimensional subspace. 58

The investigation of cases in which the inequality (4) holds was 59

started by Barron (1993). He explored the dictionary
∧

60

Pd(σ ) := {σ(⟨v, ·⟩ + b) | v ∈ Rd, b ∈ R}, 61

formed by functions computable by perceptrons with a sigmoidal 62

activation σ . For c > 0, let 63

Γ d
c :=


f : Rd

→ R |

∫
Rd

‖ω‖2|f̃ (ω)|dω ≤ c

, 64

where f̃ denotes the Fourier transform of f and ‖ω‖2 the ℓ2
∧
- 65

norm of ω ∈ Rd. Barron derived estimates of the n-width and the 66

deviation from spannPd(σ ) for the sets Γ d
c |[0,1]d and Γ d

c |Bd1
made 67

up of functions in Γ d
c restricted to [0, 1]d and Bd

1, resp., where Bd
1 68

is the unit ball in Rd. In (Kůrková & Sanguineti, 2002), described 69

properties of general dictionaries G in L2([0, 1]d), guaranteeing 70

that certain sets of functions have n-widths larger than their 71

deviations from spannG. The sets have the form of balls in norms 72

induced by the dictionary G and are related to balls in norms 73

defined by various smoothness conditions. 74

Note that the conditions (4) and (5) are rather strong as 75

they state that worst-case errors in approximation by spannG 76

are smaller than such errors in approximation by any linear 77

approximator. However, approximation by spannG can be suitable 78

even when theoretically a better linear approximator might exist 79

as it might be difficult to find such an approximator. 80

3. Upper bounds for variable-basis approximation 81

To compare n-width with deviation from spannG, we take 82

advantage of upper bounds on the latter, derived from the 83

estimates of worst-case errors in approximation of functions from 84

convex closures proven by Barron (1992, 1993), Jones (1992), 85

Makovoz (1996) and Pisier (1981). We use reformulations of these Q1 86

estimates from Kůrková (2003), stated in terms of a norm induced 87

by a dictionary G. 88

For every nonempty bounded subset G of a normed linear space 89

(X, ‖·‖X), its symmetric convex closure clXconv(G∪−G)uniquely 90

determines a norm for which it forms the unit ball. Such a norm is 91

the Minkowski functional1 of the set clXconv(G ∪ −G). It is called 92

G-variation, denoted by ‖ ·‖G,X (shortly ‖ ·‖G whenX is clear from 93

the context), and defined as 94

‖f ‖G,X = ‖f ‖G := inf

c > 0 | c−1f ∈ clXconv(G ∪ −G)


. 95

Note that G-variation can be infinite and that it is a norm on the 96

subspace of X formed by functions with finite G-variation. The 97

general conceptwas introduced in Kůrková (1997), as an extension 98

of variation with respect to sets of characteristic functions defined 99

in Barron (1992). 100

The next proposition follows directly from the definitions. 101

Proposition 1. Let (X, ‖ · ‖X) be a normed linear space and G its 102

bounded subset. Then for every positive integer n, 103

(i) for every r > 0, 104

rdn(G) = dn(Br(‖ · ‖G)); 105

(ii) for every M ⊆ clXconv(G ∪ −G), 106

dn(G) ≥ dn(M). 107

1 TheMinkowski functional νG of a subset G of a linear spaceX is defined for every
f ∈ X as νG(f ) = inf {c ∈ R+ | f ∈ cG} (Kolmogorov & Fomin, 1970, p. 131).
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The next theorem is a reformulation, in terms of G-variation1

(Kůrková, 1997, 2003), of results by Barron (1993), Jones (1992)2

and Pisier (1981) and its extension byMakovoz (1996, Theorem 1).3

Recall that the n-th entropy number of a subset G of a normed linear4

space (X, ‖ · ‖X) is defined as5

en(G) := inf


ε > 0 |


G ⊆

n
i=1

Ui


6

and (∀i = 1, . . . , n) (diam(Ui) ≤ ε)


,7

where diam(U) = supx,y∈U ‖x − y‖X.8

Theorem 1. Let G be a bounded subset of a Hilbert space (H, ‖ · ‖H )9

and sG = supg∈G ‖g‖H . Then for every f ∈ H and every positive10

integer n11

(i) ‖f − spannG‖H ≤
sG‖f ‖G

√
n

;12

(ii) ‖f − spannG‖H ≤

√
2sGe⌊n/2⌋(G)‖f ‖G

√
n

.13

Examples for which the upper bound from Theorem 1(ii) is smaller14

than the one from Theorem 1(i) are given in Makovoz (1996).15

However, in general the bound from Theorem 1(ii) is more difficult16

to estimate than the one from Theorem 1(i).17

As an immediate corollary of Theorem 1, we get the following18

upper bounds on deviations of balls in G-variation from spannG.19

Corollary 1. Let G be a bounded subset of a Hilbert space (H, ‖ ·‖H )20

and sG = supg∈G ‖g‖H . Then for every r > 0 and every positive21

integer n22

(i) δ(Br(‖ · ‖G), spannG) ≤
rsG
√
n
;23

(ii) δ(Br(‖ · ‖G), spannG) ≤

√
2sGe⌊n/2⌋(G)r

√
n

.24

Combining upper bounds on δ(B1(‖ · ‖G, spannG)) from25

Corollary 1 with suitable lower bounds on dn(G) we can obtain26

some comparisons of linear and variable-basis approximation. We27

derive such lower bounds on dn(G) in the next section.28

For a finite dictionary G = {g1, . . . , gm} and a function f rep-29

resentable as a linear combination of elements of G, it is easy to30

show that‖f ‖G is theminimumof the ℓ1-norms‖w‖1 of theweight31

vectors w ∈ Rm for which f =
∑m

i=1wigi (Kůrková, Savický, &32

Hlaváčková, 1998, Proposition 2.3, p. 653).33

Proposition 2. Let (X, ‖ · ‖X) be a normed linear space and G =34

{g1, . . . , gm} ⊂ X. Then for every f ∈ span G,35

‖f ‖G = min


‖w‖1 | f =

m−
i=1

wigi, w ∈ Rm


.36

Several authors investigated an analogous relationship be-37

tween G-variation and L1-norm for infinite dictionaries (Barron,38

1992; Girosi & Anzellotti, 1993; Gnecco & Sanguineti, in press;39

Jones, 1992; Kainen & Kůrková, 2009; Kainen, Kůrková, & Vogt,40

2007; Kůrková, Kainen, & Kreinovich, 1997). Under various as-41

sumptions on the computational unit φ, the set of parameters Y ,42

and the ambient function space (X, ‖ · ‖X), they proved that for a43

function f represented as44

f (x) =

∫
Y
w(y)φ(x, y)dµY (y), (6)45

the estimate 46

‖f ‖Gφ ≤ ‖w‖L1 (7) 47

holds. These results were derived using a variety of proof 48

techniques, some of them quite sophisticated (e.g., properties of 49

the Bochner integral (Kainen & Kůrková, 2009), characterization 50

of G-variation in terms of linear functionals (Kůrková, 2009)). In 51

Kůrková (2009, Theorem 3, p. 714), the estimate (7) was derived 52

for a wide class of function spaces under minimal assumptions 53

needed for its formulation: Gφ is a bounded subset of (X, ‖ · ‖X) 54

andw ∈ L1
µY
(Y ). 55

In this paper, we only need the estimate (7) for functions f in 56

L2-spaces having the representation (6)with finitemeasureµY on 57

the set of parameters Y . For this special case, we give an alternative 58

probabilistic argument that extends an idea from Barron (1993, 59

Theorem 2, p. 934). Recall that a measure µΩ on Ω ⊆ Rd is σ - 60

finite if and only if there exists a countable collection ofmeasurable 61

sets Mi ⊆ Ω such that Ω = ∪
∞

i=1 Mi and µΩ(Mi) < ∞ for every 62

i ∈ N+. 63

Theorem 2. Let Ω ⊆ Rd, µΩ be a σ -finite measure on Ω, Y ⊆ 64

Rq, µY a finite measure on Y , φ : Ω × Y → R such that Gφ(Y ) = 65

{φ(·, y) | y ∈ Y } is a bounded subset of L2
µΩ
(Ω), andw ∈ L1

µY
(Y ). 66

Then for every f ∈ L2
µΩ
(Ω) that can be represented for every x ∈ Ω 67

as f (x) =

Y w(y)φ(x, y)dµY (y) we have 68

‖f ‖Gφ (Y ),L2
µΩ

(Ω) ≤ ‖w‖L1
µY (Y )

. 69

Proof. If ‖w‖L1
µY (Y )

= 0, then f = 0 and the statement follows. If 70

‖w‖L1
µY (Y )

> 0, let dρY =
|w|

‖w‖
L1
µY (Y )

dµY . Then 71

f (x) =

∫
Y
w(y)φ(x, y)dµY (y) 72

= ‖w‖L1
µY (Y )

∫
Y
φ(x, y)signw(y)

|w(y)|
‖w‖L1

µY (Y )
dµY (y) 73

= ‖w‖L1
µY (Y )

∫
Y
φ(x, y)signw(y)dρY (y). 74

Let y and y1, . . . , yn be i.i.d. real random variables, distributed ac- 75

cording to the probabilitymeasure ρY . For a function h(y1, . . . , yn), 76

we denote by Ey1,...,yn{h(y1, . . . , yn)} its expected value. 77

As Gφ is bounded, sGφ = supy∈Y ‖φ(·, y)‖L2
µΩ

(Ω) < ∞. For 78

i = 1, . . . , n, let 79

ai(x) :=

f (x)− ‖w‖L1
µY (Y )

φ(x, yi)signw(yi)

n
. 80

Then 81

‖ai‖L2
µΩ

(Ω) ≤

‖f ‖L2
µΩ

(Ω) + ‖w‖L1
µY (Y )

‖φ(·, yi)‖L2
µΩ

(Ω)

n
82

≤

‖f ‖L2
µΩ

(Ω) + ‖w‖L1
µY (Y )

sGφ
n

. 83

So we get 84

Ey1,...,yn

∫
Ω


f (x)−

‖w‖L1
µY (Y )

n
85

×

n−
i=1

φ(x, yi)signw(yi)
2

dµΩ(x)


86

= Ey1,...,yn

∫
Ω

n−
i,k=1

ai(x)ak(x)dµΩ(x)


87
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=

n−
i=1


Eyi

∫
Ω

a2i (x)dµΩ(x)


1

+

−
k≠i

∫
Ω

Eyi,yk {ai(x)ak(x)} dµΩ(x)


2

≤ n


‖f ‖L2

µΩ
(Ω) + ‖w‖L1

µY (Y )
sGφ
2

n2
, (8)3

where (8) follows by Fubini’s theorem (Rudin, 1987, Theorem4

8.8, p. 164) (which can be applied as both µΩ and ρY are5

σ -finite, Eyi

Ω
a2i (x)dµΩ(x)


< ∞ for i = 1, . . . , n, and

∧


Ω

6

Eyi,yk {|ai(x)ak(x)|} dµΩ(x) < ∞ for k ≠ i) and (8) follows by the7

independence of the random variables y1, . . . , yn and the identity8

Eyi{ai(x)} = 0 for every x ∈ Ω . So, (8) implies the existence of9

ŷ1, . . . , ŷn ∈ Y such that10 f (·)−

‖w‖L1
µY (Y )

n

n−
i=1

φ(·, ŷi)signw(ŷi)


2

L2
µΩ

(Ω)

11

≤


‖f ‖L2

µΩ
(Ω) + ‖w‖L1

µY (Y )
sGφ
2

n
.12

Hence ‖w‖
−1
L1
µY (Y )

f ∈ cl conv(Gφ ∪ −Gφ) and so by the definition13

of variation ‖f ‖Gφ ≤ ‖w‖L1
µY (Y )

. �14

4. Lower bounds on Kolmogorov width15

In this section, we illustrate two methods of derivation of16

lower bounds on the Kolmogorov n-width. These bounds will be17

used in the next section to compare linear and variable-basis18

approximation.19

The first method can be applied when balls in the G-variation20

contain ‘‘sufficiently large’’ orthonormal subsets. It is based on the21

following theorem from Kůrková and Sanguineti (2002, p. 270).22

Theorem 3. Let A and G be subsets of a Hilbert space (H, ‖ · ‖H ),G23

bounded, A is finite orthonormal with cardA = k, and cA,G :=24

maxf∈A ‖f ‖G. Then for every positive integer n ≤ k,25

dn(G) = dn(B1(‖ · ‖G)) ≥
1

cA,G


1 −

n
k
.26

The second method is also based on estimates of distance from27

orthonormal sets formedby eigenfunctions of compact self-adjoint28

operators. It provides a characterization of n-widths of sets of func-29

tions ‘‘large enough’’ to contain images of unit balls mapped by30

compact operators. The characterization is in terms of the singular31

numbers of these operators. Recall that a linear operator T : H1 →32

H2 between two Hilbert spaces (H1, ‖ · ‖H1) and (H2, ‖ · ‖H2)33

is compact if the image under T of every bounded set in H1 is a34

precompact subset of H2 (i.e., a set whose closure in the topology35

induced by ‖ · ‖H2 is compact). The adjoint of T is the unique oper-36

ator T ∗ satisfying for every f ∈ H1 and every
∧
g ∈ H2, ⟨f , T ∗g⟩H137

= ⟨Tf , g⟩H2 . The operator T is self-adjoint if T = T ∗. For a com-38

pact operator T between two Hilbert spaces, its n-th s-number is39

defined as40

sn(T ) =


λn(TT ∗),41

where λn(TT ∗) is the n-th eigenvalue of the self-adjoint, non-42

negative, and compact operator TT ∗ (the eigenvalues are ordered43

in a non-increasing sequence counting their multiplicities). If T is44

self-adjoint, then its singular numbers are equal to the absolute45

values of its eigenvalues.46

The following theorem from Pinkus (1985, p. 65) states the 47

equality between the n-width of the image of the unit ball under a 48

compact operator T and the (n + 1)-th singular number of T . 49

Theorem 4. Let (H1, ‖ · ‖H1) and (H2, ‖ · ‖H2) be Hilbert spaces 50

and T : H1 → H2 a compact linear operator. Then for every positive 51

integer n < dimH2, 52

dn(T (B1(‖ · ‖H1)); (H2, ‖ · ‖H2)) = sn+1(T ). 53

We apply Theorems 3 and 4 to operators from two classes. 54

The first one contains operators induced by finite dictionaries. Let 55

(Rm, ‖ · ‖2) denote the m-dimensional Euclidean space with the 56

ℓ2-norm ‖ · ‖2. For every fixed ordering of a finite dictionary G = 57

{g1, . . . , gm} ⊂ X, let Tg1,...,gm : Rm
→ X be the linear operator 58

defined for everyw = (w1, . . . , wm) ∈ Rm as 59

Tg1,...,gm(w) :=

m−
i=1

wigi. (9) 60

The next proposition states compactness (hence continuity) of 61

Tg1,...,gm . 62

Proposition 3. Let (X, ‖ · ‖X) be a normed linear space and G = 63

{g1, . . . , gm} its finite subset. Then the operator Tg1,...,gm : (Rm, ‖·‖2) 64

→ (X, ‖ · ‖X) is compact. 65

Proof. The norm of Tg1,...,gm satisfies 66

‖Tg1,...,gm‖ ≤
√
m max

i=1...,m
‖gi‖X, 67

so the operator is bounded. This is equivalent to its continuity 68

(Friedman, 1982, Theorem 4.4.2). Moreover, Tg1,...,gm has a finite- 69

dimensional range and thus it is compact (Oden & Demkowicz, 70

1996, Section 5.15). � Q2 71

For a finite subset G = {g1, . . . , gm} of a Hilbert space H , we 72

denote byM(G) the positive-semidefinitem×mmatrix formed by 73

the inner products of elements of G, i.e.,. 74

M(G)ij = ⟨gi, gj⟩H 75

and byλn(M(G)) its n-th eigenvalue (ordered non-increasingly and 76

counting multiplicities). 77

Proposition 4. Let (H, ‖ · ‖H ) be a Hilbert space and
∧
G = {g1, . . . , 78

gm} its finite subset. Then for every positive integer n < m, 79

(i) dn(G) = dn(B1(‖ · ‖G)) ≥


λn+1(M(G))

m
; 80

(ii) for G orthonormal dn(G) ≥
1

√
m
. 81

Proof. (i) It is easy to check that the adjoint T ∗
g1,...,gm satisfies 82

(T ∗
g1,...,gm(f ))i = ⟨f , gi⟩H . Thus T ∗

g1,...,gmTg1,...,gm : Rm
→ Rm can 83

be represented by the matrixM(G). As every operator with a finite 84

range is compact (Friedman, 1982, p. 188), T ∗
g1,...,gm is compact. By 85

Proposition 3, Tg1,...,gm is compact, too.Moreover, the two operators 86

have the same positive singular numbers (Weidmann, 1980, p. 87

170). Hence sn+1(Tg1,...,gm) =
√
λn+1(M(G)). 88

By Proposition 1, dn(G) = dn(B1(‖ · ‖G)). By Proposition 2 and 89

the Cauchy–Schwarz inequality, 90

B1(‖ · ‖G) ⊇ Tg1,...,gm(B1(‖ · ‖1)) 91

⊇ Tg1,...,gm(B1/
√
m(‖ · ‖2)) 92

=
1

√
m

Tg1,...,gm(B1(‖ · ‖2)). 93



6 G. Gnecco et al. / Neural Networks xx (xxxx) xxx–xxx

So we can apply Theorem 4 to obtain1

dn(B1(‖ · ‖G)) ≥
1

√
m

dn(Tg1,...,gm(B1(‖ · ‖2)))2

=


λn+1(M(G))

m
.3

(ii) When G is orthonormal, T ∗
g1,...,gmTg1,...,gm is represented by4

the identity matrix, so all its eigenvalues are equal to 1. �5

The second class of operators to which we apply Theorems 36

and 4 is represented by integral operators with kernels φ7

corresponding to computational units. Let Ω ⊆ Rd and Y ⊆ Rq
8

with a measure µY . For a function φ : Ω × Y → R and function9

spaces F (Ω) and F (Y ) such that the integral on the right-hand10

side of (10) exists for every x ∈ Ω , an operator Tφ = Tφ,µY :11

F (Y ) → F (Ω) is defined as12

Tφ(w)(x) :=

∫
Y
w(y)φ(x, y)dµY (y). (10)13

Note that Tφ(w) can be interpreted as an input–output function of14

a one-hidden-layer network with infinitely many units computing15

functions φ(·, y) and output weightsw(y), for every y ∈ Y .16

To describe properties of operators Tφ , we recall some defini-17

tions. A bounded linear operator T : (H1, ‖ · ‖H1) → (H2, ‖ · ‖H2)18

between two Hilbert spaces is called a Hilbert–Schmidt operator19

if and only if for every orthonormal basis {ψα | α ∈ A} of H120

one has
∑

α∈A ‖Tψα‖2
H2

< ∞ (Shubin, 2001, p. 257). The value21

‖T‖HS =

∑
α∈A ‖Tψα‖2

H2
is independent

∧
of the choice of the or-22

thonormal basis and is called the Hilbert–Schmidt norm of the op-23

erator T .24

The next theorem summarizes well-known properties of the25

operators Tφ on L2-spaces (see Shubin, 2001, Proposition A.3.1, p.26

257 and Proposition A.3.2, p. 259;Weidmann, 1980, Theorem 6.11,27

p. 139; Akhiezer & Glazman, 1993, p. 127).28

Theorem 5. Let Ω ⊆ Rd, Y ⊆ Rq, µΩ and µY be σ -finite measures29

onΩ and Y , resp., and φ ∈ L2
µΩ×µY

(Ω × Y ). Then30

(i) Tφ maps L2
µY
(Y ) to L2

µΩ
(Ω);31

(ii) Tφ is a Hilbert–Schmidt operator;32

(iii) Tφ is compact;33

(iv) if Ω = Y , µΩ = µY and φ is symmetric, then Tφ is self-adjoint,34

its non zero eigenvalues form a finite or countably infinite set of35

reals {λj} satisfying
∑N

j=1 λ
2
j < ∞, where N is finite or N =36

+∞, and there exists an orthonormal family {ψj} in L2
µΩ
(Ω) of37

eigenfunctions such that for every x, y ∈ Ω one has φ(x, y) =38 ∑N
j=1 λjψj(x)ψj(y), where for N = +∞ the series converges in39

L2
µΩ×µΩ

(Ω ×Ω) and for every g ∈ L2
µΩ
(Ω),40

Tφ(g) =

N−
j=1

λj⟨g, ψj⟩L2
µΩ
ψj. (11)41

Note that if λj, j = 1, . . . ,N are positive and the series converges42

uniformly, then φ is positive semidefinite.43

Applying Theorem 5 to Tφ , we get the following lower bound on44

the Kolmogorov width of balls in Gφ-variation with
∧
φ ∈ L2

µΩ×µY
45

(Ω × Y ), where µY (Y ) is finite.46

Theorem 6. Let Ω ⊆ Rd, Y ⊆ Rq, µΩ be a σ -finite measure on47

Ω, µY a finite measure on Y , φ ∈ L2
µΩ×µY

(Ω × Y ), and Gφ =48

{φ(·, y) | y ∈ Y } a bounded subset of L2
µΩ
(Ω). Then Tφ is a compact49

operator mapping L2
µY
(Y ) to L2

µΩ
(Ω) and for every positive integer50

n,51

dn(B1(‖ · ‖Gφ )) = dn(Gφ) ≥
sn+1(Tφ)
√
µY (Y )

.52

Proof. By Theorem 5(i) and (iii), Tφ : L2
µY
(Y ) → L2

µΩ
(Ω) is com- 53

pact, so by Theorem 4 we get dn(Tφ(B1(‖ · ‖L2
µY
))) = sn+1(Tφ). 54

As µY is finite, every w ∈ L2
µY
(Y ) is also in L1

µY
(Y ) and 55

‖w‖L1
µY (Y )

≤
√
µY (Y )‖w‖L2

µY (Y )
. By Theorem 2 with f = Tφ(w), 56

we get 57

‖f ‖Gφ ≤ ‖w‖L1
µY (Y )

≤


µY (Y )‖w‖L2

µY (Y )
. 58

Thus B1(‖ · ‖Gφ ) ⊇
1

√
µY (Y )

Tφ(B1(‖ · ‖L2)) and the statement 59

follows. � 60

When φ is symmetric, Theorem 6 implies on the Kolmogorov 61

width of the ball B1(‖ · ‖Gφ ) the following lower bound in terms of 62

the eigenvalues of the operator Tφ . 63

Corollary 2. Let Ω ⊆ Rd, µΩ be a finite measure on Ω, φ ∈ 64

L2
µΩ×µΩ

(Ω × Ω) symmetric such that Gφ is bounded in L2
µΩ
(Ω), 65

and {λj} a sequence of eigenvalues of Tφ ordered non-increasingly in 66

absolute values. Then for every positive integer n, 67

dn(B1(‖ · ‖Gφ )) = dn(Gφ) ≥
|λn+1|

√
µΩ(Ω)

. 68

Proof. By Theorem 6, dn(B1(‖·‖Gφ )) ≥
sn+1(Tφ )
√
µΩ (Ω)

. Asφ is symmetric, 69

Tφ is self-adjoint. Hence sn+1(Tφ) = |λn+1| and the statement 70

follows. � 71

Using as a lower bound on Kolmogorov n-width the estimate 72

from Theorem 3 instead of the one from Theorem 4, we get the 73

next theorem. 74

Theorem 7. Let Ω ⊆ Rd, µΩ be a finite measure on Ω , and
∧
φ ∈ 75

L2
µΩ×µΩ

(Ω × Ω) symmetric such that Gφ is bounded in L2
µΩ
(Ω). 76

Then there exists an orthonormal set of eigenfunctions {ψj} of Tφ : 77

L2
µΩ
(Ω) → L2

µΩ
(Ω) and a sequence {λj} of corresponding

∧
eigen- 78

values ordered non-increasingly in absolute values, such that for all 79

positive integers n, k with n ≤ k and ck,Gφ = maxj=1,...,k ‖ψj‖Gφ , 80

dn(B1(‖ · ‖Gφ )) = dn(Gφ) ≥
1

ck,Gφ


1 −

n
k

81

≥
|λk|

√
µΩ(Ω)


1 −

n
k
. 82

∧
Proof. The existence of eigenfunctions and eigenvalues of Tφ 83

follows by Theorem 5. Applying Theorem 3 to A = {ψ1, . . . , ψk}, 84

we get dn(B1(‖ · ‖Gφ )) ≥
1

ck,Gφ


1 −

n
k . 85

As {ψj} are eigenfunctions of Tφ , we have
∧
λjψj(x) =


Ω
ψj(y) 86

φ(x, y)dµΩ(y). By the Cauchy–Schwarz inequalitywe get
∧
‖ψj‖L1

µΩ
87

≤
√
µΩ(Ω)‖ψj‖L2

µΩ
, hence ψj ∈ L1

µΩ
(Ω). As Gφ is bounded and 88

µΩ is finite, the assumptions of Theorem 2 are satisfied and so 89

‖ψj‖Gφ ≤
1

|λj|
‖ψj‖L1

µΩ
≤

√
µΩ(Ω)

|λj|
‖ψj‖L2

µΩ
=

√
µΩ(Ω)

|λj|
. 90

Thus for every positive integer kwe have 91

ck,Gφ = max
j=1,...,k

‖ψj‖Gφ ≤

√
µΩ(Ω)

|λk|
92

and so by Theorem 3 93

dn(B1(‖ · ‖Gφ )) = dn(Gφ) ≥
|λk|

√
µΩ(Ω)


1 −

n
k
. � 94
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Note that for k = n + 1, the lower bound1

|λn+1|
√
µΩ(Ω)


1 −

n
n + 1

=
|λn+1|

√
µΩ(Ω)


1

n + 1
2

from Theorem 7 is smaller than the lower bound |λn+1|
√
µΩ (Ω)

3

from Corollary 2. Thus the proof method based on singular4

numbers gives better results than the method based on combining5

the inclusion of orthonormal subsets of eigenfunctions with6

estimates of variational norms of these eigenfunctions derived7

from Theorem 2. However, in cases where better estimates of8

Gφ-variations of eigenfunctions can be obtained, Theorem 7 may9

provide larger lower bounds than the ones from Corollary 2. In10

Section 6.1, we shall give an example of such a case. In other11

cases, even larger lower bounds can be obtained when different12

orthonormal sets than those formed by eigenfunctions are used13

(Kůrková & Sanguineti, 2002).14

Note that the lower bounds on the n-width depend on the15

number d of variables, althoughwehave not emphasized this in the16

notation. When µΩ = µd is the d-dimensional Lebesgue measure,17

then the term µd(Ωd) may either grow to infinity exponentially18

fast (e.g., when Ωd = [−1, 1]d), or go to zero exponentially fast19

(e.g., when Ωd is the unit Euclidean ball), or be constant (e.g.,20

whenΩd = [0, 1]d). In particular, when the domain is the unit d-21

dimensional Euclidean ball (whose volume is πd/2/Γ ((d + 2)/2),22

see Courant (1988, p. 304)), our estimates of the n-width may give23

large values for those n for which λn is considerably smaller than24 
πd/2/Γ ((d + 2)/2), i.e. when the ratio25

|λn+1|
πd/2/Γ ((d + 2)/2)

26

is large.27

5. Comparisons of worst-case errors28

In this section, we compare the upper bounds on deviation from29

spannG derived in Section 3 with the lower bounds on n-width30

from Section 4. For a subsetM of L2
µΩ
(Ω), we denote by31

1n(M) := dn(M)− δ(M, spannG)32

the difference between its n-width and its deviation from spannG.33

When 1n(M) is positive, the worst-case error in approximation34

of M by spannG is smaller than the worst-case errors in its35

approximation by any linear approximator.36

As dn(G) = dn(B1(‖ · ‖G)), the same worst-case error (or nearly37

worst-case error when the infimum is not a minimum) as the one38

in approximation of functions from the ball B1(‖ · ‖G) must be39

achieved by some function in G. Moreover, δ(G, spannG) = 0 and40

so41

1n(G) = dn(G) = dn(B1(‖ · ‖G)) ≥ 0.42

Hence by Theorems 1, 6 and 7, and Corollary 2we get the following43

estimates.44

Corollary 3. Let Ω ⊆ Rd, Y ⊆ Rq, µΩ and µY be σ -finite mea-45

sures on Ω and Y , resp., φ ∈ L2
µΩ×µY

(Ω × Y ) such that Gφ =46

{φ(·, y) | y ∈ Y } is a bounded subset of L2
µΩ
(Ω), and sGφ =47

supy∈Y ‖φ(·, y)‖L2
µΩ

. Then there
∧
exists an orthonormal set of eigen-48

functions {ψj} and a sequence {λj} of corresponding eigenvalues of49

Tφ , ordered non-increasingly in absolute values, such that for every50

positive integer n,51

(i)1n(Gφ) ≥
sn+1(Tφ)
√
µY (Y )

.52

For the case in which Ω = Y , µΩ = µY , and φ is symmetric, for 53

every k ≥ n and ck,Gφ = maxj=1,...,k ‖ψj‖Gφ we get 54

(ii)1n(Gφ) = dn(Gφ) ≥
|λn+1|

√
µΩ(Ω)

; 55

(iii)1n(Gφ) = dn(Gφ) ≥
1

ck,Gφ


1 −

n
k
. 56

Corollary 3(ii) and (iii) show that for every ε > 0, every linear 57

approximator, and every computational unit defined by a symmet- 58

ric function φ ∈ L2
µΩ×µΩ

(Ω×Ω) for which the set Gφ is bounded, 59

there exists a parameter y such thatφ(·, y) in linear approximation 60

has an error larger than |λn+1|
√
µΩ (Ω)

−ε or 1
ck,Gφ


1 −

n
k −ε, resp.When 61

for some n these values are large, such computational units cannot 62

be efficiently approximated by n-dimensional subspaces. 63

As discussed at the end of Section 4, the choice of the 64

d-dimensional domain Ω may provide substantially different 65

behaviors of the estimates with respect to d. When the domain is 66

the unit ball in d dimensions, for instance, the lower bound from 67

Corollary 3(ii) grows exponentially fast with d, while for the cube 68

[−1, 1]d it converges exponentially fast to zero. 69

Theorems 1, 3, and Proposition 4 provide the following 70

estimates of1n(B1(‖ · ‖G)) for finite dictionaries G. 71

Corollary 4. Let A and G be finite subsets of a Hilbert space (H, ‖ · 72

‖H ) such that card G = m, sG = supg∈G ‖g‖H , card A = k, A 73

orthonormal with maxf∈A ‖f ‖G = cA,G, and let M(G) be the m × m 74

matrix defined as M(G)ij = ⟨gi, gj⟩H . Then for every positive integer 75

n ≤ k, 76

(i)1n(B1(‖ · ‖G)) ≥
1

cA,G


1 −

n
k

−
sG
√
n
; 77

(ii)1n(B1(‖ · ‖G)) ≥
1

cA,G


1 −

n
k

−

√
2sGe⌊n/2⌋(G)

√
n

; 78

and for every positive integer n < m, 79

(iii)1n(B1(‖ · ‖G)) ≥


|λn+1(M(G))|

m
−

√
2sGe⌊n/2⌋(G)

√
n

. 80

Corollaries 1 and 2 and Theorem 7 provide for infinite 81

dictionaries Gφ the following estimates. 82

Corollary 5. Let Ω ⊆ Rd, µΩ be a finite measure on Ω, φ ∈ 83

L2
µΩ×µΩ

(Ω × Ω) symmetric such that Gφ is a bounded subset 84

of L2
µΩ
(Ω), and sGφ = supy∈Ω ‖φ(·, y)‖L2

µΩ
. Then there

∧
exists an 85

orthonormal set of eigenfunctions {ψj} of Tφ and a sequence {λj} of 86

corresponding eigenvalues of Tφ , ordered non-increasingly in absolute 87

values, such that for all positive integers n, k with n ≤ k and ck,Gφ = 88

maxj=1,...,k ‖ψj‖Gφ , 89

(i)1n(B1(‖ · ‖Gφ )) ≥
1

ck,Gφ


1 −

n
k

−
sGφ
√
n
; 90

(ii)1n(B1(‖ · ‖Gφ )) ≥
1

ck,Gφ


1 −

n
k

−

√
2sGφ e⌊n/2⌋(Gφ)

√
n

; 91

(iii)1n(B1(‖ · ‖Gφ )) ≥
|λn+1|

√
µΩ(Ω)

−

√
2sGφ e⌊n/2⌋(Gφ)

√
n

. 92

Note that to compare the n-width with the deviation from spannG, 93

in Corollaries 4(iii) and 5(iii) we have used the upper bound in 94

Corollary 1(ii) instead of the weaker one in Corollary 1(i). 95
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The next proposition states a relationship between sGφ and the1

eigenvalues of a Hilbert–Schmidt operator which implies that the2

weaker upper bound from Corollary 1(i) cannot give for every3

Hilbert–Schmidt operator Tφ a positive value for1n(B1(‖ · ‖Gφ )).4

Proposition 5. Let Ω ⊆ Rd, µΩ be a finite measure on Ω, φ ∈5

L2
µΩ×µΩ

(Ω × Ω) symmetric, Gφ = {φ(·, y) | y ∈ Ω} a bounded6

subset of L2
µΩ
(Ω), sGφ = supy∈Ω ‖φ(·, y)‖L2

µΩ
, and {λj}

∧
eigen-7

values of Tφ , ordered non-increasingly in absolute values. Then for8

every positive integer n,9

|λn+1|
√
µΩ(Ω)

<
sGφ
√
n
.10

Proof. Since µΩ is finite (hence σ -finite) and
∧


Ω
dµΩ(y)


Ω

11

|φ(x, y)|2dµΩ(x) < +∞, one can apply Fubini’s theorem (Rudin,12

1987, Theorem 8.8, p. 164). So, computing the integral

Ω×Ω

|φ(x,13

y)|2d(µΩ × µΩ)(x, y) first with respect to x and then to ywe get14

‖φ‖L2
µΩ×µΩ

=

∫
Ω×Ω

|φ(x, y)|2d(µΩ × µΩ)(x, y)15

=

∫
Ω

dµΩ(y)
∫
Ω

|φ(x, y)|2dµΩ(x)16

≤ s2GφµΩ(Ω) < +∞. (12)17

By Theorem 5(iii), Tφ is Hilbert–Schmidt and so
∑

+∞

j=1 λ
2
j < +∞.18

Moreover, by Theorem 5(iv) the kernel φ can be expressed as19

φ(x, y) =
∑

+∞

j=1 λjψj(x)ψj(y), where the family {ψj} is
∧
ortho-20

normal. Thus21

‖φ‖L2
µΩ×µΩ

=

∫
Ω×Ω

|φ(x, y)|2d(µΩ × µΩ)(x, y) =

+∞−
j=1

λ2j ,22

which, combined with (12), gives sGφ ≥

∑
+∞

j=1 λ
2
j

√
µΩ (Ω)

. Hence23

sGφ
√
n

≥


+∞∑
j=1
λ2j

√
µΩ(Ω)

√
n

≥


n+1∑
j=1
λ2n+1

√
µΩ(Ω)

√
n

24

=

√
n + 1
√
n

|λn+1|
√
µΩ(Ω)

>
|λn+1|

√
µΩ(Ω)

. �25

A similar relationship between sG and eigenvalues holds for26

finite dictionaries.27

Proposition 6. Let (H, ‖ · ‖H ) be a Hilbert space, G = {g1, . . . , gm}28

its finite subset, sG = supg∈G ‖g‖H , and M(G) the matrix defined as29

M(G)ij = ⟨gi, gj⟩H . Then for every positive integer n < m,30 
λn+1(M(G))

m
<

sG
√
n
.31

Proof. By the definition of the trace of a matrix and the equality32

between the trace of amatrix and the sumof its eigenvalues (Golub33

& Loan, 1996, p. 310), we get34

Tr(M(G)) =

m−
j=1

M(G)jj =

m−
j=1

⟨gj, gj⟩H =

m−
j=1

λj(M(G)).35

This, combined with ⟨gj, gj⟩H ≤ s2G and λj(M(G)) ≥ 0, j =36

1, . . . ,m, gives sG ≥

∑m
j=1 λj(M(G))

√
m . Hence37

sG
√
n

≥


m∑
j=1
λj(M(G))

√
m

√
n

38

≥


n+1∑
j=1
λn+1(M(G))

√
m

√
n

39

=

√
n + 1
√
n

√
λn+1(M(G))

√
m

40

>

√
λn+1(M(G))

√
m

. � 41

6. Examples 42

In this section, we illustrate our results by some examples. 43

6.1. Example 1 44

Our first example describes two cases inwhich better estimates 45

of Gφ-variations of eigenfunctions of Tφ than the ones in the form 46
√
µΩ (Ω)

|λj|
(which are used in the proof of Theorem 7) can be derived. 47

Recall that the function sinc:R → R is defined as 48

sinc(x) =

 sinπx
πx

for x ≠ 0,

1 for x = 0.
49

Let Ω ⊆ Rd, µΩ be a σ -finite measure on Ω , and φ ∈ 50

L2
µΩ×µΩ

(Ω × Ω) a symmetric function that can be represented 51

as 52

φ(x, y) =

N−
j=1

λjψj(x)ψj(y), 53

where N is finite or N = +∞, the family {ψj} is orthonormal 54

in L2
µΩ
(Ω), the sequence {|λj|} is ordered non-increasingly, 55∑N

j=1 λ
2
j < +∞, and for every j = 1, . . . ,N we have λj ≠ 0. 56

Assume that either (a) or (b) holds, where 57

(a) the functionsψj have mutually disjoint supports, |ψj| ≤ 1, and 58

for every j = 1, . . . ,N there exists yj ∈ Ω such thatψj(yj) = 1; 59

(b) Ω = R, µΩ is the Lebesgue measure µ and for every j = 60

1, . . . ,N we have ψj(x) = sinc(x − j). 61

Then for everym ∈ N+ orm ≤ N in the finite case and every n ≤ m 62

dn(B1(‖ · ‖Gφ )) ≥ |λm|


1 −

n
m

(13) 63

and 64

δ(B1(‖ · ‖Gφ ), spannGφ) ≤
|λ1|
√
n
, (14) 65

so

Q3

66

1nB1(‖ · ‖Gφ ) ≥ |λm|


1 −

n
m

−
|λ1|
√
n
. (15) 67

To prove (13), we first show that in both cases (a) and (b) one 68

has {λjψj | j = 1, . . . ,N} ⊆ Gφ . 69

In the case (a), we haveφ(·, yj) =
∑N

j=1 λjψj(·)ψj(yj) = λjψj(·), 70

as the functions ψj have mutually disjoint supports. 71

In the case (b), as sinc(0) = 1 and sinc(j) = 0 for every j ∈ N+ 72

we get 73

φ(·, j) =

N−
i=1

λisinc(· − i)sinc(j − i) = λjsinc(· − j). 74
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So, in both caseswe have cm,Gφ = maxj=1,...,m ‖ψj‖Gφ ≤
1

|λm|
. Hence,1

by Theorem 7 we get the lower bound (13) on dn(B1(‖ · ‖Gφ )).2

The upper bound (14) on δ(B1(‖ · ‖Gφ ), spannGφ) follows by3

Theorem 1, after showing that sGφ ≤ |λ1|.4

In the case (a), this holds as the functions ψj have disjoint5

supports and thus for every y ∈ Ω there exists at most one jy6

such that ψjy(y) ≠ 0. As |ψj| ≤ 1, for every y ∈ Ω we get
∧

7 ∑N
j=1 λjψj(·)ψj(y)


L2
µΩ

=
λjyψjy(·)ψjy(y)


L2
µΩ

≤ |λ1|‖ψjy‖L2
µΩ

8

= |λ1|. Thus9

sGφ = sup
y∈Ω

 N−
j=1

λjψj(·)ψj(y)


L2
µΩ

(Ω)

≤ |λ1|.10

In the case (b), the inequality sGφ ≤ |λ1| can be verified as11

follows. By the orthonormality of the functions sinc(·−j) inL2
µ(R),12

we get13 ∫
+∞

−∞


N−
j=1

λjsinc(x − j)sinc(y − j)


14

×


N−

k=1

λksinc(x − k)sinc(y − k)


dx15

=

N−
j=1

N−
k=1

λjλksinc(y − j)sinc(y − k)16

×

∫
+∞

−∞

sinc(x − j)sinc(x − k)dx17

=

N−
j=1

λ2j sinc
2(y − j).18

Hence19

sGφ = sup
y∈R

 N−
j=1

λ2j sinc
2(y − j)20

≤ |λ1| sup
y∈R

 N−
j=1

sinc2(y − j).21

Then, denoting by ι the imaginary unit and by Λ(ω) the Fourier22

transform of sinc2(x), sinceΛ(2π j) = 1 for j = 0 and 0 otherwise23

Poisson’s sum formula (Papoulis, 1962, p. 47) gives24

sup
y∈R

 N−
j=1

sinc2(y − j) ≤ sup
y∈R

 +∞−
j=−∞

sinc2(y − j)25

= sup
y∈R

 +∞−
j=−∞

e−ι2π jyΛ(2π j)26

=


Λ(0) = 1.27

This concludes the proof of (14). Finally, (15) is obtained combining28

(13) and (14).29

Inspection of the upper bound (15) provides various conditions30

guaranteeing that1n(B1(‖·‖Gφ )) is positive. For example, suppose31

that |λm| ≥
2|λ1|√

m and let32

z1 :=
m
2

1 −


|λm|2 − 4 |λ1|2

m

|λm|

33

and 34

z2 :=
m
2

1 +


|λm|2 − 4 |λ1|2

m

|λm|

 . 35

Then for every positive integer n ≤ m such that n ∈ (z1, z2) one 36

has 37

1n(B1(‖ · ‖Gφ )) ≥ |λm|


1 −

n
m

−
|λ1|
√
n
> 0. (16) 38

The proof of (16) amounts at finding conditions on a positive 39

integer n guaranteeing that 40

|λm|


1 −

n
m

−
|λ1|
√
n
> 0. (17) 41

Since n and m are positive, this is equivalent to 42

|λm|
2n2

− |λm|
2mn + |λ1|

2m < 0. (18) 43

Both roots z1 and z2 of the associated equation |λm|
2z2−|λm|

2mz+ 44

|λ1|
2m = 0 (with z a complex number) are real, as by assumption 45

|λm| ≥
2|λ1|√

m . So, (18) holds for every positive integer n such that 46

n ∈ (z1, z2) and the proof of (16) is concluded. 47

Note that the condition z1 + 2 ≤ z2 implies that the interval 48

(z1, z2) contains at least one positive integer. For instance, taking 49

m = 100 and |λm| =
|λ1|
4 , one has z1 = 20, z2 = 80, and for every 50

positive integer n ∈ [21, 79] 51

1n(B1(‖ · ‖Gφ )) ≥ |λm|


1 −

n
100

−
|λ1|
√
n
> 0. 52

For finite dictionaries G, the next two examples show cases for 53

which the lower bound 1
cA,G


1 −

n
k −

sG√
n provided by Corollary 4(i) 54

on1n(B1(‖ · ‖G)) is positive. 55

6.2. Example 2 56

For A = G finite and orthonormal with card G = m, we have 57

cA,G = 1 and sG = 1, so Corollary 4(i) with k = m gives 58

1n(B1(‖ · ‖G)) ≥
1

cA,G


1 −

n
m

−
sG
√
n

=


1 −

n
m

−
1

√
n
. 59

Letm ≥ 4, 60

z1 :=
m
2


1 −


1 −

4
m


, 61

and 62

z2 :=
m
2


1 +


1 −

4
m


. 63

Calculations similar to those made in the last part of Section 6.1 64

show that for every positive integer n ≤ m such that n ∈ (z1, z2) 65

1n(B1(‖ · ‖G)) ≥


1 −

n
m

−
1

√
n
> 0. 66

For instance, with m = 36 we have
∧
z1 = 18


1 −

2
√
2

3


≈ 1.029, 67

z2 = 18

1 +

2
√
2

3


≈ 34.969, and for every positive integer

∧
n ∈ 68

[2, 34], 69

1n(B1(‖ · ‖Gφ )) ≥


1 −

n
36

−
1

√
n
> 0. 70
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6.3. Example 31

Let G be finite and linearly independent with card G = m and B2

a nonsingularm × mmatrix such that for some orthonormal basis3

A = {ak}mk=1 of spanG and j = 1, . . . ,m, one has gj =
∑m

k=1 Bj,kak.4

Choose as B a unit bidiagonal matrix (Vandebril, Van Barel, &5

Mastronardi, 2008, p. 154) B, B−1 as given in Box IQ46

∧
Let γ := maxj=1,...,m |βj|, and suppose γ ≠ 1. Then for every7

positive integer n ≤ m8

1n(B1(‖ · ‖G)) ≥
1

cA,G


1 −

n
m

−
sG
√
n

9

≥
1 − γ

1 − γ m


1 −

n
m

−


1 + γ 2
√
n

. (19)10

To prove (19), we proceed as follows. By the definition of sG and11

the structure of the matrix B, we get12

sG = max
j=1,...,m

 m−
k=1

|Bj,k|
2 ≤


1 + γ 2. (20)13

Moreover, for j = 1, . . . ,m we have aj =
∑m

k=1 B
−1
j,k gk, where14

the matrix B−1 is given by Vandebril et al. (2008, p. 154). Hence15

Proposition 2 gives ‖aj‖G =
∑m

k=1 |B−1
j,k | and so16

cA,G = max
j=1,...,m

m−
k=1

|B−1
j,k | ≤

1 − γ m

1 − γ
. (21)17

Thus, by (20), (21), and Corollary 4(i) (with k = m), we get (19).18

Now, suppose19

1 − γ

1 − γ m
≥

2

1 + γ 2
√
m

20

and let21

z1 :=
m
2

1 −


1−γ
1−γm

2
− 4 1+γ 2

m

1−γ
1−γm

22

and23

z2 :=
m
2

1 +


1−γ
1−γm

2
− 4 1+γ 2

m

1−γ
1−γm

 .24

Computations similar to those made in the last part of Section 6.125

show that for every positive integer n ≤ m such that n ∈ (z1, z2),26

1n(B1(‖ · ‖G)) ≥
1

cA,G


1 −

n
m

−
sG
√
n

27

≥
1 − γ

1 − γ m


1 −

n
m

−


1 + γ 2
√
n

> 0.28

For instance, takingm = 6 and γ = 10−1 we get29

z1 =
6
2

1 −


1−10−1

1−10−6

2
− 4 1+10−2

6

1−10−1

1−10−6

 ≈ 1.76830

and31

z2 =
6
2

1 +


1−10−1

1−10−6

2
− 4 1+10−2

6

1−10−1

1−10−6

 ≈ 4.23232

and for every positive integer n ∈ [2, 4] 33

1n(B1(‖ · ‖Gφ )) ≥


1 −

n
6

−
1

√
n
> 0. 34

6.4. Example 4 35

Finally, we give an example in which the upper bound on 36

variable-basis approximation from Theorem 1(ii) and the lower 37

bound on linear approximation from Corollary 2 have the same 38

orders and the former is worse than the latter by a constant 39

factor. This case is still of interest, as it shows that approximation 40

from spannGφ is as at least as good as the one from a so-called 41

asymptotically optimal linear subspace, as defined in Pinkus (2003, 42

p. 908). 43

LetΩ = Y = [0, 1], µΩ = µY = µ be the Lebesgue measure, 44

and φ(x, y) = h(x − y), where 45

h(t) =

N−
j=0

Aj cos(ωjt), (22) 46

N is finite or N = +∞, ωj = 2π j, θj ∈ [0, 2π), and
∧
|A0|

2
+ 47

1
2

∑N
j=0 |Aj|

2 < +∞. In this case, the eigenvalues of the integral 48

operator Tφ are real and their absolute values coincide with the 49

corresponding singular numbers. It is easy to check that the func- 50

tions 1,
√
2 cos(ωjy), and

√
2 sin(ωjy) are orthonormal eigenfunc- 51

tions of Tφ , whose eigenvalues are a0 = A0 with multiplicity 1 52

and aj =
Aj
2 with multiplicity 2, for j ≥ 1 (Pinkus, 1985, p. 95). 53

Note that 54

sGφ = sup
y∈[0,1]

∫ 1

0
|h(x − y)|2dx =

∫ 1

0
|h(t)|2dt 55

=

|A0|
2 +

1
2

N−
j=0

|Aj|
2. 56

In particular, consider the case 57

h(t) =
4
π

−
j odd

1
j
sin

2π j


t −

1
4


58

=
4
π

−
j odd

(−1)⌈j/2⌉

j
cos(2π jt), 59

i.e., h(t) is the square wave shown in Fig. 1(a). Then for every 60

integer n ≥ 4 the following bounds hold: 61

dn(B1(‖ · ‖Gφ )) ≥
2

π(2⌈(n + 1)/2⌉ − 1)
62

=


2
πn

for n odd,

2
π(n + 1)

for n even
(23) 63

and 64

δ(B1(‖ · ‖Gφ ), spannGφ) ≤


2
3

4
2⌈(n + 1)/2⌉ − 2

65

=




2
3

4
n − 1

for n odd,
2
3
4
n

for n even.

(24) 66

To prove (23) and (24), we proceed as follows. As sn+1(Tφ) = 67

|λn+1(Tφ)| =
2

π(2⌈(n+1)/2⌉−1) , the lower bound (23) follows by 68

Corollary 2 with µ([0, 1]) = 1. Let us prove the upper bound



G. Gnecco et al. / Neural Networks xx (xxxx) xxx–xxx 11

B =



1 0 · · · · · · 0

β1 1
. . .

...

0 β2 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 βm−1 1

 ,

B−1
=



1 0 · · · · · · · · · · · · 0

(−β1) 1
. . .

...

(−β1)(−β2) (−β2) 1
. . .

...

(−β1)(−β2)(−β3) (−β1)(−β2) (−β3) 1
. . .

...
...

...
...

. . .
. . .

. . .
...

...
...

...
. . .

. . . 0
(−β1) · · · (−βm−1) (−β2) · · · (−βm−1) (−β3) · · · (−βm−1) · · · · · · (−βm−1) 1


.

Box I.

(24). First, suppose that n ≥ 4 is even and consider the periodic1

extension fn/2 to R of the function2

f̂n/2(t) =



−1, if 0 ≤ t ≤
1
4

−
1
n
,

n

t −

1
4


, if

1
4

−
1
n

≤ t ≤
1
4

+
1
n
,

1, if
1
4

+
1
n

≤ t ≤
3
4

−
1
n
,

−n

t −

3
4


, if

3
4

−
1
n

≤ t ≤
3
4

+
1
n
,

−1, if
3
4

+
1
n

≤ t ≤ 1.

3

Then, for every even integer n ≥ 4, some calculations provide
∧
an4

error en/2(Gφ) in approximating the elements of Gφ by fn/2 and its5

n
2 − 1 translates by multiples of 2

n the upper bound en/2(Gφ) ≤6

4
√
3n

(one can easily see that the function h

t −

1
n


is one of the7

translates of h for which one has the worst approximation error8

in L2
µ([0, 1]) by fn/2 and its n

2 − 1 translates; see Fig. 1(b)). So, by9

Theorem1(ii) we get (24). The estimate for every odd integer n ≥ 510

is obtained from the previous one by noting that δ(B1(‖ · ‖Gφ ),11

spannGφ) ≤ δ(B1(‖ · ‖Gφ ), spann−1Gφ).12

7. Discussion13

We have compared theoretical lower bounds on the worst-14

case approximation error achievable via optimal linear methods15

(i.e., via subspaces generated by any optimal n-tuple of elements16

of the ambient space) with upper bounds on variable-basis17

approximation by spannG (i.e., approximation by all n-tuples of18

elements of a dictionary G of computational units in the ambient19

space).20

For dictionaries G with finite cardinality m, we have provided21

examples in which approximation of the unit ball in G-variation22

by elements of spannG is better than every linear approximation of23

dimension n ≤ m, for values of n belonging to suitable intervals.24

This case is of practical interest, as often in applications one needs25

sparse approximations, i.e. approximations with a ‘‘reasonably26

small’’ number n of computational units.27

When the operator Tφ associated with a variable-basis model28

spannGφ is symmetric and its eigenfunctions belong to the set Gφ ,29

we have exhibited cases in which approximation of the unit ball30

a

b

Fig. 1. Plots of one period of the functions h(t), h(t−0.1), and f5(t) in the example
of Section 6.4 with n = 10.

in Gφ-variation by elements of spannGφ is better than every linear 31

approximation of dimension n. 32

These results are rather strong, as they prove that in such 33

cases the worst-case errors achievable by the dictionaries that 34

we have described are smaller than those provided by any linear 35

approximator. 36
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However, variable-basis approximation may be advantageous1

even when theoretically a better linear approximator
∧
might exist,2

because finding the latter may be an unfeasible task. To illustrate3

such a case, we have provided an example in which an upper4

bound on variable-basis approximation and a lower bound on5

linear approximation have asymptotically the same orders.6
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